Research on Early Fault Identification of Cables Based on the Fusion of MTF-GAF and Multi-Head Attention Mechanism Features
The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identi...
Saved in:
| Published in | IEEE access Vol. 12; pp. 81853 - 81866 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3401254 |
Cover
| Abstract | The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identification based on the fusion of Markov Transition Field (MTF)-Gramian Angular Field (GAF) and multi-head attention mechanism features to accurately identify the cable early faults. Firstly, the fault data are preprocessed by the least mean square algorithm optimized by the adaptive gradient method; then the preprocessed one-dimensional data are converted into two-dimensional (2D) images by using MTF and GAF, respectively, and then the two types of images are fused to serve as the input of the classification network; finally, a hybrid neural network for cable early fault identification composed of a deep convolutional neural network and dense convolutional network is established, the hybrid neural network is improved by using group convolution and Ghost convolution, and the output features of the hybrid neural network are fused and classified through the mechanism of multi-head attention, and the output results of the cable early fault identification are output. At the same time, the classification results of cable early faults are visualized using the t-distributed Stochastic Neighbor Embedding (t-SNE) method to visually observe the classification effect of the hybrid neural network. The experimental results show that the algorithm has a high recognition rate for cable early fault classification, and the least mean square algorithm optimized by the adaptive gradient method is more noise-resistant compared with other optimization methods. |
|---|---|
| AbstractList | The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the power grid operation, in this paper, we propose a research method for cable early fault identification based on the fusion of Markov Transition Field (MTF)-Gramian Angular Field (GAF) and multi-head attention mechanism features to accurately identify the cable early faults. Firstly, the fault data are preprocessed by the least mean square algorithm optimized by the adaptive gradient method; then the preprocessed one-dimensional data are converted into two-dimensional (2D) images by using MTF and GAF, respectively, and then the two types of images are fused to serve as the input of the classification network; finally, a hybrid neural network for cable early fault identification composed of a deep convolutional neural network and dense convolutional network is established, the hybrid neural network is improved by using group convolution and Ghost convolution, and the output features of the hybrid neural network are fused and classified through the mechanism of multi-head attention, and the output results of the cable early fault identification are output. At the same time, the classification results of cable early faults are visualized using the t-distributed Stochastic Neighbor Embedding (t-SNE) method to visually observe the classification effect of the hybrid neural network. The experimental results show that the algorithm has a high recognition rate for cable early fault classification, and the least mean square algorithm optimized by the adaptive gradient method is more noise-resistant compared with other optimization methods. |
| Author | Zheng, Chaowen Cai, Yuan Wu, Hao Tang, Dan |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0004-3045-7623 surname: Wu fullname: Wu, Hao email: 11305076@qq.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China – sequence: 2 givenname: Dan orcidid: 0009-0004-5252-5105 surname: Tang fullname: Tang, Dan organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China – sequence: 3 givenname: Yuan orcidid: 0009-0002-4073-8213 surname: Cai fullname: Cai, Yuan organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China – sequence: 4 givenname: Chaowen orcidid: 0009-0007-2609-6126 surname: Zheng fullname: Zheng, Chaowen organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China |
| BookMark | eNqFkU9r3DAQxU1JoWmaT9AeBD17K1mS_xy3Zp0sZCk0exdjadTV4thbSaYs_fK146WE9FBdJGbe-82I9z656ocek-QjoyvGaPVlXdebx8dVRjOx4oKyTIo3yXXG8irlkudXL97vktsQjnQ65VSSxXXy-zsGBK8PZOjJBnx3Jg2MXSRbg3101mmIbmoNltTQdhjIVwhoZnU8IGnGcOnu9k16t24I9IbsJoBL7xEMWcc4cybNDvUBeheeSIMQR4_hQ_LWQhfw9nLfJPtms6_v04dvd9t6_ZBqQauYGpDUCp5VRdkKioYzLYTFgkqOGWWsMFmRV6LMsbSybW0FRjBtBeYVIC_5TbJdsGaAozp59wT-rAZw6rkw-B8KfHS6Q2WhQADBRCYLATmttORZadrK5iiFZhNLLKyxP8H5F3TdXyCjao5DgdYYgprjUJc4JtvnxXbyw88RQ1THYfT99GnFaV6yopByXpQvKu2HEDzaf9hL1K_Z1SuXdvE5tOjBdf_xflq8DhFfTJOcUZbzP8iltjs |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112373 crossref_primary_10_3390_s24185952 |
| Cites_doi | 10.1007/978-3-030-29057-3_3 10.1109/PowerCon58120.2023.10331442 10.3390/en12183424 10.1016/j.bspc.2022.104206 10.1016/j.ijepes.2021.107309 10.1049/iet-gtd.2019.0743 10.1049/iet-gtd.2015.0040 10.1109/ACCESS.2022.3197200 10.1016/j.epsr.2021.107303 10.1021/acs.iecr.9b00975 10.1109/CVPR.2017.243 10.1109/CVPR42600.2020.00165 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3401254 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 81866 |
| ExternalDocumentID | oai_doaj_org_article_fa7eaa4142574a609c5328db9f6e54c1 10.1109/access.2024.3401254 10_1109_ACCESS_2024_3401254 10531016 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Enterprise Informatization and Internet of Things Measurement and Control Technology Key Laboratory Project of Sichuan Provincial University grantid: 2022WYY04 – fundername: Postgraduate Innovation Fund Project of Sichuan University of Science and Engineering grantid: Y2023278 – fundername: Project of Sichuan Provincial Science and Technology Department grantid: 2022YFS0518; 2022ZHCG0035 – fundername: Talent Introduction Project of Sichuan University of Science and Engineering grantid: 2021RC12 – fundername: Artificial Intelligence Key Laboratory of Sichuan Province Foundation grantid: 2023RYY06 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-da50f432978b40ed31c44fe7053e20117d2769486e8f5bbf9ad41cf4e69ae383 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:37:46 EDT 2025 Sun Sep 07 11:03:32 EDT 2025 Sun Jun 29 13:12:38 EDT 2025 Thu Apr 24 23:03:00 EDT 2025 Wed Oct 01 06:02:54 EDT 2025 Wed Aug 27 01:41:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-da50f432978b40ed31c44fe7053e20117d2769486e8f5bbf9ad41cf4e69ae383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-3045-7623 0009-0002-4073-8213 0009-0007-2609-6126 0009-0004-5252-5105 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10531016 |
| PQID | 3068177558 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fa7eaa4142574a609c5328db9f6e54c1 proquest_journals_3068177558 crossref_citationtrail_10_1109_ACCESS_2024_3401254 unpaywall_primary_10_1109_access_2024_3401254 crossref_primary_10_1109_ACCESS_2024_3401254 ieee_primary_10531016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref11 Xu (ref23) 2015; 43 ref2 Wang (ref10) 2022; 39 Zhou (ref4) 2020; 53 ref18 Qi (ref15) 2023; 51 Lu (ref16) 2016 Du (ref1) 2017; 43 Wang (ref9) 2021; 40 Wang (ref14) Xue (ref19) 2023; 51 Wang (ref25) 2020; 48 Shao (ref7) 2019; 47 ref26 ref20 ref22 Li (ref24) 2019; 34 ref21 Zhang (ref13) 2023; 40 ref8 ref3 ref6 ref5 Krizhevsky (ref17); 2 |
| References_xml | – ident: ref12 doi: 10.1007/978-3-030-29057-3_3 – ident: ref26 doi: 10.1109/PowerCon58120.2023.10331442 – volume: 51 start-page: 154 issue: 24 year: 2023 ident: ref19 article-title: A fault diagnosis method for transformer winding looseness based on Gramian angular field and transfer learning-AlexNet publication-title: Power Syst. Protection Control – volume: 48 start-page: 10 issue: 7 year: 2020 ident: ref25 article-title: Cable incipient fault classification and identification based on optimized convolution neural network publication-title: Power Syst. Protection Control – volume: 40 start-page: 1135 issue: 9 year: 2023 ident: ref13 article-title: ECG signal denoising using improved variable step size least mean square algorithm publication-title: Chin. J. Med. Phys. – ident: ref8 doi: 10.3390/en12183424 – ident: ref21 doi: 10.1016/j.bspc.2022.104206 – volume: 2 start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref17 article-title: ImageNet classification with deep convolutional neural networks – volume: 43 start-page: 57 issue: 7 year: 2015 ident: ref23 article-title: Research on modeling and simulation analysis of single-phase grounding arc in distribution networks publication-title: Power Syst. Protection Control – ident: ref6 doi: 10.1016/j.ijepes.2021.107309 – ident: ref3 doi: 10.1049/iet-gtd.2019.0743 – volume: 43 start-page: 344 issue: 2 year: 2017 ident: ref1 article-title: Application and research progress of high-voltage DC cross-linked polyethylene cables publication-title: High Voltage Eng. – volume: 34 start-page: 47 issue: 1 year: 2019 ident: ref24 article-title: Modeling and overvoltage analysis of small current grounding fault arcs publication-title: J. Electric Power Sci. Technol. – volume: 39 start-page: 206 issue: 1 year: 2022 ident: ref10 article-title: An incipient cable failures identification method based on S-transform combined with mRMR feature selection publication-title: Comput. Appl. Softw. – ident: ref2 doi: 10.1049/iet-gtd.2015.0040 – start-page: 40 volume-title: Proc. Workshops 29th AAAI Conf. Artif. Intell ident: ref14 article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks – ident: ref11 doi: 10.1109/ACCESS.2022.3197200 – volume: 51 start-page: 55 issue: 15 year: 2023 ident: ref15 article-title: Application of deep feature learning with Gram’s angle field for trace gas concentration identification publication-title: Power Syst. Protection Control – ident: ref5 doi: 10.1016/j.epsr.2021.107303 – year: 2016 ident: ref16 article-title: Encoding temporal Markov dynamics in graph for time series visualization publication-title: arXiv:1610.07273 – volume: 53 start-page: 167 issue: 12 year: 2020 ident: ref4 article-title: Identification method for incipient intermittent arc ground fault of high-voltage cables publication-title: Electr. Power – ident: ref22 doi: 10.1021/acs.iecr.9b00975 – ident: ref20 doi: 10.1109/CVPR.2017.243 – volume: 40 start-page: 29 issue: 8 year: 2021 ident: ref9 article-title: Cable incipient fault identification method based on DAE-IPSO-SVM publication-title: Foreign Electron. Meas. Technol. – volume: 47 start-page: 16 issue: 2 year: 2019 ident: ref7 article-title: Application of nonnegative constraint autoencoder in cable incipient fault identification publication-title: Power Syst. Protection Control – ident: ref18 doi: 10.1109/CVPR42600.2020.00165 |
| SSID | ssj0000816957 |
| Score | 2.3470156 |
| Snippet | The frequent occurrence of cable early faults can lead to permanent failure of cables, making the power grid damaged and unable to work normally. To avoid the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 81853 |
| SubjectTerms | AlexNet Algorithms Artificial neural networks Cable early faults Cables Circuit faults Classification Damage DenseNet Fault detection Fault diagnosis fault identification Faults Feature extraction Filtering algorithms GAF MTF Neural networks Time series analysis |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll7aH0o-UukmLDj1WjWV9WDpulrhLYXtKITch2RIUtt7QtSkhfz4jWbt4KbSXXG3JHmuerHlC8wahTwFCfsYEI6rVJYkKWMQyp4kNTPFQMcbamJy8_i5XP_i3G3EzK_UVz4RN8sDTwF0EW3trOY3Y4laWuhWsUp3TQXrB20R8SqVnZCr9gxWVWtRZZoiW-mKxXMIXASGs-BcGpKIS_GgpSor9ucTKUbT5dOxv7d0fu9nMFp7mJXqRI0a8mCx9hZ74_jV6PtMRfIPu9-fn8LbHSbIYN3bcDHhKww15Xw5vA17GVKkdvoTFq4utIf7DzbjLd9cA1q-LBtu-wyk1l6wAA3gxDNOpSLz2MVP45-4XjrHjCFz9FF03V9fLFclVFUgLXG4gnRVl4KwC-uh46TtGW86Dr2E2-hgN1F1VS82V9CoI54K2Hadt4F5q64HPvkUn_bb37xB2HXW2Zc5T5jmT0tFQhuCiqJoM0LFA1X58TZsVx2Phi41JzKPUZnKKiU4x2SkF-nzodDsJbvy7-WV03KFpVMtOFwBDJmPI_A9DBTqNbp-9D_5MEAsX6HyPA5On9s4Ax1K0roVQBSIHbPxlq031Lo9sff8Ytp6hZ_GZ0y7QOToZfo_-A8RFg_uYpsAD5xkFEw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAO_BwiMJAPHHGJ4x-Jj1lFqJA6cdikcYpsx5YQXTqRRGjjn-dz4lYtSBNcE1tJ7Gf7vdjf-xB654HyMyYYKaxKSXDAIpoZRbRnBfcZY8yG4OTVmVxe8M-X4jL6bIdYmP39e5qqD3pMGwg6LuNzBloA9Mx9dCQFEO8ZOro4-1J-DenjqFSEjRuRr--oebD2jBb9MafKAb18MLTX-uanXq_3Vprq8RTC3Y0GheGAyff50Ju5vf3DvvEfP-IJehQZJy4niDxF91z7DD3c8yF8jn5tz9_hTYtHy2Nc6WHd4ymM18f_enjj8SKEWnX4FBa_JpQG_oiroYt3VwD2T2WFddvgMbSXLAFDuOz76VQlXrkQafytu8KBew6g9Y_RefXxfLEkMSsDsaAFe9JokXrOMpCfhqeuYdRy7l0Oo9kFNpE3WS4VL6QrvDDGK91waj13UmkHevgFmrWb1r1E2DTUaMuMo8xxJqWhPvXeBFM26aFigrJtd9U2OpaHxBnrelQuqarLxQJgWoeGrWPDJuj9rtL1ZNhxd_HTgINd0eC2PV6A_qvj4K29zp3WnIb5jWuZKitYVjRGeekEtzRBxwFFe8-DmQ24dIJOtrCq49TQ1aDRCprnQhQJIjuo_fWuE2YO3vXVf5Y_QbP-x-DeAGvqzds4Wn4DHjQPJw priority: 102 providerName: Unpaywall |
| Title | Research on Early Fault Identification of Cables Based on the Fusion of MTF-GAF and Multi-Head Attention Mechanism Features |
| URI | https://ieeexplore.ieee.org/document/10531016 https://www.proquest.com/docview/3068177558 https://doi.org/10.1109/access.2024.3401254 https://doaj.org/article/fa7eaa4142574a609c5328db9f6e54c1 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6xywE48FxEYKl84EhKEj8SH7MVpUJqxWFXWk6R7dgSoqQrmggBf56x41YtCMQtSsayrRnbMxN_3wC8cujyU8ppWhmZpZ4BK1VUy1Q5WjFXUEqNBycvV2Jxxd5f8-sIVg9YGGttuHxmp_4x_MtvN2bwqTJc4Wgx6KOcwElZiRGstU-o-AoSkpeRWSjP5Jt6NsNJYAxYsCnFOKLg7Oj0CST9sarKkYN5Z-hu1Pdvar0-OGvmD2C1G-V4xeTzdOj11Pz4jcDxv6fxEO5Hr5PUo5k8glu2ewz3DrgIn8DP3R08sulIoD0mczWsezJCeV3M7ZGNIzMPt9qSCzwAWy-NPiSZD9v4dYkG_66eE9W1JMB70wXaEan7frxZSZbWo40_bb8Q738OGO-fweX87eVskcbKDKnBeLBPW8Uzx2iBIahmmW1pbhhztsSJWe9RlG1RCskqYSvHtXZStSw3jlkhlcWY-CmcdpvOPgOi21wrQ7XNqWVUCJ27zDntidmEw4YJFDuFNSaylvviGesmRC-ZbEYtN17LTdRyAq_3jW5G0o5_i194S9iLesbt8AK11sQF3DhVWqVY7vc4pkQmDadF1WrphOXM5AmceU0f9DcqOYHznWE1cXvYNhinVXlZcl4lkO6N7Y-xqlAz82isz__SzQu468XG5NA5nPZfB_sS3aVeT0KaYRIWywRuX60-1B9_ARXLEXw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3Bclj2wOeiDSzgA0dSkthO4mO3ohTY9lSkvVm2Y0srSrqiiRDw5xk7btWCQNyixE5szdieN5l5A_DKoclPKadpbUSWegasVFEtUuVozVxBKTU-OXm-KGef2IcrfhWT1UMujLU2BJ_Zkb8M__Kbtem9qwxXOGoM2ii34Q5n-N4hXWvnUvE1JASvIrdQnok348kEp4EosGAjikii4Ozg_Ak0_bGuyoGJedy3N-r7N7Va7Z020_uw2I5zCDL5POo7PTI_fqNw_O-JPIB70e4k40FRHsIt2z6Ckz02wsfwcxuFR9YtCcTHZKr6VUeGZF4XvXtk7cjEJ1xtyAUegY1vjVYkmfab-HSOKv9uPCWqbUhI8E1nqElk3HVDbCWZW59vfL35QrwF2iPiP4Xl9O1yMktjbYbUICLs0kbxzDFaIAjVLLMNzQ1jzlY4MettiqopqlKwurS141o7oRqWG8dsKZRFVPwEjtp1a8-A6CbXylBtc2oZLUudu8w57anZSocdEyi2ApMm8pb78hkrGfBLJuQgZemlLKOUE3i963Qz0Hb8u_mF14RdU8-5HW6g1GRcwtKpyirFcr_LMVVmwnBa1I0WrrScmTyBUy_pve8NQk7gfKtYMm4QG4lIrc6rivM6gXSnbH-MVYWqmQdjffqXz7yE49lyfikv3y8-PoO7vsvgKjqHo-5rb5-j8dTpF2HJ_AKBtRIk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAO_BwiMJAPHHGJ4x-Jj1lFqJA6cdikcYpsx5YQXTqRRGjjn-dz4lYtSBNcE1tJ7Gf7vdjf-xB654HyMyYYKaxKSXDAIpoZRbRnBfcZY8yG4OTVmVxe8M-X4jL6bIdYmP39e5qqD3pMGwg6LuNzBloA9Mx9dCQFEO8ZOro4-1J-DenjqFSEjRuRr--oebD2jBb9MafKAb18MLTX-uanXq_3Vprq8RTC3Y0GheGAyff50Ju5vf3DvvEfP-IJehQZJy4niDxF91z7DD3c8yF8jn5tz9_hTYtHy2Nc6WHd4ymM18f_enjj8SKEWnX4FBa_JpQG_oiroYt3VwD2T2WFddvgMbSXLAFDuOz76VQlXrkQafytu8KBew6g9Y_RefXxfLEkMSsDsaAFe9JokXrOMpCfhqeuYdRy7l0Oo9kFNpE3WS4VL6QrvDDGK91waj13UmkHevgFmrWb1r1E2DTUaMuMo8xxJqWhPvXeBFM26aFigrJtd9U2OpaHxBnrelQuqarLxQJgWoeGrWPDJuj9rtL1ZNhxd_HTgINd0eC2PV6A_qvj4K29zp3WnIb5jWuZKitYVjRGeekEtzRBxwFFe8-DmQ24dIJOtrCq49TQ1aDRCprnQhQJIjuo_fWuE2YO3vXVf5Y_QbP-x-DeAGvqzds4Wn4DHjQPJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Early+Fault+Identification+of+Cables+Based+on+the+Fusion+of+MTF-GAF+and+Multi-Head+Attention+Mechanism+Features&rft.jtitle=IEEE+access&rft.au=Wu%2C+Hao&rft.au=Tang%2C+Dan&rft.au=Cai%2C+Yuan&rft.au=Zheng%2C+Chaowen&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=81853&rft.epage=81866&rft_id=info:doi/10.1109%2FACCESS.2024.3401254&rft.externalDocID=10531016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |