Research on Crack Disease Identification Based on Visible Spectrum in Harsh Tunnel Environment

In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Bai, Ruijun, Gao, Jing, Li, Zhong, Liu, Donghang, Shangguan, Xuekui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3329991

Cover

Abstract In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare, and at the same time, some existing railway tunnels of relatively old age have extremely limited lighting conditions, which are subject to the dark conditions in railway tunnels, as well as the structural surface noise and crack-like interferences that can cause great challenges to the identification of cracks in railway tunnels. Based on this, this paper collects images inside real-world railway tunnels, produces a dataset, and proposes a novel and effective hybrid neural network tunnel crack disease recognition iFormer Unet model, which is based on the iFormer block module that can extract high-frequency features and low-frequency features at the same time, and constructs a U-shape network consisting of an encoder, a Bottleneck, a decoder, and a jump connection U-shaped network composed of encoder, Bottleneck, decoder and jump connection. The results of 10-fold cross-validation in the experiments show that the proposed method has a relatively low misdetection rate of about 7.56%, with about 30.31M Params and 34.84G FLOPs. iFormer Unet model has the lowest misdetection rate compared to the Swin Unet and Unet models, which are 5.28% and 8.58% lower, respectively, when tested on six image categories. 5.28% and 8.58% respectively. The proposed iFormer Unet algorithm realises the automatic identification of cracks in railway tunnels under harsh environments, which provides a certain reference and basis for the maintenance of railway tunnels.
AbstractList In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare, and at the same time, some existing railway tunnels of relatively old age have extremely limited lighting conditions, which are subject to the dark conditions in railway tunnels, as well as the structural surface noise and crack-like interferences that can cause great challenges to the identification of cracks in railway tunnels. Based on this, this paper collects images inside real-world railway tunnels, produces a dataset, and proposes a novel and effective hybrid neural network tunnel crack disease recognition iFormer Unet model, which is based on the iFormer block module that can extract high-frequency features and low-frequency features at the same time, and constructs a U-shape network consisting of an encoder, a Bottleneck, a decoder, and a jump connection U-shaped network composed of encoder, Bottleneck, decoder and jump connection. The results of 10-fold cross-validation in the experiments show that the proposed method has a relatively low misdetection rate of about 7.56%, with about 30.31M Params and 34.84G FLOPs. iFormer Unet model has the lowest misdetection rate compared to the Swin Unet and Unet models, which are 5.28% and 8.58% lower, respectively, when tested on six image categories. 5.28% and 8.58% respectively. The proposed iFormer Unet algorithm realises the automatic identification of cracks in railway tunnels under harsh environments, which provides a certain reference and basis for the maintenance of railway tunnels.
Author Liu, Donghang
Gao, Jing
Bai, Ruijun
Shangguan, Xuekui
Li, Zhong
Author_xml – sequence: 1
  givenname: Ruijun
  orcidid: 0009-0008-1101-1799
  surname: Bai
  fullname: Bai, Ruijun
  organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China
– sequence: 2
  givenname: Jing
  surname: Gao
  fullname: Gao, Jing
  organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China
– sequence: 3
  givenname: Zhong
  surname: Li
  fullname: Li, Zhong
  organization: North University of China, Taiyuan, China
– sequence: 4
  givenname: Donghang
  surname: Liu
  fullname: Liu, Donghang
  organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China
– sequence: 5
  givenname: Xuekui
  surname: Shangguan
  fullname: Shangguan, Xuekui
  organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China
BookMark eNqFkU9v1DAQxS1UpJbST1AOljjv4j9xYh9LWOhKlZDYliOW44ypl6y92ElRvz3epkJVOdQXW8_zfqN58wYdhRgAoXNKlpQS9eGibVebzZIRxpecM6UUfYVOGK3VggteHz15H6OznLekHFkk0ZygH98gg0n2FseA22TsL_zJFyUDXvcQRu-8NaMvnx-L1h-qvvvsuwHwZg92TNMO-4AvTcq3-HoKAQa8Cnc-xbAr9rfotTNDhrPH-xTdfF5dt5eLq69f1u3F1cJWRI2LvnNGUVKRWgjCVMMqJntJhKiYFY1rlGLgKBPU9Uo6q6y0wjoLtGKGGSH4KVrP3D6ard4nvzPpXkfj9YMQ009t0ujtABqEkE0nrVR1wddSkRJFpyplOtPXFS-samZNYW_u_5hh-AekRB8i18ZayFkfItePkRfb-9m2T_H3BHnU2zilUKbWTMoyk2poXar4XGVTzDmB-489r_M5Wz1zWT8-rGVMxg8veN_NXg8AT7rxEi_h_C-xfays
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3534803
Cites_doi 10.1080/17499518.2023.2172187
10.1109/APARM49247.2020.9209351
10.1016/j.autcon.2022.104412
10.1109/TITS.2021.3138428
10.3390/app112311193
10.1038/s41598-023-28530-2
10.1109/ICCV.2017.74
10.1007/978-3-319-24574-4_28
10.5194/isprsannals-III-5-167-2016
10.1109/TIE.2019.2945265
10.1109/ICCP.2015.7312681
10.1016/j.autcon.2022.104182
10.1007/s10489-018-01396-y
10.1109/CVPR.2015.7298594
10.1177/14759217211053776
10.3390/s18061881
10.1007/978-3-031-25066-8_9
10.1016/j.conbuildmat.2022.128583
10.1109/TIM.2022.3184351
10.1007/s41315-017-0031-9
10.1016/j.undsp.2022.07.003
10.3390/ma15113940
10.48550/ARXIV.1706.03762
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3329991
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_e5587b8c8965426890169b949abad643
10.1109/access.2023.3329991
10_1109_ACCESS_2023_3329991
10305503
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-dbfa9104065502972428d805542c57f7992ef1251fd98fc9c8c5cfce142a2a553
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:48 EDT 2025
Tue Aug 19 21:36:14 EDT 2025
Mon Jun 30 05:24:52 EDT 2025
Wed Oct 01 04:52:03 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Wed Aug 27 02:35:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-dbfa9104065502972428d805542c57f7992ef1251fd98fc9c8c5cfce142a2a553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-1101-1799
0009-0006-7757-3597
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10305503.pdf
PQID 2889729716
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e5587b8c8965426890169b949abad643
ieee_primary_10305503
crossref_citationtrail_10_1109_ACCESS_2023_3329991
proquest_journals_2889729716
unpaywall_primary_10_1109_access_2023_3329991
crossref_primary_10_1109_ACCESS_2023_3329991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Anas (ref25) 2021
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
Si (ref20); 35
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1080/17499518.2023.2172187
– ident: ref17
  doi: 10.1109/APARM49247.2020.9209351
– volume: 35
  start-page: 23495
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Inception transformer
– ident: ref5
  doi: 10.1016/j.autcon.2022.104412
– ident: ref11
  doi: 10.1109/TITS.2021.3138428
– ident: ref18
  doi: 10.3390/app112311193
– ident: ref16
  doi: 10.1038/s41598-023-28530-2
– ident: ref24
  doi: 10.1109/ICCV.2017.74
– ident: ref19
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref13
  doi: 10.5194/isprsannals-III-5-167-2016
– ident: ref6
  doi: 10.1109/TIE.2019.2945265
– ident: ref8
  doi: 10.1109/ICCP.2015.7312681
– ident: ref15
  doi: 10.1016/j.autcon.2022.104182
– ident: ref7
  doi: 10.1007/s10489-018-01396-y
– ident: ref22
  doi: 10.1109/CVPR.2015.7298594
– ident: ref4
  doi: 10.1177/14759217211053776
– year: 2021
  ident: ref25
  article-title: COVID-QU-Ex
– ident: ref12
  doi: 10.3390/s18061881
– ident: ref23
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref2
  doi: 10.1016/j.conbuildmat.2022.128583
– ident: ref10
  doi: 10.1109/TIM.2022.3184351
– ident: ref14
  doi: 10.1007/s41315-017-0031-9
– ident: ref1
  doi: 10.1016/j.undsp.2022.07.003
– ident: ref9
  doi: 10.3390/ma15113940
– ident: ref21
  doi: 10.48550/ARXIV.1706.03762
SSID ssj0000816957
Score 2.2877433
Snippet In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Coders
Convolutional neural networks
Crack identification
Cracks
Decoding
Diseases
Feature extraction
Harsh environment
High frequency characteristics
Hybrid intelligent systems
Hybrid neural network
hybrid neural networks
Image segmentation
Lighting
Low frequency characteristics
Machine learning
Neural networks
Rail transportation
Railway tunnel
Railway tunnels
Visible spectrum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-CAeIrxUg4cKXRp0iZHGKAJCU6AOBHl0QjE6BBsQvx77DYbnZDgwjVyW9d2YztNvo-QA84ZhI71iTVdmcCElybSMp8Y7q1yeSiyGvHm6jrv3_LLe3HfovrCPWENPHBjuONSCFlY6aRCaqVcKoQPsYorY42HdIqzbypVq5mq52AJUqKIMEPdVB2f9HrwRkfIFn6UZQzroplUVCP2R4qVmWpzYVy9ms8PMxi0Es_FClmOFSM9aTRdJXNltUaWWjiC6-Rhsn-ODivaezPumZ41P15ocxA3xJU5egpjHqXunuBbGJQU-edHb-MX-lTRPjS5j_RmjFtf6Pn3CbgNcntxftPrJ5E4IXHQro0Sb4OBMgByNfQfTBWQhqWXKVQOzIkiFEqxMmBlE7ySwSknnXDBlV3ODDNCZJtkvhpW5Rah3PLcCejJONjc5VxJm7IgHM-MCIz7DmETG2oXUcWR3GKg6-4iVboxvEbD62j4DjmcXvTagGr8Ln6KzpmKIiJ2PQBxomOc6L_ipEM20LWt5yHWWQrjuxNf6_j5vmsmJVgN0bU6JJn6_4eupua0nNF1-z903SGLeM9mpWeXzEMYlHtQ-4zsfh3mX485-Xs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-DAs4iUgnzgSNJdx07sY7tttUKipxb1ROSnqLrNVmUj1P76ztjeZbcIxC2yHHmSz_Y87PmGkE-cM5g6xpVGj2UJG96olIa5UnNnlG1CW0fGm68nzfSMfzkX5zlZPebCeO_j5TNf4WM8y3dzO2CobG8cCa2Q2_NxK5uUrLUKqGAFCSXazCw0Hqm9_ckEPqLCAuFVXTM0hTa0TyTpz1VVNgzMJ0N_rW9_6dlsTdccvyAnSynTFZPLaliYyt49IHD87894SZ5nq5Pup2nyijzy_WvybI2L8A35vryDR-c9ndxoe0kP0-ENTcm8IUf36AG0Oez17QLW08xTrGG_uBmu6EVPp-Ao_6CnA16foUe_s-i2ydnx0elkWubiC6UFl29ROhM0mBKg70FUplpQ5dJJkJszK9rQKsV8QOsoOCWDVVZaYYP1Y84000LUb8lWP-_9O0K54Y0V4Ndxo7htuJJmxIKwvNYiMO4KwpagdDYzk2OBjFkXPZSR6hKSHSLZZSQL8nn10nUi5vh39wNEe9UVWbVjAyDT5UXaeSFka6SVCst4NVIhVQ3IrLTRDky3gmwjmmvjJSALsrucPF3eAn52TEr4a8jQVZByNaH-kFXHupgbsu78ZZj35Cl2SwGgXbIFyPoPYBItzMe4FO4BB6UEkA
  priority: 102
  providerName: IEEE
Title Research on Crack Disease Identification Based on Visible Spectrum in Harsh Tunnel Environment
URI https://ieeexplore.ieee.org/document/10305503
https://www.proquest.com/docview/2889729716
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10305503.pdf
https://doaj.org/article/e5587b8c8965426890169b949abad643
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AO42uIbKPygSNJW8dO7GPXbaqQmDisaFyw_CmqhWzaWvHx1-_ZcUsLEhLcEstRXvKe7d-z3_s9hN5QSsB0tM21GvEcJrxhzjWxuaJWC1P5uoyMN-_Pq-mMvrtkl2nDLebCOOdi8JkrwmU8y5-75ns9qEggTxODCpZ4cBIGo8huNQRX0PqHaKdigMV7aGd2_mH8KVSUG1UiL-PZ5GEi1hyoWIOwCBXDi7IkARttLUeRtT-VWdlCnI-W7Y368U01zcbic_YEyZXYXczJVbFc6ML8_I3R8f-_6ynaS7gUjztDeoYeuPY52t1gK3yBPq-i9PB1iye3ylzhk-54B3fpvj7t_-FjaLOh18c5jLjG4VDlfnG7_IrnLZ6CK_0FXyxDgA0-_ZVnt49mZ6cXk2meyjPkBpzCRW61VwA2ABGAuETUsNhzy0F2SgyrfS0EcT7gJ28F90YYbpjxxo0oUUQxVr5Evfa6da8QpppWhoHnR7WgpqKC6yHxzNBSMU-ozRBZaUmaxF0eSmg0MvowQyHHkwkYrAyqlUm1GXq7fuimo-74e_fjoP5118C7HRtAVTINY-kY47XmhotQ6KviIpDZgMxCaWUB3GVoP6h3432dMjN0tLImmSaJO0k4h78WOLwylK8t7A9ZO6vdkvXgH_sfosfhtts6OkI90Lh7DWBqoftxE6If8x77afTcA7wFFk0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQORQOPIsIFPCBI7tNvPaufWxDqwBtTinqCctPUTVsqpIVgl_PjNcJCQjEbWXZ8ni_sWf8mG8Iec05A9WxvrBmJAtY8IaFtMwXhnurXB2bKjHenE3ryTl_fyEucrB6ioUJIaTHZ6HEz3SX7xeuw6Oyg1EitEJuz9uCcy76cK31kQrmkFCiydxCo6E6OByPYRglpggvq4qhM7RlfxJNf86rsuVi7nbttfn-zcznG9bm5D6ZruTsH5lcld3Slu7HbxSO_z2QB-Re9jvpYa8oD8mt0D4idzfYCB-TT6tXeHTR0vGNcVf0bX99Q_tw3pjP9-gRlHms9fESZtQ8UMxiv7zpvtDLlk5gq_yZzjp8QEOPf8XR7ZHzk-PZeFLk9AuFg03fsvA2GnAmwOKDqEw1YMyllyA3Z040sVGKhYj-UfRKRqecdMJFF0acGWaEqJ6QnXbRhqeEcstrJ2Bnx63iruZK2iGLwvHKiMi4HxC2AkW7zE2OKTLmOu1Rhkr3SGpEUmckB-TNutF1T83x7-pHiPa6KvJqpwJARudpqoMQsrHSSYWJvGqpkKwGZFbGGg_O24DsIZob_fVADsj-Snl0XgS-aiYl_DXk6BqQYq1Qf8hqUmbMLVmf_aWbV2R3Mjs71afvph-ekzvYpD8O2ic7gHJ4AQ7S0r5M0-InzVgH3Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELYgPQAHnkUsLcgHjuwm8dpe-5iGVhESFYcGlQuWn2rUZVuVRDx-PWOvExKQkOC2a81qZ3fG9jf2-BuEXlFKwHWMK40eixIGvFEpDHGlps5Iy0NTJ8abd6d8Nqdvz9l5XnBLZ2G89yn5zFfxMu3lL3z7rRlyEsnT5JDDFA9BwnCc2K1GEAq6cBvtcQZYfID25qfvJx9jRbkxl2Wd9iYPMrHmUKcahFWsGF7VNYnYaGc6Sqz9uczKDuK8s-qu9fevum23Jp-TB0it1e5zTi6r1dJU9sdvjI7__10P0f2MS_Gkd6RH6JbvHqN7W2yFT9CndZYevurw9EbbS_ym397B_XHfkNf_8BG0uSj1YQE9rvU4Vrlf3qw-40WHZxBKX-CzVUywwce_ztnto_nJ8dl0VubyDKWFoHBZOhM0gA1ABKAukQ1M9sIJ0J0Sy5rQSEl8iPgpOCmClVZYZoP1Y0o00YzVT9Ggu-r8M4SpodwyiPyokdRyKoUZkcAsrTULhLoCkbWVlM3c5bGERqtSDDOSajKdgsOqaFqVTVug15uHrnvqjr-LH0Xzb0Qj73ZqAFOp3I2VZ0w0RlghY6EvLmQkswGdpTbaAbgr0H4079b7emMW6HDtTSoPEl8UEQL-WuTwKlC58bA_dO29dkfX5_8of4Duxtt-6egQDcDi_gWAqaV5mXvMT8G8FFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Crack+Disease+Identification+Based+on+Visible+Spectrum+in+Harsh+Tunnel+Environment&rft.jtitle=IEEE+access&rft.au=Bai%2C+Ruijun&rft.au=Gao%2C+Jing&rft.au=Li%2C+Zhong&rft.au=Liu%2C+Donghang&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=123268&rft_id=info:doi/10.1109%2FACCESS.2023.3329991&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon