Explainable Predictive Maintenance of Rotating Machines Using LIME, SHAP, PDP, ICE
Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predi...
Saved in:
| Published in | IEEE access Vol. 12; pp. 29345 - 29361 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3367110 |
Cover
| Abstract | Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predictive maintenance is a method that uses AI to handle potential problems before they cause breakdowns in operations, processes or systems. However, there is a significant issue with the AI models' (also known as "black boxes") inability to explain their decisions. This interpretability is vital for making maintenance decisions and validating the model's reliability, leading to improved trust and acceptance of AI-driven predictive maintenance strategies. Explainable AI is the solution because it provides human-understandable insights into how the AI model arrives at its predictions. In this regard, the paper presents Explainable AI-based predictive maintenance of Industrial rotating machines. The proposed approach unfolds in four comprehensive stages: 1) Multi-sensor based multi-fault (5 different fault classes) data acquisition; 2) frequency-domain statistical feature extraction; and c) comparison of results for multiple AI algorithms, and d) XAI integration using "Local Interpretable Model Agnostic Explanation (LIME)", "SHapley Additive exPlanation (SHAP)", "Partial Dependence Plot (PDP)" and "Individual Conditional Expectation (ICE)" to interpret the results. |
|---|---|
| AbstractList | Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predictive maintenance is a method that uses AI to handle potential problems before they cause breakdowns in operations, processes or systems. However, there is a significant issue with the AI models' (also known as "black boxes") inability to explain their decisions. This interpretability is vital for making maintenance decisions and validating the model's reliability, leading to improved trust and acceptance of AI-driven predictive maintenance strategies. Explainable AI is the solution because it provides human-understandable insights into how the AI model arrives at its predictions. In this regard, the paper presents Explainable AI-based predictive maintenance of Industrial rotating machines. The proposed approach unfolds in four comprehensive stages: 1) Multi-sensor based multi-fault (5 different fault classes) data acquisition; 2) frequency-domain statistical feature extraction; and c) comparison of results for multiple AI algorithms, and d) XAI integration using "Local Interpretable Model Agnostic Explanation (LIME)", "SHapley Additive exPlanation (SHAP)", "Partial Dependence Plot (PDP)" and "Individual Conditional Expectation (ICE)" to interpret the results. |
| Author | Alfarhood, Sultan Patil, Shruti Kotecha, Ketan Kumar, Satish Gawde, Shreyas Kamat, Pooja |
| Author_xml | – sequence: 1 givenname: Shreyas orcidid: 0000-0001-9034-1367 surname: Gawde fullname: Gawde, Shreyas organization: Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India – sequence: 2 givenname: Shruti orcidid: 0000-0002-4903-1540 surname: Patil fullname: Patil, Shruti email: shruti.patil@sitpune.edu.in organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India – sequence: 3 givenname: Satish orcidid: 0000-0001-6788-0952 surname: Kumar fullname: Kumar, Satish organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India – sequence: 4 givenname: Pooja orcidid: 0000-0002-7597-0197 surname: Kamat fullname: Kamat, Pooja organization: Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India – sequence: 5 givenname: Ketan orcidid: 0000-0003-2653-3780 surname: Kotecha fullname: Kotecha, Ketan organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India – sequence: 6 givenname: Sultan orcidid: 0009-0001-1268-9613 surname: Alfarhood fullname: Alfarhood, Sultan email: sultanf@ksu.edu.sa organization: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| BookMark | eNptkV1v2yAUhtHUSeva_oLtwtJum4wPG8Nl5LlrpFSNmu4aYXzoiDzIwGnXfz8yV1UVjQs-Xp3nPfDyEZ344AGhTwTPCcHy66Jp2s1mTjEt54zxOovv0CklXM5YxfjJm_0HdJHSFuchslTVp-iu_bMbtPO6G6BYR-idGd0jFDdZG8Frb6AItrgLox6df8i6-ek8pOJHOhxXy5v2sthcL9aXxfpbnpZNe47eWz0kuHhZz9D9VXvfXM9Wt9-XzWI1MyWW46zvMOOWaMFsSa1kwHTNDe5wXWGjKyOMLC3oSlKoRc-zxq3gBHojamwYO0PLybYPeqt20f3S8VkF7dQ_IcQHpePozACKAu2w7LnhhpSyo13VQUWE5oILywFnr3Ly2vudfn7Sw_BqSLA6pKy0MZCSOqSsXlLO2JcJ28Xwew9pVNuwjz4_WlGZi7DkFc9VcqoyMaQUwSrjDmkGP0bthtcO0z8ed2BH7PG9_k99nigHAG-IssSY1uwvAwCnGA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_info16020074 crossref_primary_10_1061_JSDCCC_SCENG_1724 crossref_primary_10_3390_s25010137 crossref_primary_10_2478_jaiscr_2025_0014 crossref_primary_10_3390_technologies13020042 crossref_primary_10_3390_jmmp8040171 crossref_primary_10_1016_j_rineng_2025_104349 crossref_primary_10_1109_ACCESS_2025_3541979 crossref_primary_10_3390_sym16121648 crossref_primary_10_1016_j_rineng_2024_103071 crossref_primary_10_1016_j_ijepes_2025_110585 crossref_primary_10_1088_1361_6501_ad99f4 crossref_primary_10_1007_s42452_025_06681_3 crossref_primary_10_1029_2024JH000489 crossref_primary_10_1002_msd2_70004 crossref_primary_10_3390_electronics13173497 crossref_primary_10_3390_info16030217 |
| Cites_doi | 10.3390/s20010006 10.3390/mi13091471 10.1080/23311916.2022.2143040 10.1016/j.engappai.2016.08.011 10.1016/j.ymssp.2018.05.050 10.1109/TAI.2023.3279808 10.3390/s21124070 10.1016/j.measurement.2020.107802 10.1016/j.neucom.2018.05.002 10.1109/iccmc.2017.8282638 10.1145/3301275.3308446 10.1016/j.net.2020.02.001 10.1016/j.jiph.2020.02.042 10.3390/app13042038 10.1007/s10462-022-10243-z 10.1016/j.ajp.2022.103316 10.1007/s12206-020-0306-1 10.1016/j.inffus.2019.12.012 10.1109/access.2018.2890566 10.3390/e21070687 10.1109/TII.2020.3045002 10.1016/j.jsv.2016.05.027 10.1007/978-3-031-34107-6_7 10.1016/j.engappai.2023.106139 10.1007/s10462-022-10354-7 10.1155/2016/9306205 10.3233/jifs-169526 10.1016/j.dajour.2023.100174 10.3390/machines6040059 10.1080/07853890.2023.2233541 10.1016/j.heliyon.2023.e22456 10.1016/j.ymssp.2014.12.020 10.3390/app11062546 10.1016/j.inffus.2013.10.002 10.3390/s17122876 10.1155/2021/6634811 10.3390/su12198211 10.1109/access.2021.3056767 10.1016/j.compind.2021.103394 10.1109/TIM.2002.807987 10.1007/s40430-018-1202-9 10.3390/s22020517 10.3390/en13061394 10.14569/ijacsa.2019.0100538 10.3390/info14050256 10.1016/j.ymssp.2015.10.025 10.1016/j.ymssp.2020.107233 10.1016/j.dajour.2023.100219 10.1111/exsy.13316 10.1007/978-3-031-27961-4_2 10.1109/MIS.2019.2957223 10.1016/j.measurement.2020.108086 10.3390/s18061934 10.1109/ICCCNT.2013.6726711 10.1007/978-3-030-95947-0_28 10.3390/e23010018 10.1155/2021/6687331 10.1016/j.neucom.2012.07.019 10.1007/s00170-021-07911-9 10.3390/s19071693 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3367110 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 29361 |
| ExternalDocumentID | oai_doaj_org_article_2e2b09d6c6c149b2b5be518a6868f6e0 10.1109/access.2024.3367110 10_1109_ACCESS_2024_3367110 10440027 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Researchers Supporting Project grantid: RSPD2024R890 – fundername: King Saud University, Riyadh, Saudi Arabia funderid: 10.13039/501100002383 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-db036f1a83f42f93e3a76c0b0750ca5c8c94fea592e78d60ca6f861edc870c33 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:45 EDT 2025 Wed Oct 01 15:27:34 EDT 2025 Mon Jun 30 03:28:55 EDT 2025 Wed Oct 01 04:52:19 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Wed Aug 27 02:02:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-db036f1a83f42f93e3a76c0b0750ca5c8c94fea592e78d60ca6f861edc870c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2653-3780 0009-0001-1268-9613 0000-0002-4903-1540 0000-0001-9034-1367 0000-0001-6788-0952 0000-0002-7597-0197 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10440027 |
| PQID | 2933609656 |
| PQPubID | 4845423 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_10440027 proquest_journals_2933609656 crossref_citationtrail_10_1109_ACCESS_2024_3367110 doaj_primary_oai_doaj_org_article_2e2b09d6c6c149b2b5be518a6868f6e0 crossref_primary_10_1109_ACCESS_2024_3367110 unpaywall_primary_10_1109_access_2024_3367110 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 Hussain (ref57) 2021 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Molnar (ref58) 2020 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref28 doi: 10.3390/s20010006 – ident: ref61 doi: 10.3390/mi13091471 – ident: ref53 doi: 10.1080/23311916.2022.2143040 – ident: ref21 doi: 10.1016/j.engappai.2016.08.011 – ident: ref33 doi: 10.1016/j.ymssp.2018.05.050 – ident: ref51 doi: 10.1109/TAI.2023.3279808 – ident: ref3 doi: 10.3390/s21124070 – ident: ref38 doi: 10.1016/j.measurement.2020.107802 – ident: ref13 doi: 10.1016/j.neucom.2018.05.002 – ident: ref2 doi: 10.1109/iccmc.2017.8282638 – ident: ref56 doi: 10.1145/3301275.3308446 – ident: ref30 doi: 10.1016/j.net.2020.02.001 – ident: ref55 doi: 10.1016/j.jiph.2020.02.042 – ident: ref62 doi: 10.3390/app13042038 – ident: ref44 doi: 10.1007/s10462-022-10243-z – ident: ref49 doi: 10.1016/j.ajp.2022.103316 – ident: ref42 doi: 10.1007/s12206-020-0306-1 – ident: ref59 doi: 10.1016/j.inffus.2019.12.012 – ident: ref31 doi: 10.1109/access.2018.2890566 – ident: ref43 doi: 10.3390/e21070687 – ident: ref41 doi: 10.1109/TII.2020.3045002 – ident: ref19 doi: 10.1016/j.jsv.2016.05.027 – ident: ref50 doi: 10.1007/978-3-031-34107-6_7 – ident: ref4 doi: 10.1016/j.engappai.2023.106139 – start-page: 247 year: 2020 ident: ref58 article-title: Interpretable Machine Learning publication-title: A Guide for Making Black Box Models Explainable – ident: ref45 doi: 10.1007/s10462-022-10354-7 – ident: ref23 doi: 10.1155/2016/9306205 – ident: ref17 doi: 10.3233/jifs-169526 – ident: ref39 doi: 10.1016/j.dajour.2023.100174 – ident: ref12 doi: 10.3390/machines6040059 – ident: ref37 doi: 10.1080/07853890.2023.2233541 – ident: ref54 doi: 10.1016/j.heliyon.2023.e22456 – ident: ref29 doi: 10.1016/j.ymssp.2014.12.020 – ident: ref20 doi: 10.3390/app11062546 – ident: ref22 doi: 10.1016/j.inffus.2013.10.002 – ident: ref32 doi: 10.3390/s17122876 – ident: ref26 doi: 10.1155/2021/6634811 – ident: ref1 doi: 10.3390/su12198211 – ident: ref36 doi: 10.1109/access.2021.3056767 – ident: ref5 doi: 10.1016/j.compind.2021.103394 – ident: ref8 doi: 10.1109/TIM.2002.807987 – ident: ref10 doi: 10.1007/s40430-018-1202-9 – ident: ref7 doi: 10.3390/s22020517 – ident: ref9 doi: 10.3390/en13061394 – ident: ref24 doi: 10.14569/ijacsa.2019.0100538 – ident: ref46 doi: 10.3390/info14050256 – ident: ref27 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref6 doi: 10.1016/j.ymssp.2020.107233 – ident: ref25 doi: 10.1016/j.dajour.2023.100219 – ident: ref47 doi: 10.1111/exsy.13316 – ident: ref18 doi: 10.1007/978-3-031-27961-4_2 – ident: ref52 doi: 10.1109/MIS.2019.2957223 – ident: ref40 doi: 10.1016/j.measurement.2020.108086 – year: 2021 ident: ref57 article-title: Explainable artificial intelligence (XAI): An engineering perspective publication-title: arXiv:2101.03613 – ident: ref14 doi: 10.3390/s18061934 – ident: ref11 doi: 10.1109/ICCCNT.2013.6726711 – ident: ref48 doi: 10.1007/978-3-030-95947-0_28 – ident: ref60 doi: 10.3390/e23010018 – ident: ref35 doi: 10.1155/2021/6687331 – ident: ref15 doi: 10.1016/j.neucom.2012.07.019 – ident: ref34 doi: 10.1007/s00170-021-07911-9 – ident: ref16 doi: 10.3390/s19071693 |
| SSID | ssj0000816957 |
| Score | 2.5045538 |
| Snippet | Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 29345 |
| SubjectTerms | Algorithms Artificial intelligence Classification algorithms Critical components Data acquisition Decisions Explainable AI Explainable artificial intelligence Feature extraction Fourth Industrial Revolution ICE Industrial applications industrial rotating machines Industry 4.0 LIME PDP Prediction algorithms Predictive maintenance Predictive models Rotating machinery Rotating machines SHAP |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDolDEQot84Lih8SOOfdwuW20rFa1KkXqzbMfmsspW7VaIf8-M465SIcGFSw5W7IxnxvZMZvwNIZ9U0k3NPKuc60SFkcDKpwTOimql5EEalkuyXH5Vy-_y4qa5GZX6wpywAR54YNwJj9zXplNBBTDmPfeNjw3TTmmlk4rZW6-1GTlTeQ_WTJmmLTBDrDYns_kcZgQOIZefhVAtwzuzo6MoI_aXEitPrM39h_7W_frp1uvRwXP2irwsFiOdDZQekGexf01ejHAE35ArzKQr16Do6g5jL7iL0UuHaBAIqRHpJtGrDcbd-x_QjhmU8Z7mhAEKG9hiSr8tZ6spXX2Bx_l8cUiuzxbX82VViiVUAVy0bdV5OIsSc1okyZMRUbhWhdqjSRBcE3QwMkXXGB5b3SloAzEpFrsAKzYI8Zbs9Zs-viM0MsdFDCkwH2TEfjCudqHBiKCMakL4I9tsKEDiWM9ibbNDURs78Noir23h9YRMd51uBxyNv79-ivLYvYog2LkBVMMW1bD_Uo0JOURpjr4nJbrhE3L0KF5bVuy9BbNHKITCgflVO5H_QavLZSyf0Pr-f9D6gTzHMYefO0dkb3v3EI_B3Nn6j1mzfwMZrvWX priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DlEx0B-4LFJm9hxksdSOhWkTdXYpPFk2c4ZIaq02lox-Ou5c9yqAwkJXqLIsp2z7ny-y51_x9hb5atilNksMaYRCUUCE-s9OiuqlDJ3ss5CSZbTMzW7lB-viqv4wy3chQGAkHwGKb2GWP5XWNyWQ5UTeFo9VHjEo5OA211KcqrSVePvswNVoC3eYweXZ_PxZ6ool6k6ESE2-SoCaw5NqEGITmEuUyFUmdG92b3jKKD2xzIrdyzOB5t2ZX58N4vF3uFz8pjpLdldzsm3dLO2qfv5G6Lj_6_rCXsU7VI-7gTpKbsH7TP2cA-t8Dk7p3y9eNmKz68pwkO6kp8awpwg4A7gS8_PlxTdb79gO-Vpwg0PaQkc1eR0wD_NxvMBn7_Hx4fJ9JBdnEwvJrMklmRIHDqC66SxeOL5zFTCy9zXAoQplRtZMjycKVzlaunBFHUOZdUobENhUBk0DvWCE-IF67XLFl4yDpnJBTjvMusk0DictzKuoLijBNVn-ZYx2kW4cqqasdDBbRnVejyZoIxq4qaO3OyzwW7QqkPr-Hv3d8TxXVeC2g4NyB0dd67OIbejulFOOfQmbW4LCwVSqipVeQU4ySFxdO97Hf_67HgrQDrqhRuNxpVQBLiD60t2QvUHrZ2g3qH16B_7H7Pe-noDr9FkWts3cV_8AivBDRQ priority: 102 providerName: Unpaywall |
| Title | Explainable Predictive Maintenance of Rotating Machines Using LIME, SHAP, PDP, ICE |
| URI | https://ieeexplore.ieee.org/document/10440027 https://www.proquest.com/docview/2933609656 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10440027.pdf https://doaj.org/article/2e2b09d6c6c149b2b5be518a6868f6e0 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeAAe-DlE2aj8wGNTEttxkseudCpIq6qxSeMpsp3zHqjSaWuF4K_nznGrjomJlyiynMTW54vvfHffMfZR-zJPM5slxjQyIU9gYr1HY0UXSgmnqiyUZDmd6emF-nqZX8Zk9ZALAwAh-AyGdBt8-c3SremoDCVcKbKj9theUeouWWt7oEIVJKq8iMxCWVp9Go3HOAm0AYUaSqmLjNJkd3afQNIfq6rcUTCfrNtr8-unWSx29pqTF2y2GWUXYvJjuF7Zofv9F4Hjf0_jJXsetU4-6pbJK_YI2tfs2Q4X4Rt2RtF4MZWKz2_If0N_Qn5qiFGCaDmALz0_W5Lvvr3CdorChFsegg44_gQnA_5tOpoP-PwzXr6MJwfs_GRyPp4mseBC4tDMWyWNxf3MZ6aUXglfSZCm0C61pFY4k7vSVcqDySsBRdlobEOodQaNQ6l3Ur5l--2yhXeMQ2aEBOddZp0Ceg7fWxqXk1dRge4xscGhdpGMnGpiLOpglKRV3YFXE3h1BK_HBtuHrjsujoe7HxPA265EpB0aEIw6ymUtQNi0arTTDm1FK2xuIceR6lKXXgO-5IAA3Pleh12PHW3WSx2l_rZG1UlqotPB-SXbNXRvrCaUwrwz1vf_-Mwhe0rdujOfI7a_ulnDB9SCVrYfTg_6QQb67PHFbD76_gcIVgIK |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgPAwe-ByiMMAPPDYliT-SPJbSqYO1qkaR9mbZznkPVOm0tULw13OXuFUHAvESRVac2Pr54jvf3e8Ye6dDqdLMZYm1tUjIE5i4ENBY0YWUuZdV1pZkmc705Kv8dKEuYrJ6mwsDAG3wGQzotvXl1yu_oaMylHApyY66y-4pKaXq0rV2RypUQ6JSReQWytLq_XA0wmmgFZjLgRC6yChRdm__aWn6Y12VWyrm4aa5sj--2-Vyb7c5ecRm23F2QSbfBpu1G_ifv1E4_vdEHrOHUe_kw26hPGF3oHnKHuyxET5j5xSPF5Op-PyaPDj0L-RTS5wSRMwBfBX4-Yq8980ltlMcJtzwNuyA429w3OdfJsN5n88_4uV0ND5ii5PxYjRJYsmFxKOht05qhztayGwpgsxDJUDYQvvUkWLhrfKlr2QAq6ocirLW2IZg6wxqj3LvhXjODppVAy8Yh8zmAnzwmfMSqB--t7RekV9Rgu6xfIuD8ZGOnKpiLE1rlqSV6cAzBJ6J4PVYf9fpqmPj-PfjHwjg3aNEpd02IBgmSqbJIXdpVWuvPVqLLnfKgcKR6lKXQQO-5IgA3Pteh12PHW_Xi4lyf2NQeRKaCHVwfsluDf0xVtsWw7w11pd_-cxbdjhZTM_M2ens8yt2n7p0J0DH7GB9vYHXqBOt3ZtWEn4Bgz8Csg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DlEx0B-4LFJm9hxksdSOhWkTdXYpPFk2c4ZIaq02lox-Ou5c9yqAwkJXqLIsp2z7ny-y51_x9hb5atilNksMaYRCUUCE-s9OiuqlDJ3ss5CSZbTMzW7lB-viqv4wy3chQGAkHwGKb2GWP5XWNyWQ5UTeFo9VHjEo5OA211KcqrSVePvswNVoC3eYweXZ_PxZ6ool6k6ESE2-SoCaw5NqEGITmEuUyFUmdG92b3jKKD2xzIrdyzOB5t2ZX58N4vF3uFz8pjpLdldzsm3dLO2qfv5G6Lj_6_rCXsU7VI-7gTpKbsH7TP2cA-t8Dk7p3y9eNmKz68pwkO6kp8awpwg4A7gS8_PlxTdb79gO-Vpwg0PaQkc1eR0wD_NxvMBn7_Hx4fJ9JBdnEwvJrMklmRIHDqC66SxeOL5zFTCy9zXAoQplRtZMjycKVzlaunBFHUOZdUobENhUBk0DvWCE-IF67XLFl4yDpnJBTjvMusk0DictzKuoLijBNVn-ZYx2kW4cqqasdDBbRnVejyZoIxq4qaO3OyzwW7QqkPr-Hv3d8TxXVeC2g4NyB0dd67OIbejulFOOfQmbW4LCwVSqipVeQU4ySFxdO97Hf_67HgrQDrqhRuNxpVQBLiD60t2QvUHrZ2g3qH16B_7H7Pe-noDr9FkWts3cV_8AivBDRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Predictive+Maintenance+of+Rotating+Machines+Using+LIME%2C+SHAP%2C+PDP%2C+ICE&rft.jtitle=IEEE+access&rft.au=Gawde%2C+Shreyas&rft.au=Patil%2C+Shruti&rft.au=Kumar%2C+Satish&rft.au=Kamat%2C+Pooja&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=29345&rft.epage=29361&rft_id=info:doi/10.1109%2FACCESS.2024.3367110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3367110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |