Research on Early Fault Identification of Cables Based on the Fusion of MTF-GAF and Multi-Head Attention Mechanism Features

The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 81853 - 81866
Main Authors Wu, Hao, Tang, Dan, Cai, Yuan, Zheng, Chaowen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3401254

Cover

Abstract The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identification based on the fusion of Markov Transition Field (MTF)-Gramian Angular Field (GAF) and multi-head attention mechanism features to accurately identify the cable early faults. Firstly, the fault data are preprocessed by the least mean square algorithm optimized by the adaptive gradient method; then the preprocessed one-dimensional data are converted into two-dimensional (2D) images by using MTF and GAF, respectively, and then the two types of images are fused to serve as the input of the classification network; finally, a hybrid neural network for cable early fault identification composed of a deep convolutional neural network and dense convolutional network is established, the hybrid neural network is improved by using group convolution and Ghost convolution, and the output features of the hybrid neural network are fused and classified through the mechanism of multi-head attention, and the output results of the cable early fault identification are output. At the same time, the classification results of cable early faults are visualized using the t-distributed Stochastic Neighbor Embedding (t-SNE) method to visually observe the classification effect of the hybrid neural network. The experimental results show that the algorithm has a high recognition rate for cable early fault classification, and the least mean square algorithm optimized by the adaptive gradient method is more noise-resistant compared with other optimization methods.
AbstractList The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identification based on the fusion of Markov Transition Field (MTF)-Gramian Angular Field (GAF) and multi-head attention mechanism features to accurately identify the cable early faults. Firstly, the fault data are preprocessed by the least mean square algorithm optimized by the adaptive gradient method; then the preprocessed one-dimensional data are converted into two-dimensional (2D) images by using MTF and GAF, respectively, and then the two types of images are fused to serve as the input of the classification network; finally, a hybrid neural network for cable early fault identification composed of a deep convolutional neural network and dense convolutional network is established, the hybrid neural network is improved by using group convolution and Ghost convolution, and the output features of the hybrid neural network are fused and classified through the mechanism of multi-head attention, and the output results of the cable early fault identification are output. At the same time, the classification results of cable early faults are visualized using the t-distributed Stochastic Neighbor Embedding (t-SNE) method to visually observe the classification effect of the hybrid neural network. The experimental results show that the algorithm has a high recognition rate for cable early fault classification, and the least mean square algorithm optimized by the adaptive gradient method is more noise-resistant compared with other optimization methods.
Author Zheng, Chaowen
Cai, Yuan
Wu, Hao
Tang, Dan
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0004-3045-7623
  surname: Wu
  fullname: Wu, Hao
  email: 11305076@qq.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
– sequence: 2
  givenname: Dan
  orcidid: 0009-0004-5252-5105
  surname: Tang
  fullname: Tang, Dan
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
– sequence: 3
  givenname: Yuan
  orcidid: 0009-0002-4073-8213
  surname: Cai
  fullname: Cai, Yuan
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
– sequence: 4
  givenname: Chaowen
  orcidid: 0009-0007-2609-6126
  surname: Zheng
  fullname: Zheng, Chaowen
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
BookMark eNqFkU9r3DAQxU1JoWmaT9AeBD17K1mS_xy3Zp0sZCk0exdjadTV4thbSaYs_fK146WE9FBdJGbe-82I9z656ocek-QjoyvGaPVlXdebx8dVRjOx4oKyTIo3yXXG8irlkudXL97vktsQjnQ65VSSxXXy-zsGBK8PZOjJBnx3Jg2MXSRbg3101mmIbmoNltTQdhjIVwhoZnU8IGnGcOnu9k16t24I9IbsJoBL7xEMWcc4cybNDvUBeheeSIMQR4_hQ_LWQhfw9nLfJPtms6_v04dvd9t6_ZBqQauYGpDUCp5VRdkKioYzLYTFgkqOGWWsMFmRV6LMsbSybW0FRjBtBeYVIC_5TbJdsGaAozp59wT-rAZw6rkw-B8KfHS6Q2WhQADBRCYLATmttORZadrK5iiFZhNLLKyxP8H5F3TdXyCjao5DgdYYgprjUJc4JtvnxXbyw88RQ1THYfT99GnFaV6yopByXpQvKu2HEDzaf9hL1K_Z1SuXdvE5tOjBdf_xflq8DhFfTJOcUZbzP8iltjs
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112373
crossref_primary_10_3390_s24185952
Cites_doi 10.1007/978-3-030-29057-3_3
10.1109/PowerCon58120.2023.10331442
10.3390/en12183424
10.1016/j.bspc.2022.104206
10.1016/j.ijepes.2021.107309
10.1049/iet-gtd.2019.0743
10.1049/iet-gtd.2015.0040
10.1109/ACCESS.2022.3197200
10.1016/j.epsr.2021.107303
10.1021/acs.iecr.9b00975
10.1109/CVPR.2017.243
10.1109/CVPR42600.2020.00165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3401254
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 81866
ExternalDocumentID oai_doaj_org_article_fa7eaa4142574a609c5328db9f6e54c1
10.1109/access.2024.3401254
10_1109_ACCESS_2024_3401254
10531016
Genre orig-research
GrantInformation_xml – fundername: Enterprise Informatization and Internet of Things Measurement and Control Technology Key Laboratory Project of Sichuan Provincial University
  grantid: 2022WYY04
– fundername: Postgraduate Innovation Fund Project of Sichuan University of Science and Engineering
  grantid: Y2023278
– fundername: Project of Sichuan Provincial Science and Technology Department
  grantid: 2022YFS0518; 2022ZHCG0035
– fundername: Talent Introduction Project of Sichuan University of Science and Engineering
  grantid: 2021RC12
– fundername: Artificial Intelligence Key Laboratory of Sichuan Province Foundation
  grantid: 2023RYY06
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-da50f432978b40ed31c44fe7053e20117d2769486e8f5bbf9ad41cf4e69ae383
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:37:46 EDT 2025
Sun Sep 07 11:03:32 EDT 2025
Sun Jun 29 13:12:38 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Wed Oct 01 06:02:54 EDT 2025
Wed Aug 27 01:41:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-da50f432978b40ed31c44fe7053e20117d2769486e8f5bbf9ad41cf4e69ae383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-3045-7623
0009-0002-4073-8213
0009-0007-2609-6126
0009-0004-5252-5105
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10531016
PQID 3068177558
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_fa7eaa4142574a609c5328db9f6e54c1
proquest_journals_3068177558
crossref_citationtrail_10_1109_ACCESS_2024_3401254
unpaywall_primary_10_1109_access_2024_3401254
crossref_primary_10_1109_ACCESS_2024_3401254
ieee_primary_10531016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref11
Xu (ref23) 2015; 43
ref2
Wang (ref10) 2022; 39
Zhou (ref4) 2020; 53
ref18
Qi (ref15) 2023; 51
Lu (ref16) 2016
Du (ref1) 2017; 43
Wang (ref9) 2021; 40
Wang (ref14)
Xue (ref19) 2023; 51
Wang (ref25) 2020; 48
Shao (ref7) 2019; 47
ref26
ref20
ref22
Li (ref24) 2019; 34
ref21
Zhang (ref13) 2023; 40
ref8
ref3
ref6
ref5
Krizhevsky (ref17); 2
References_xml – ident: ref12
  doi: 10.1007/978-3-030-29057-3_3
– ident: ref26
  doi: 10.1109/PowerCon58120.2023.10331442
– volume: 51
  start-page: 154
  issue: 24
  year: 2023
  ident: ref19
  article-title: A fault diagnosis method for transformer winding looseness based on Gramian angular field and transfer learning-AlexNet
  publication-title: Power Syst. Protection Control
– volume: 48
  start-page: 10
  issue: 7
  year: 2020
  ident: ref25
  article-title: Cable incipient fault classification and identification based on optimized convolution neural network
  publication-title: Power Syst. Protection Control
– volume: 40
  start-page: 1135
  issue: 9
  year: 2023
  ident: ref13
  article-title: ECG signal denoising using improved variable step size least mean square algorithm
  publication-title: Chin. J. Med. Phys.
– ident: ref8
  doi: 10.3390/en12183424
– ident: ref21
  doi: 10.1016/j.bspc.2022.104206
– volume: 2
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 43
  start-page: 57
  issue: 7
  year: 2015
  ident: ref23
  article-title: Research on modeling and simulation analysis of single-phase grounding arc in distribution networks
  publication-title: Power Syst. Protection Control
– ident: ref6
  doi: 10.1016/j.ijepes.2021.107309
– ident: ref3
  doi: 10.1049/iet-gtd.2019.0743
– volume: 43
  start-page: 344
  issue: 2
  year: 2017
  ident: ref1
  article-title: Application and research progress of high-voltage DC cross-linked polyethylene cables
  publication-title: High Voltage Eng.
– volume: 34
  start-page: 47
  issue: 1
  year: 2019
  ident: ref24
  article-title: Modeling and overvoltage analysis of small current grounding fault arcs
  publication-title: J. Electric Power Sci. Technol.
– volume: 39
  start-page: 206
  issue: 1
  year: 2022
  ident: ref10
  article-title: An incipient cable failures identification method based on S-transform combined with mRMR feature selection
  publication-title: Comput. Appl. Softw.
– ident: ref2
  doi: 10.1049/iet-gtd.2015.0040
– start-page: 40
  volume-title: Proc. Workshops 29th AAAI Conf. Artif. Intell
  ident: ref14
  article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
– ident: ref11
  doi: 10.1109/ACCESS.2022.3197200
– volume: 51
  start-page: 55
  issue: 15
  year: 2023
  ident: ref15
  article-title: Application of deep feature learning with Gram’s angle field for trace gas concentration identification
  publication-title: Power Syst. Protection Control
– ident: ref5
  doi: 10.1016/j.epsr.2021.107303
– year: 2016
  ident: ref16
  article-title: Encoding temporal Markov dynamics in graph for time series visualization
  publication-title: arXiv:1610.07273
– volume: 53
  start-page: 167
  issue: 12
  year: 2020
  ident: ref4
  article-title: Identification method for incipient intermittent arc ground fault of high-voltage cables
  publication-title: Electr. Power
– ident: ref22
  doi: 10.1021/acs.iecr.9b00975
– ident: ref20
  doi: 10.1109/CVPR.2017.243
– volume: 40
  start-page: 29
  issue: 8
  year: 2021
  ident: ref9
  article-title: Cable incipient fault identification method based on DAE-IPSO-SVM
  publication-title: Foreign Electron. Meas. Technol.
– volume: 47
  start-page: 16
  issue: 2
  year: 2019
  ident: ref7
  article-title: Application of nonnegative constraint autoencoder in cable incipient fault identification
  publication-title: Power Syst. Protection Control
– ident: ref18
  doi: 10.1109/CVPR42600.2020.00165
SSID ssj0000816957
Score 2.3470156
Snippet The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81853
SubjectTerms AlexNet
Algorithms
Artificial neural networks
Cable early faults
Cables
Circuit faults
Classification
Damage
DenseNet
Fault detection
Fault diagnosis
fault identification
Faults
Feature extraction
Filtering algorithms
GAF
MTF
Neural networks
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll7aH0o-UukmLDj1WjWV9WDpulrhLYXtKITch2RIUtt7QtSkhfz4jWbt4KbSXXG3JHmuerHlC8wahTwFCfsYEI6rVJYkKWMQyp4kNTPFQMcbamJy8_i5XP_i3G3EzK_UVz4RN8sDTwF0EW3trOY3Y4laWuhWsUp3TQXrB20R8SqVnZCr9gxWVWtRZZoiW-mKxXMIXASGs-BcGpKIS_GgpSor9ucTKUbT5dOxv7d0fu9nMFp7mJXqRI0a8mCx9hZ74_jV6PtMRfIPu9-fn8LbHSbIYN3bcDHhKww15Xw5vA17GVKkdvoTFq4utIf7DzbjLd9cA1q-LBtu-wyk1l6wAA3gxDNOpSLz2MVP45-4XjrHjCFz9FF03V9fLFclVFUgLXG4gnRVl4KwC-uh46TtGW86Dr2E2-hgN1F1VS82V9CoI54K2Hadt4F5q64HPvkUn_bb37xB2HXW2Zc5T5jmT0tFQhuCiqJoM0LFA1X58TZsVx2Phi41JzKPUZnKKiU4x2SkF-nzodDsJbvy7-WV03KFpVMtOFwBDJmPI_A9DBTqNbp-9D_5MEAsX6HyPA5On9s4Ax1K0roVQBSIHbPxlq031Lo9sff8Ytp6hZ_GZ0y7QOToZfo_-A8RFg_uYpsAD5xkFEw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAO_BwiMJAPHHGJ4x-Jj1lFqJA6cdikcYpsx5YQXTqRRGjjn-dz4lYtSBNcE1tJ7Gf7vdjf-xB654HyMyYYKaxKSXDAIpoZRbRnBfcZY8yG4OTVmVxe8M-X4jL6bIdYmP39e5qqD3pMGwg6LuNzBloA9Mx9dCQFEO8ZOro4-1J-DenjqFSEjRuRr--oebD2jBb9MafKAb18MLTX-uanXq_3Vprq8RTC3Y0GheGAyff50Ju5vf3DvvEfP-IJehQZJy4niDxF91z7DD3c8yF8jn5tz9_hTYtHy2Nc6WHd4ymM18f_enjj8SKEWnX4FBa_JpQG_oiroYt3VwD2T2WFddvgMbSXLAFDuOz76VQlXrkQafytu8KBew6g9Y_RefXxfLEkMSsDsaAFe9JokXrOMpCfhqeuYdRy7l0Oo9kFNpE3WS4VL6QrvDDGK91waj13UmkHevgFmrWb1r1E2DTUaMuMo8xxJqWhPvXeBFM26aFigrJtd9U2OpaHxBnrelQuqarLxQJgWoeGrWPDJuj9rtL1ZNhxd_HTgINd0eC2PV6A_qvj4K29zp3WnIb5jWuZKitYVjRGeekEtzRBxwFFe8-DmQ24dIJOtrCq49TQ1aDRCprnQhQJIjuo_fWuE2YO3vXVf5Y_QbP-x-DeAGvqzds4Wn4DHjQPJw
  priority: 102
  providerName: Unpaywall
Title Research on Early Fault Identification of Cables Based on the Fusion of MTF-GAF and Multi-Head Attention Mechanism Features
URI https://ieeexplore.ieee.org/document/10531016
https://www.proquest.com/docview/3068177558
https://doi.org/10.1109/access.2024.3401254
https://doaj.org/article/fa7eaa4142574a609c5328db9f6e54c1
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6xywE48FxEYKl84EhKEj8SH7MVpUJqxWFXWk6R7dgSoqQrmggBf56x41YtCMQtSsayrRnbMxN_3wC8cujyU8ppWhmZpZ4BK1VUy1Q5WjFXUEqNBycvV2Jxxd5f8-sIVg9YGGttuHxmp_4x_MtvN2bwqTJc4Wgx6KOcwElZiRGstU-o-AoSkpeRWSjP5Jt6NsNJYAxYsCnFOKLg7Oj0CST9sarKkYN5Z-hu1Pdvar0-OGvmD2C1G-V4xeTzdOj11Pz4jcDxv6fxEO5Hr5PUo5k8glu2ewz3DrgIn8DP3R08sulIoD0mczWsezJCeV3M7ZGNIzMPt9qSCzwAWy-NPiSZD9v4dYkG_66eE9W1JMB70wXaEan7frxZSZbWo40_bb8Q738OGO-fweX87eVskcbKDKnBeLBPW8Uzx2iBIahmmW1pbhhztsSJWe9RlG1RCskqYSvHtXZStSw3jlkhlcWY-CmcdpvOPgOi21wrQ7XNqWVUCJ27zDntidmEw4YJFDuFNSaylvviGesmRC-ZbEYtN17LTdRyAq_3jW5G0o5_i194S9iLesbt8AK11sQF3DhVWqVY7vc4pkQmDadF1WrphOXM5AmceU0f9DcqOYHznWE1cXvYNhinVXlZcl4lkO6N7Y-xqlAz82isz__SzQu468XG5NA5nPZfB_sS3aVeT0KaYRIWywRuX60-1B9_ARXLEXw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3Bclj2wOeiDSzgA0dSkthO4mO3ohTY9lSkvVm2Y0srSrqiiRDw5xk7btWCQNyixE5szdieN5l5A_DKoclPKadpbUSWegasVFEtUuVozVxBKTU-OXm-KGef2IcrfhWT1UMujLU2BJ_Zkb8M__Kbtem9qwxXOGoM2ii34Q5n-N4hXWvnUvE1JASvIrdQnok348kEp4EosGAjikii4Ozg_Ak0_bGuyoGJedy3N-r7N7Va7Z020_uw2I5zCDL5POo7PTI_fqNw_O-JPIB70e4k40FRHsIt2z6Ckz02wsfwcxuFR9YtCcTHZKr6VUeGZF4XvXtk7cjEJ1xtyAUegY1vjVYkmfab-HSOKv9uPCWqbUhI8E1nqElk3HVDbCWZW59vfL35QrwF2iPiP4Xl9O1yMktjbYbUICLs0kbxzDFaIAjVLLMNzQ1jzlY4MettiqopqlKwurS141o7oRqWG8dsKZRFVPwEjtp1a8-A6CbXylBtc2oZLUudu8w57anZSocdEyi2ApMm8pb78hkrGfBLJuQgZemlLKOUE3i963Qz0Hb8u_mF14RdU8-5HW6g1GRcwtKpyirFcr_LMVVmwnBa1I0WrrScmTyBUy_pve8NQk7gfKtYMm4QG4lIrc6rivM6gXSnbH-MVYWqmQdjffqXz7yE49lyfikv3y8-PoO7vsvgKjqHo-5rb5-j8dTpF2HJ_AKBtRIk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAO_BwiMJAPHHGJ4x-Jj1lFqJA6cdikcYpsx5YQXTqRRGjjn-dz4lYtSBNcE1tJ7Gf7vdjf-xB654HyMyYYKaxKSXDAIpoZRbRnBfcZY8yG4OTVmVxe8M-X4jL6bIdYmP39e5qqD3pMGwg6LuNzBloA9Mx9dCQFEO8ZOro4-1J-DenjqFSEjRuRr--oebD2jBb9MafKAb18MLTX-uanXq_3Vprq8RTC3Y0GheGAyff50Ju5vf3DvvEfP-IJehQZJy4niDxF91z7DD3c8yF8jn5tz9_hTYtHy2Nc6WHd4ymM18f_enjj8SKEWnX4FBa_JpQG_oiroYt3VwD2T2WFddvgMbSXLAFDuOz76VQlXrkQafytu8KBew6g9Y_RefXxfLEkMSsDsaAFe9JokXrOMpCfhqeuYdRy7l0Oo9kFNpE3WS4VL6QrvDDGK91waj13UmkHevgFmrWb1r1E2DTUaMuMo8xxJqWhPvXeBFM26aFigrJtd9U2OpaHxBnrelQuqarLxQJgWoeGrWPDJuj9rtL1ZNhxd_HTgINd0eC2PV6A_qvj4K29zp3WnIb5jWuZKitYVjRGeekEtzRBxwFFe8-DmQ24dIJOtrCq49TQ1aDRCprnQhQJIjuo_fWuE2YO3vXVf5Y_QbP-x-DeAGvqzds4Wn4DHjQPJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Early+Fault+Identification+of+Cables+Based+on+the+Fusion+of+MTF-GAF+and+Multi-Head+Attention+Mechanism+Features&rft.jtitle=IEEE+access&rft.au=Wu%2C+Hao&rft.au=Tang%2C+Dan&rft.au=Cai%2C+Yuan&rft.au=Zheng%2C+Chaowen&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=81853&rft.epage=81866&rft_id=info:doi/10.1109%2FACCESS.2024.3401254&rft.externalDocID=10531016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon