Research on Crack Disease Identification Based on Visible Spectrum in Harsh Tunnel Environment
In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare,...
Saved in:
| Published in | IEEE access Vol. 11; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3329991 |
Cover
| Abstract | In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare, and at the same time, some existing railway tunnels of relatively old age have extremely limited lighting conditions, which are subject to the dark conditions in railway tunnels, as well as the structural surface noise and crack-like interferences that can cause great challenges to the identification of cracks in railway tunnels. Based on this, this paper collects images inside real-world railway tunnels, produces a dataset, and proposes a novel and effective hybrid neural network tunnel crack disease recognition iFormer Unet model, which is based on the iFormer block module that can extract high-frequency features and low-frequency features at the same time, and constructs a U-shape network consisting of an encoder, a Bottleneck, a decoder, and a jump connection U-shaped network composed of encoder, Bottleneck, decoder and jump connection. The results of 10-fold cross-validation in the experiments show that the proposed method has a relatively low misdetection rate of about 7.56%, with about 30.31M Params and 34.84G FLOPs. iFormer Unet model has the lowest misdetection rate compared to the Swin Unet and Unet models, which are 5.28% and 8.58% lower, respectively, when tested on six image categories. 5.28% and 8.58% respectively. The proposed iFormer Unet algorithm realises the automatic identification of cracks in railway tunnels under harsh environments, which provides a certain reference and basis for the maintenance of railway tunnels. |
|---|---|
| AbstractList | In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare, and at the same time, some existing railway tunnels of relatively old age have extremely limited lighting conditions, which are subject to the dark conditions in railway tunnels, as well as the structural surface noise and crack-like interferences that can cause great challenges to the identification of cracks in railway tunnels. Based on this, this paper collects images inside real-world railway tunnels, produces a dataset, and proposes a novel and effective hybrid neural network tunnel crack disease recognition iFormer Unet model, which is based on the iFormer block module that can extract high-frequency features and low-frequency features at the same time, and constructs a U-shape network consisting of an encoder, a Bottleneck, a decoder, and a jump connection U-shaped network composed of encoder, Bottleneck, decoder and jump connection. The results of 10-fold cross-validation in the experiments show that the proposed method has a relatively low misdetection rate of about 7.56%, with about 30.31M Params and 34.84G FLOPs. iFormer Unet model has the lowest misdetection rate compared to the Swin Unet and Unet models, which are 5.28% and 8.58% lower, respectively, when tested on six image categories. 5.28% and 8.58% respectively. The proposed iFormer Unet algorithm realises the automatic identification of cracks in railway tunnels under harsh environments, which provides a certain reference and basis for the maintenance of railway tunnels. |
| Author | Liu, Donghang Gao, Jing Bai, Ruijun Shangguan, Xuekui Li, Zhong |
| Author_xml | – sequence: 1 givenname: Ruijun orcidid: 0009-0008-1101-1799 surname: Bai fullname: Bai, Ruijun organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China – sequence: 2 givenname: Jing surname: Gao fullname: Gao, Jing organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China – sequence: 3 givenname: Zhong surname: Li fullname: Li, Zhong organization: North University of China, Taiyuan, China – sequence: 4 givenname: Donghang surname: Liu fullname: Liu, Donghang organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China – sequence: 5 givenname: Xuekui surname: Shangguan fullname: Shangguan, Xuekui organization: Shanxi Iformation Industry Technology Research Institute Co., Ltd, Taiyuan, China |
| BookMark | eNqFkU9v1DAQxS1UpJbST1AOljjv4j9xYh9LWOhKlZDYliOW44ypl6y92ElRvz3epkJVOdQXW8_zfqN58wYdhRgAoXNKlpQS9eGibVebzZIRxpecM6UUfYVOGK3VggteHz15H6OznLekHFkk0ZygH98gg0n2FseA22TsL_zJFyUDXvcQRu-8NaMvnx-L1h-qvvvsuwHwZg92TNMO-4AvTcq3-HoKAQa8Cnc-xbAr9rfotTNDhrPH-xTdfF5dt5eLq69f1u3F1cJWRI2LvnNGUVKRWgjCVMMqJntJhKiYFY1rlGLgKBPU9Uo6q6y0wjoLtGKGGSH4KVrP3D6ard4nvzPpXkfj9YMQ009t0ujtABqEkE0nrVR1wddSkRJFpyplOtPXFS-samZNYW_u_5hh-AekRB8i18ZayFkfItePkRfb-9m2T_H3BHnU2zilUKbWTMoyk2poXar4XGVTzDmB-489r_M5Wz1zWT8-rGVMxg8veN_NXg8AT7rxEi_h_C-xfays |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3534803 |
| Cites_doi | 10.1080/17499518.2023.2172187 10.1109/APARM49247.2020.9209351 10.1016/j.autcon.2022.104412 10.1109/TITS.2021.3138428 10.3390/app112311193 10.1038/s41598-023-28530-2 10.1109/ICCV.2017.74 10.1007/978-3-319-24574-4_28 10.5194/isprsannals-III-5-167-2016 10.1109/TIE.2019.2945265 10.1109/ICCP.2015.7312681 10.1016/j.autcon.2022.104182 10.1007/s10489-018-01396-y 10.1109/CVPR.2015.7298594 10.1177/14759217211053776 10.3390/s18061881 10.1007/978-3-031-25066-8_9 10.1016/j.conbuildmat.2022.128583 10.1109/TIM.2022.3184351 10.1007/s41315-017-0031-9 10.1016/j.undsp.2022.07.003 10.3390/ma15113940 10.48550/ARXIV.1706.03762 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3329991 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_e5587b8c8965426890169b949abad643 10.1109/access.2023.3329991 10_1109_ACCESS_2023_3329991 10305503 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-dbfa9104065502972428d805542c57f7992ef1251fd98fc9c8c5cfce142a2a553 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:48 EDT 2025 Tue Aug 19 21:36:14 EDT 2025 Mon Jun 30 05:24:52 EDT 2025 Wed Oct 01 04:52:03 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Wed Aug 27 02:35:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-dbfa9104065502972428d805542c57f7992ef1251fd98fc9c8c5cfce142a2a553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-1101-1799 0009-0006-7757-3597 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10305503.pdf |
| PQID | 2889729716 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e5587b8c8965426890169b949abad643 ieee_primary_10305503 crossref_citationtrail_10_1109_ACCESS_2023_3329991 proquest_journals_2889729716 unpaywall_primary_10_1109_access_2023_3329991 crossref_primary_10_1109_ACCESS_2023_3329991 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 Anas (ref25) 2021 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 Si (ref20); 35 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1080/17499518.2023.2172187 – ident: ref17 doi: 10.1109/APARM49247.2020.9209351 – volume: 35 start-page: 23495 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref20 article-title: Inception transformer – ident: ref5 doi: 10.1016/j.autcon.2022.104412 – ident: ref11 doi: 10.1109/TITS.2021.3138428 – ident: ref18 doi: 10.3390/app112311193 – ident: ref16 doi: 10.1038/s41598-023-28530-2 – ident: ref24 doi: 10.1109/ICCV.2017.74 – ident: ref19 doi: 10.1007/978-3-319-24574-4_28 – ident: ref13 doi: 10.5194/isprsannals-III-5-167-2016 – ident: ref6 doi: 10.1109/TIE.2019.2945265 – ident: ref8 doi: 10.1109/ICCP.2015.7312681 – ident: ref15 doi: 10.1016/j.autcon.2022.104182 – ident: ref7 doi: 10.1007/s10489-018-01396-y – ident: ref22 doi: 10.1109/CVPR.2015.7298594 – ident: ref4 doi: 10.1177/14759217211053776 – year: 2021 ident: ref25 article-title: COVID-QU-Ex – ident: ref12 doi: 10.3390/s18061881 – ident: ref23 doi: 10.1007/978-3-031-25066-8_9 – ident: ref2 doi: 10.1016/j.conbuildmat.2022.128583 – ident: ref10 doi: 10.1109/TIM.2022.3184351 – ident: ref14 doi: 10.1007/s41315-017-0031-9 – ident: ref1 doi: 10.1016/j.undsp.2022.07.003 – ident: ref9 doi: 10.3390/ma15113940 – ident: ref21 doi: 10.48550/ARXIV.1706.03762 |
| SSID | ssj0000816957 |
| Score | 2.2877433 |
| Snippet | In recent years, deep learning-based crack detection techniques have been widely used in ground crack detection, urban street crack detection, ordinary wall... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Coders Convolutional neural networks Crack identification Cracks Decoding Diseases Feature extraction Harsh environment High frequency characteristics Hybrid intelligent systems Hybrid neural network hybrid neural networks Image segmentation Lighting Low frequency characteristics Machine learning Neural networks Rail transportation Railway tunnel Railway tunnels Visible spectrum |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-CAeIrxUg4cKXRp0iZHGKAJCU6AOBHl0QjE6BBsQvx77DYbnZDgwjVyW9d2YztNvo-QA84ZhI71iTVdmcCElybSMp8Y7q1yeSiyGvHm6jrv3_LLe3HfovrCPWENPHBjuONSCFlY6aRCaqVcKoQPsYorY42HdIqzbypVq5mq52AJUqKIMEPdVB2f9HrwRkfIFn6UZQzroplUVCP2R4qVmWpzYVy9ms8PMxi0Es_FClmOFSM9aTRdJXNltUaWWjiC6-Rhsn-ODivaezPumZ41P15ocxA3xJU5egpjHqXunuBbGJQU-edHb-MX-lTRPjS5j_RmjFtf6Pn3CbgNcntxftPrJ5E4IXHQro0Sb4OBMgByNfQfTBWQhqWXKVQOzIkiFEqxMmBlE7ySwSknnXDBlV3ODDNCZJtkvhpW5Rah3PLcCejJONjc5VxJm7IgHM-MCIz7DmETG2oXUcWR3GKg6-4iVboxvEbD62j4DjmcXvTagGr8Ln6KzpmKIiJ2PQBxomOc6L_ipEM20LWt5yHWWQrjuxNf6_j5vmsmJVgN0bU6JJn6_4eupua0nNF1-z903SGLeM9mpWeXzEMYlHtQ-4zsfh3mX485-Xs priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-DAs4iUgnzgSNJdx07sY7tttUKipxb1ROSnqLrNVmUj1P76ztjeZbcIxC2yHHmSz_Y87PmGkE-cM5g6xpVGj2UJG96olIa5UnNnlG1CW0fGm68nzfSMfzkX5zlZPebCeO_j5TNf4WM8y3dzO2CobG8cCa2Q2_NxK5uUrLUKqGAFCSXazCw0Hqm9_ckEPqLCAuFVXTM0hTa0TyTpz1VVNgzMJ0N_rW9_6dlsTdccvyAnSynTFZPLaliYyt49IHD87894SZ5nq5Pup2nyijzy_WvybI2L8A35vryDR-c9ndxoe0kP0-ENTcm8IUf36AG0Oez17QLW08xTrGG_uBmu6EVPp-Ao_6CnA16foUe_s-i2ydnx0elkWubiC6UFl29ROhM0mBKg70FUplpQ5dJJkJszK9rQKsV8QOsoOCWDVVZaYYP1Y84000LUb8lWP-_9O0K54Y0V4Ndxo7htuJJmxIKwvNYiMO4KwpagdDYzk2OBjFkXPZSR6hKSHSLZZSQL8nn10nUi5vh39wNEe9UVWbVjAyDT5UXaeSFka6SVCst4NVIhVQ3IrLTRDky3gmwjmmvjJSALsrucPF3eAn52TEr4a8jQVZByNaH-kFXHupgbsu78ZZj35Cl2SwGgXbIFyPoPYBItzMe4FO4BB6UEkA priority: 102 providerName: IEEE |
| Title | Research on Crack Disease Identification Based on Visible Spectrum in Harsh Tunnel Environment |
| URI | https://ieeexplore.ieee.org/document/10305503 https://www.proquest.com/docview/2889729716 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10305503.pdf https://doaj.org/article/e5587b8c8965426890169b949abad643 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AO42uIbKPygSNJW8dO7GPXbaqQmDisaFyw_CmqhWzaWvHx1-_ZcUsLEhLcEstRXvKe7d-z3_s9hN5QSsB0tM21GvEcJrxhzjWxuaJWC1P5uoyMN-_Pq-mMvrtkl2nDLebCOOdi8JkrwmU8y5-75ns9qEggTxODCpZ4cBIGo8huNQRX0PqHaKdigMV7aGd2_mH8KVSUG1UiL-PZ5GEi1hyoWIOwCBXDi7IkARttLUeRtT-VWdlCnI-W7Y368U01zcbic_YEyZXYXczJVbFc6ML8_I3R8f-_6ynaS7gUjztDeoYeuPY52t1gK3yBPq-i9PB1iye3ylzhk-54B3fpvj7t_-FjaLOh18c5jLjG4VDlfnG7_IrnLZ6CK_0FXyxDgA0-_ZVnt49mZ6cXk2meyjPkBpzCRW61VwA2ABGAuETUsNhzy0F2SgyrfS0EcT7gJ28F90YYbpjxxo0oUUQxVr5Evfa6da8QpppWhoHnR7WgpqKC6yHxzNBSMU-ozRBZaUmaxF0eSmg0MvowQyHHkwkYrAyqlUm1GXq7fuimo-74e_fjoP5118C7HRtAVTINY-kY47XmhotQ6KviIpDZgMxCaWUB3GVoP6h3432dMjN0tLImmSaJO0k4h78WOLwylK8t7A9ZO6vdkvXgH_sfosfhtts6OkI90Lh7DWBqoftxE6If8x77afTcA7wFFk0 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQORQOPIsIFPCBI7tNvPaufWxDqwBtTinqCctPUTVsqpIVgl_PjNcJCQjEbWXZ8ni_sWf8mG8Iec05A9WxvrBmJAtY8IaFtMwXhnurXB2bKjHenE3ryTl_fyEucrB6ioUJIaTHZ6HEz3SX7xeuw6Oyg1EitEJuz9uCcy76cK31kQrmkFCiydxCo6E6OByPYRglpggvq4qhM7RlfxJNf86rsuVi7nbttfn-zcznG9bm5D6ZruTsH5lcld3Slu7HbxSO_z2QB-Re9jvpYa8oD8mt0D4idzfYCB-TT6tXeHTR0vGNcVf0bX99Q_tw3pjP9-gRlHms9fESZtQ8UMxiv7zpvtDLlk5gq_yZzjp8QEOPf8XR7ZHzk-PZeFLk9AuFg03fsvA2GnAmwOKDqEw1YMyllyA3Z040sVGKhYj-UfRKRqecdMJFF0acGWaEqJ6QnXbRhqeEcstrJ2Bnx63iruZK2iGLwvHKiMi4HxC2AkW7zE2OKTLmOu1Rhkr3SGpEUmckB-TNutF1T83x7-pHiPa6KvJqpwJARudpqoMQsrHSSYWJvGqpkKwGZFbGGg_O24DsIZob_fVADsj-Snl0XgS-aiYl_DXk6BqQYq1Qf8hqUmbMLVmf_aWbV2R3Mjs71afvph-ekzvYpD8O2ic7gHJ4AQ7S0r5M0-InzVgH3Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELYgPQAHnkUsLcgHjuwm8dpe-5iGVhESFYcGlQuWn2rUZVuVRDx-PWOvExKQkOC2a81qZ3fG9jf2-BuEXlFKwHWMK40eixIGvFEpDHGlps5Iy0NTJ8abd6d8Nqdvz9l5XnBLZ2G89yn5zFfxMu3lL3z7rRlyEsnT5JDDFA9BwnCc2K1GEAq6cBvtcQZYfID25qfvJx9jRbkxl2Wd9iYPMrHmUKcahFWsGF7VNYnYaGc6Sqz9uczKDuK8s-qu9fevum23Jp-TB0it1e5zTi6r1dJU9sdvjI7__10P0f2MS_Gkd6RH6JbvHqN7W2yFT9CndZYevurw9EbbS_ym397B_XHfkNf_8BG0uSj1YQE9rvU4Vrlf3qw-40WHZxBKX-CzVUywwce_ztnto_nJ8dl0VubyDKWFoHBZOhM0gA1ABKAukQ1M9sIJ0J0Sy5rQSEl8iPgpOCmClVZYZoP1Y0o00YzVT9Ggu-r8M4SpodwyiPyokdRyKoUZkcAsrTULhLoCkbWVlM3c5bGERqtSDDOSajKdgsOqaFqVTVug15uHrnvqjr-LH0Xzb0Qj73ZqAFOp3I2VZ0w0RlghY6EvLmQkswGdpTbaAbgr0H4079b7emMW6HDtTSoPEl8UEQL-WuTwKlC58bA_dO29dkfX5_8of4Duxtt-6egQDcDi_gWAqaV5mXvMT8G8FFc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Crack+Disease+Identification+Based+on+Visible+Spectrum+in+Harsh+Tunnel+Environment&rft.jtitle=IEEE+access&rft.au=Bai%2C+Ruijun&rft.au=Gao%2C+Jing&rft.au=Li%2C+Zhong&rft.au=Liu%2C+Donghang&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=123268&rft_id=info:doi/10.1109%2FACCESS.2023.3329991&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |