Explainable Predictive Maintenance of Rotating Machines Using LIME, SHAP, PDP, ICE

Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 29345 - 29361
Main Authors Gawde, Shreyas, Patil, Shruti, Kumar, Satish, Kamat, Pooja, Kotecha, Ketan, Alfarhood, Sultan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3367110

Cover

Abstract Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predictive maintenance is a method that uses AI to handle potential problems before they cause breakdowns in operations, processes or systems. However, there is a significant issue with the AI models' (also known as "black boxes") inability to explain their decisions. This interpretability is vital for making maintenance decisions and validating the model's reliability, leading to improved trust and acceptance of AI-driven predictive maintenance strategies. Explainable AI is the solution because it provides human-understandable insights into how the AI model arrives at its predictions. In this regard, the paper presents Explainable AI-based predictive maintenance of Industrial rotating machines. The proposed approach unfolds in four comprehensive stages: 1) Multi-sensor based multi-fault (5 different fault classes) data acquisition; 2) frequency-domain statistical feature extraction; and c) comparison of results for multiple AI algorithms, and d) XAI integration using "Local Interpretable Model Agnostic Explanation (LIME)", "SHapley Additive exPlanation (SHAP)", "Partial Dependence Plot (PDP)" and "Individual Conditional Expectation (ICE)" to interpret the results.
AbstractList Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of Industry 4.0, where an IoT network acts as a monitoring and decision-making system, predictive maintenance is quickly gaining importance. Predictive maintenance is a method that uses AI to handle potential problems before they cause breakdowns in operations, processes or systems. However, there is a significant issue with the AI models' (also known as "black boxes") inability to explain their decisions. This interpretability is vital for making maintenance decisions and validating the model's reliability, leading to improved trust and acceptance of AI-driven predictive maintenance strategies. Explainable AI is the solution because it provides human-understandable insights into how the AI model arrives at its predictions. In this regard, the paper presents Explainable AI-based predictive maintenance of Industrial rotating machines. The proposed approach unfolds in four comprehensive stages: 1) Multi-sensor based multi-fault (5 different fault classes) data acquisition; 2) frequency-domain statistical feature extraction; and c) comparison of results for multiple AI algorithms, and d) XAI integration using "Local Interpretable Model Agnostic Explanation (LIME)", "SHapley Additive exPlanation (SHAP)", "Partial Dependence Plot (PDP)" and "Individual Conditional Expectation (ICE)" to interpret the results.
Author Alfarhood, Sultan
Patil, Shruti
Kotecha, Ketan
Kumar, Satish
Gawde, Shreyas
Kamat, Pooja
Author_xml – sequence: 1
  givenname: Shreyas
  orcidid: 0000-0001-9034-1367
  surname: Gawde
  fullname: Gawde, Shreyas
  organization: Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
– sequence: 2
  givenname: Shruti
  orcidid: 0000-0002-4903-1540
  surname: Patil
  fullname: Patil, Shruti
  email: shruti.patil@sitpune.edu.in
  organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
– sequence: 3
  givenname: Satish
  orcidid: 0000-0001-6788-0952
  surname: Kumar
  fullname: Kumar, Satish
  organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
– sequence: 4
  givenname: Pooja
  orcidid: 0000-0002-7597-0197
  surname: Kamat
  fullname: Kamat, Pooja
  organization: Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
– sequence: 5
  givenname: Ketan
  orcidid: 0000-0003-2653-3780
  surname: Kotecha
  fullname: Kotecha, Ketan
  organization: Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
– sequence: 6
  givenname: Sultan
  orcidid: 0009-0001-1268-9613
  surname: Alfarhood
  fullname: Alfarhood, Sultan
  email: sultanf@ksu.edu.sa
  organization: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
BookMark eNptkV1v2yAUhtHUSeva_oLtwtJum4wPG8Nl5LlrpFSNmu4aYXzoiDzIwGnXfz8yV1UVjQs-Xp3nPfDyEZ344AGhTwTPCcHy66Jp2s1mTjEt54zxOovv0CklXM5YxfjJm_0HdJHSFuchslTVp-iu_bMbtPO6G6BYR-idGd0jFDdZG8Frb6AItrgLox6df8i6-ek8pOJHOhxXy5v2sthcL9aXxfpbnpZNe47eWz0kuHhZz9D9VXvfXM9Wt9-XzWI1MyWW46zvMOOWaMFsSa1kwHTNDe5wXWGjKyOMLC3oSlKoRc-zxq3gBHojamwYO0PLybYPeqt20f3S8VkF7dQ_IcQHpePozACKAu2w7LnhhpSyo13VQUWE5oILywFnr3Ly2vudfn7Sw_BqSLA6pKy0MZCSOqSsXlLO2JcJ28Xwew9pVNuwjz4_WlGZi7DkFc9VcqoyMaQUwSrjDmkGP0bthtcO0z8ed2BH7PG9_k99nigHAG-IssSY1uwvAwCnGA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_info16020074
crossref_primary_10_1061_JSDCCC_SCENG_1724
crossref_primary_10_3390_s25010137
crossref_primary_10_2478_jaiscr_2025_0014
crossref_primary_10_3390_technologies13020042
crossref_primary_10_3390_jmmp8040171
crossref_primary_10_1016_j_rineng_2025_104349
crossref_primary_10_1109_ACCESS_2025_3541979
crossref_primary_10_3390_sym16121648
crossref_primary_10_1016_j_rineng_2024_103071
crossref_primary_10_1016_j_ijepes_2025_110585
crossref_primary_10_1088_1361_6501_ad99f4
crossref_primary_10_1007_s42452_025_06681_3
crossref_primary_10_1029_2024JH000489
crossref_primary_10_1002_msd2_70004
crossref_primary_10_3390_electronics13173497
crossref_primary_10_3390_info16030217
Cites_doi 10.3390/s20010006
10.3390/mi13091471
10.1080/23311916.2022.2143040
10.1016/j.engappai.2016.08.011
10.1016/j.ymssp.2018.05.050
10.1109/TAI.2023.3279808
10.3390/s21124070
10.1016/j.measurement.2020.107802
10.1016/j.neucom.2018.05.002
10.1109/iccmc.2017.8282638
10.1145/3301275.3308446
10.1016/j.net.2020.02.001
10.1016/j.jiph.2020.02.042
10.3390/app13042038
10.1007/s10462-022-10243-z
10.1016/j.ajp.2022.103316
10.1007/s12206-020-0306-1
10.1016/j.inffus.2019.12.012
10.1109/access.2018.2890566
10.3390/e21070687
10.1109/TII.2020.3045002
10.1016/j.jsv.2016.05.027
10.1007/978-3-031-34107-6_7
10.1016/j.engappai.2023.106139
10.1007/s10462-022-10354-7
10.1155/2016/9306205
10.3233/jifs-169526
10.1016/j.dajour.2023.100174
10.3390/machines6040059
10.1080/07853890.2023.2233541
10.1016/j.heliyon.2023.e22456
10.1016/j.ymssp.2014.12.020
10.3390/app11062546
10.1016/j.inffus.2013.10.002
10.3390/s17122876
10.1155/2021/6634811
10.3390/su12198211
10.1109/access.2021.3056767
10.1016/j.compind.2021.103394
10.1109/TIM.2002.807987
10.1007/s40430-018-1202-9
10.3390/s22020517
10.3390/en13061394
10.14569/ijacsa.2019.0100538
10.3390/info14050256
10.1016/j.ymssp.2015.10.025
10.1016/j.ymssp.2020.107233
10.1016/j.dajour.2023.100219
10.1111/exsy.13316
10.1007/978-3-031-27961-4_2
10.1109/MIS.2019.2957223
10.1016/j.measurement.2020.108086
10.3390/s18061934
10.1109/ICCCNT.2013.6726711
10.1007/978-3-030-95947-0_28
10.3390/e23010018
10.1155/2021/6687331
10.1016/j.neucom.2012.07.019
10.1007/s00170-021-07911-9
10.3390/s19071693
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3367110
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 29361
ExternalDocumentID oai_doaj_org_article_2e2b09d6c6c149b2b5be518a6868f6e0
10.1109/access.2024.3367110
10_1109_ACCESS_2024_3367110
10440027
Genre orig-research
GrantInformation_xml – fundername: Researchers Supporting Project
  grantid: RSPD2024R890
– fundername: King Saud University, Riyadh, Saudi Arabia
  funderid: 10.13039/501100002383
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-db036f1a83f42f93e3a76c0b0750ca5c8c94fea592e78d60ca6f861edc870c33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:45 EDT 2025
Wed Oct 01 15:27:34 EDT 2025
Mon Jun 30 03:28:55 EDT 2025
Wed Oct 01 04:52:19 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Wed Aug 27 02:02:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-db036f1a83f42f93e3a76c0b0750ca5c8c94fea592e78d60ca6f861edc870c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2653-3780
0009-0001-1268-9613
0000-0002-4903-1540
0000-0001-9034-1367
0000-0001-6788-0952
0000-0002-7597-0197
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10440027
PQID 2933609656
PQPubID 4845423
PageCount 17
ParticipantIDs ieee_primary_10440027
proquest_journals_2933609656
crossref_citationtrail_10_1109_ACCESS_2024_3367110
doaj_primary_oai_doaj_org_article_2e2b09d6c6c149b2b5be518a6868f6e0
crossref_primary_10_1109_ACCESS_2024_3367110
unpaywall_primary_10_1109_access_2024_3367110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Hussain (ref57) 2021
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Molnar (ref58) 2020
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.3390/s20010006
– ident: ref61
  doi: 10.3390/mi13091471
– ident: ref53
  doi: 10.1080/23311916.2022.2143040
– ident: ref21
  doi: 10.1016/j.engappai.2016.08.011
– ident: ref33
  doi: 10.1016/j.ymssp.2018.05.050
– ident: ref51
  doi: 10.1109/TAI.2023.3279808
– ident: ref3
  doi: 10.3390/s21124070
– ident: ref38
  doi: 10.1016/j.measurement.2020.107802
– ident: ref13
  doi: 10.1016/j.neucom.2018.05.002
– ident: ref2
  doi: 10.1109/iccmc.2017.8282638
– ident: ref56
  doi: 10.1145/3301275.3308446
– ident: ref30
  doi: 10.1016/j.net.2020.02.001
– ident: ref55
  doi: 10.1016/j.jiph.2020.02.042
– ident: ref62
  doi: 10.3390/app13042038
– ident: ref44
  doi: 10.1007/s10462-022-10243-z
– ident: ref49
  doi: 10.1016/j.ajp.2022.103316
– ident: ref42
  doi: 10.1007/s12206-020-0306-1
– ident: ref59
  doi: 10.1016/j.inffus.2019.12.012
– ident: ref31
  doi: 10.1109/access.2018.2890566
– ident: ref43
  doi: 10.3390/e21070687
– ident: ref41
  doi: 10.1109/TII.2020.3045002
– ident: ref19
  doi: 10.1016/j.jsv.2016.05.027
– ident: ref50
  doi: 10.1007/978-3-031-34107-6_7
– ident: ref4
  doi: 10.1016/j.engappai.2023.106139
– start-page: 247
  year: 2020
  ident: ref58
  article-title: Interpretable Machine Learning
  publication-title: A Guide for Making Black Box Models Explainable
– ident: ref45
  doi: 10.1007/s10462-022-10354-7
– ident: ref23
  doi: 10.1155/2016/9306205
– ident: ref17
  doi: 10.3233/jifs-169526
– ident: ref39
  doi: 10.1016/j.dajour.2023.100174
– ident: ref12
  doi: 10.3390/machines6040059
– ident: ref37
  doi: 10.1080/07853890.2023.2233541
– ident: ref54
  doi: 10.1016/j.heliyon.2023.e22456
– ident: ref29
  doi: 10.1016/j.ymssp.2014.12.020
– ident: ref20
  doi: 10.3390/app11062546
– ident: ref22
  doi: 10.1016/j.inffus.2013.10.002
– ident: ref32
  doi: 10.3390/s17122876
– ident: ref26
  doi: 10.1155/2021/6634811
– ident: ref1
  doi: 10.3390/su12198211
– ident: ref36
  doi: 10.1109/access.2021.3056767
– ident: ref5
  doi: 10.1016/j.compind.2021.103394
– ident: ref8
  doi: 10.1109/TIM.2002.807987
– ident: ref10
  doi: 10.1007/s40430-018-1202-9
– ident: ref7
  doi: 10.3390/s22020517
– ident: ref9
  doi: 10.3390/en13061394
– ident: ref24
  doi: 10.14569/ijacsa.2019.0100538
– ident: ref46
  doi: 10.3390/info14050256
– ident: ref27
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref6
  doi: 10.1016/j.ymssp.2020.107233
– ident: ref25
  doi: 10.1016/j.dajour.2023.100219
– ident: ref47
  doi: 10.1111/exsy.13316
– ident: ref18
  doi: 10.1007/978-3-031-27961-4_2
– ident: ref52
  doi: 10.1109/MIS.2019.2957223
– ident: ref40
  doi: 10.1016/j.measurement.2020.108086
– year: 2021
  ident: ref57
  article-title: Explainable artificial intelligence (XAI): An engineering perspective
  publication-title: arXiv:2101.03613
– ident: ref14
  doi: 10.3390/s18061934
– ident: ref11
  doi: 10.1109/ICCCNT.2013.6726711
– ident: ref48
  doi: 10.1007/978-3-030-95947-0_28
– ident: ref60
  doi: 10.3390/e23010018
– ident: ref35
  doi: 10.1155/2021/6687331
– ident: ref15
  doi: 10.1016/j.neucom.2012.07.019
– ident: ref34
  doi: 10.1007/s00170-021-07911-9
– ident: ref16
  doi: 10.3390/s19071693
SSID ssj0000816957
Score 2.5045538
Snippet Artificial Intelligence (AI) is a key component in Industry 4.0. Rotating machines are critical components in manufacturing industries. In the vast world of...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29345
SubjectTerms Algorithms
Artificial intelligence
Classification algorithms
Critical components
Data acquisition
Decisions
Explainable AI
Explainable artificial intelligence
Feature extraction
Fourth Industrial Revolution
ICE
Industrial applications
industrial rotating machines
Industry 4.0
LIME
PDP
Prediction algorithms
Predictive maintenance
Predictive models
Rotating machinery
Rotating machines
SHAP
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDolDEQot84Lih8SOOfdwuW20rFa1KkXqzbMfmsspW7VaIf8-M465SIcGFSw5W7IxnxvZMZvwNIZ9U0k3NPKuc60SFkcDKpwTOimql5EEalkuyXH5Vy-_y4qa5GZX6wpywAR54YNwJj9zXplNBBTDmPfeNjw3TTmmlk4rZW6-1GTlTeQ_WTJmmLTBDrDYns_kcZgQOIZefhVAtwzuzo6MoI_aXEitPrM39h_7W_frp1uvRwXP2irwsFiOdDZQekGexf01ejHAE35ArzKQr16Do6g5jL7iL0UuHaBAIqRHpJtGrDcbd-x_QjhmU8Z7mhAEKG9hiSr8tZ6spXX2Bx_l8cUiuzxbX82VViiVUAVy0bdV5OIsSc1okyZMRUbhWhdqjSRBcE3QwMkXXGB5b3SloAzEpFrsAKzYI8Zbs9Zs-viM0MsdFDCkwH2TEfjCudqHBiKCMakL4I9tsKEDiWM9ibbNDURs78Noir23h9YRMd51uBxyNv79-ivLYvYog2LkBVMMW1bD_Uo0JOURpjr4nJbrhE3L0KF5bVuy9BbNHKITCgflVO5H_QavLZSyf0Pr-f9D6gTzHMYefO0dkb3v3EI_B3Nn6j1mzfwMZrvWX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DlEx0B-4LFJm9hxksdSOhWkTdXYpPFk2c4ZIaq02lox-Ou5c9yqAwkJXqLIsp2z7ny-y51_x9hb5atilNksMaYRCUUCE-s9OiuqlDJ3ss5CSZbTMzW7lB-viqv4wy3chQGAkHwGKb2GWP5XWNyWQ5UTeFo9VHjEo5OA211KcqrSVePvswNVoC3eYweXZ_PxZ6ool6k6ESE2-SoCaw5NqEGITmEuUyFUmdG92b3jKKD2xzIrdyzOB5t2ZX58N4vF3uFz8pjpLdldzsm3dLO2qfv5G6Lj_6_rCXsU7VI-7gTpKbsH7TP2cA-t8Dk7p3y9eNmKz68pwkO6kp8awpwg4A7gS8_PlxTdb79gO-Vpwg0PaQkc1eR0wD_NxvMBn7_Hx4fJ9JBdnEwvJrMklmRIHDqC66SxeOL5zFTCy9zXAoQplRtZMjycKVzlaunBFHUOZdUobENhUBk0DvWCE-IF67XLFl4yDpnJBTjvMusk0DictzKuoLijBNVn-ZYx2kW4cqqasdDBbRnVejyZoIxq4qaO3OyzwW7QqkPr-Hv3d8TxXVeC2g4NyB0dd67OIbejulFOOfQmbW4LCwVSqipVeQU4ySFxdO97Hf_67HgrQDrqhRuNxpVQBLiD60t2QvUHrZ2g3qH16B_7H7Pe-noDr9FkWts3cV_8AivBDRQ
  priority: 102
  providerName: Unpaywall
Title Explainable Predictive Maintenance of Rotating Machines Using LIME, SHAP, PDP, ICE
URI https://ieeexplore.ieee.org/document/10440027
https://www.proquest.com/docview/2933609656
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10440027.pdf
https://doaj.org/article/2e2b09d6c6c149b2b5be518a6868f6e0
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeAAe-DlE2aj8wGNTEttxkseudCpIq6qxSeMpsp3zHqjSaWuF4K_nznGrjomJlyiynMTW54vvfHffMfZR-zJPM5slxjQyIU9gYr1HY0UXSgmnqiyUZDmd6emF-nqZX8Zk9ZALAwAh-AyGdBt8-c3SremoDCVcKbKj9theUeouWWt7oEIVJKq8iMxCWVp9Go3HOAm0AYUaSqmLjNJkd3afQNIfq6rcUTCfrNtr8-unWSx29pqTF2y2GWUXYvJjuF7Zofv9F4Hjf0_jJXsetU4-6pbJK_YI2tfs2Q4X4Rt2RtF4MZWKz2_If0N_Qn5qiFGCaDmALz0_W5Lvvr3CdorChFsegg44_gQnA_5tOpoP-PwzXr6MJwfs_GRyPp4mseBC4tDMWyWNxf3MZ6aUXglfSZCm0C61pFY4k7vSVcqDySsBRdlobEOodQaNQ6l3Ur5l--2yhXeMQ2aEBOddZp0Ceg7fWxqXk1dRge4xscGhdpGMnGpiLOpglKRV3YFXE3h1BK_HBtuHrjsujoe7HxPA265EpB0aEIw6ymUtQNi0arTTDm1FK2xuIceR6lKXXgO-5IAA3Pleh12PHW3WSx2l_rZG1UlqotPB-SXbNXRvrCaUwrwz1vf_-Mwhe0rdujOfI7a_ulnDB9SCVrYfTg_6QQb67PHFbD76_gcIVgIK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgPAwe-ByiMMAPPDYliT-SPJbSqYO1qkaR9mbZznkPVOm0tULw13OXuFUHAvESRVac2Pr54jvf3e8Ye6dDqdLMZYm1tUjIE5i4ENBY0YWUuZdV1pZkmc705Kv8dKEuYrJ6mwsDAG3wGQzotvXl1yu_oaMylHApyY66y-4pKaXq0rV2RypUQ6JSReQWytLq_XA0wmmgFZjLgRC6yChRdm__aWn6Y12VWyrm4aa5sj--2-Vyb7c5ecRm23F2QSbfBpu1G_ifv1E4_vdEHrOHUe_kw26hPGF3oHnKHuyxET5j5xSPF5Op-PyaPDj0L-RTS5wSRMwBfBX4-Yq8980ltlMcJtzwNuyA429w3OdfJsN5n88_4uV0ND5ii5PxYjRJYsmFxKOht05qhztayGwpgsxDJUDYQvvUkWLhrfKlr2QAq6ocirLW2IZg6wxqj3LvhXjODppVAy8Yh8zmAnzwmfMSqB--t7RekV9Rgu6xfIuD8ZGOnKpiLE1rlqSV6cAzBJ6J4PVYf9fpqmPj-PfjHwjg3aNEpd02IBgmSqbJIXdpVWuvPVqLLnfKgcKR6lKXQQO-5IgA3Pteh12PHW_Xi4lyf2NQeRKaCHVwfsluDf0xVtsWw7w11pd_-cxbdjhZTM_M2ens8yt2n7p0J0DH7GB9vYHXqBOt3ZtWEn4Bgz8Csg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DlEx0B-4LFJm9hxksdSOhWkTdXYpPFk2c4ZIaq02lox-Ou5c9yqAwkJXqLIsp2z7ny-y51_x9hb5atilNksMaYRCUUCE-s9OiuqlDJ3ss5CSZbTMzW7lB-viqv4wy3chQGAkHwGKb2GWP5XWNyWQ5UTeFo9VHjEo5OA211KcqrSVePvswNVoC3eYweXZ_PxZ6ool6k6ESE2-SoCaw5NqEGITmEuUyFUmdG92b3jKKD2xzIrdyzOB5t2ZX58N4vF3uFz8pjpLdldzsm3dLO2qfv5G6Lj_6_rCXsU7VI-7gTpKbsH7TP2cA-t8Dk7p3y9eNmKz68pwkO6kp8awpwg4A7gS8_PlxTdb79gO-Vpwg0PaQkc1eR0wD_NxvMBn7_Hx4fJ9JBdnEwvJrMklmRIHDqC66SxeOL5zFTCy9zXAoQplRtZMjycKVzlaunBFHUOZdUobENhUBk0DvWCE-IF67XLFl4yDpnJBTjvMusk0DictzKuoLijBNVn-ZYx2kW4cqqasdDBbRnVejyZoIxq4qaO3OyzwW7QqkPr-Hv3d8TxXVeC2g4NyB0dd67OIbejulFOOfQmbW4LCwVSqipVeQU4ySFxdO97Hf_67HgrQDrqhRuNxpVQBLiD60t2QvUHrZ2g3qH16B_7H7Pe-noDr9FkWts3cV_8AivBDRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Predictive+Maintenance+of+Rotating+Machines+Using+LIME%2C+SHAP%2C+PDP%2C+ICE&rft.jtitle=IEEE+access&rft.au=Gawde%2C+Shreyas&rft.au=Patil%2C+Shruti&rft.au=Kumar%2C+Satish&rft.au=Kamat%2C+Pooja&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=29345&rft.epage=29361&rft_id=info:doi/10.1109%2FACCESS.2024.3367110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3367110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon