Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during t...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 842; no. 2; p. L10
Main Authors Radice, David, Bernuzzi, Sebastiano, Pozzo, Walter Del, Roberts, Luke F., Ott, Christian D.
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 20.06.2017
IOP Publishing
Subjects
Online AccessGet full text
ISSN2041-8205
2041-8213
DOI10.3847/2041-8213/aa775f

Cover

Abstract We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
AbstractList We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
Author Ott, Christian D.
Radice, David
Roberts, Luke F.
Pozzo, Walter Del
Bernuzzi, Sebastiano
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0001-6982-1008
  surname: Radice
  fullname: Radice, David
  organization: Princeton University Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Sebastiano
  orcidid: 0000-0002-2334-0935
  surname: Bernuzzi
  fullname: Bernuzzi, Sebastiano
  organization: Istituto Nazionale di Fisica Nucleare , Sezione Milano Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
– sequence: 3
  givenname: Walter Del
  surname: Pozzo
  fullname: Pozzo, Walter Del
  organization: Università di Pisa Dipartimento di Fisica "Enrico Fermi," , Pisa I-56127, Italy
– sequence: 4
  givenname: Luke F.
  surname: Roberts
  fullname: Roberts, Luke F.
  organization: Michigan State University NSCL/FRIB and Department of Physics & Astronomy, 640 S Shaw Lane, East Lansing, MI 48824, USA
– sequence: 5
  givenname: Christian D.
  orcidid: 0000-0003-4993-2055
  surname: Ott
  fullname: Ott, Christian D.
  organization: California Institute of Technology TAPIR, Walter Burke Institute for Theoretical Physics, 1200 E. California Boulevard, Pasadena, CA 91125, USA
BackLink https://www.osti.gov/biblio/22654460$$D View this record in Osti.gov
BookMark eNp9kEFPGzEQha2KSgXKvUdLlXpiG6_X680eKQpppaRUBc7WrHccHCX2YjsB_j27DSJSBZxm9PS-p5l3RA6cd0jIl5x9L8aiGnEm8mzM82IEUFWl-UAOX6SDl52Vn8hRjEvGOJP5-JAs_wTfWLegk4cUcI1Ziy7a9EjnkBIGem_TLZ0G2NoEyXoHq-wetkgvm4hh-0-K1Bv6wzoIj_Q3blLwjl4lCHSOYdFH_MW1A5fiZ_LRwCriyfM8JjcXk-vzn9nscvrr_GyWacHqlLW1MYzV2EgU2tQCc103NRiUbVWKQnJemhaxlky0sqp7iTWgZQOsAiGNKI7J112uj8mqqG1Cfau9c6iT4lyWQki2d3XB320wJrX0m9D_FxUvZCnzivMhi-1cOvgYAxrVBbvuP1U5U0PvaihWDSWrXe89Iv9D9HN3KYBdvQd-24HWd_tjoFuu1FhwxdWsR7t2MJ6-Ynwz9wkfiaWn
CitedBy_id crossref_primary_10_1103_PhysRevD_109_064009
crossref_primary_10_1093_mnras_stab2793
crossref_primary_10_1088_1475_7516_2021_07_011
crossref_primary_10_1103_PhysRevD_103_123020
crossref_primary_10_1103_PhysRevD_98_104005
crossref_primary_10_1103_PhysRevLett_120_111101
crossref_primary_10_1103_PhysRevD_97_064016
crossref_primary_10_3390_particles2010004
crossref_primary_10_1088_1674_4527_adbc37
crossref_primary_10_3390_universe7110408
crossref_primary_10_1093_mnras_staa4006
crossref_primary_10_1103_PhysRevD_111_063054
crossref_primary_10_1103_PhysRevD_101_043021
crossref_primary_10_1103_PhysRevD_102_123023
crossref_primary_10_1088_1361_6382_ad9b68
crossref_primary_10_21468_SciPostPhys_13_5_109
crossref_primary_10_1103_PhysRevD_109_044071
crossref_primary_10_3390_universe8070370
crossref_primary_10_3847_1538_4357_aaf054
crossref_primary_10_1088_1475_7516_2020_07_023
crossref_primary_10_1088_1361_6471_aa7bdc
crossref_primary_10_1103_PhysRevD_102_043011
crossref_primary_10_1093_mnras_stae057
crossref_primary_10_1088_1361_6471_ab9d06
crossref_primary_10_1007_s10714_020_02751_6
crossref_primary_10_1103_PhysRevD_101_044006
crossref_primary_10_1093_mnras_stz613
crossref_primary_10_1103_PhysRevD_102_083030
crossref_primary_10_1103_PhysRevD_102_103003
crossref_primary_10_1103_PhysRevD_96_014031
crossref_primary_10_3847_2041_8213_aaa402
crossref_primary_10_3390_jlpea8020015
crossref_primary_10_1007_s40065_021_00357_7
crossref_primary_10_1093_mnras_staa725
crossref_primary_10_1093_mnras_stab1287
crossref_primary_10_1093_mnras_stae1979
crossref_primary_10_1093_mnras_stac589
crossref_primary_10_3847_1538_4357_abafaa
crossref_primary_10_1140_epja_i2019_12810_7
crossref_primary_10_3390_universe5050099
crossref_primary_10_3390_particles6030045
crossref_primary_10_1103_PhysRevD_109_044012
crossref_primary_10_1103_PhysRevD_104_083029
crossref_primary_10_1016_j_nuclphysa_2020_122059
crossref_primary_10_3847_1538_4357_abc9be
crossref_primary_10_1103_PhysRevD_105_104019
crossref_primary_10_1140_epjs_s11734_021_00006_2
crossref_primary_10_1103_PhysRevD_101_123030
crossref_primary_10_1140_epja_i2018_12456_y
crossref_primary_10_1103_PhysRevC_101_034904
crossref_primary_10_1007_s10714_020_02752_5
crossref_primary_10_1093_mnras_stad1266
crossref_primary_10_1103_PhysRevD_109_043053
crossref_primary_10_1103_PhysRevD_110_063004
crossref_primary_10_1103_PhysRevD_110_084046
crossref_primary_10_1088_1361_6382_abf898
crossref_primary_10_1103_PhysRevD_108_103023
crossref_primary_10_3390_universe5050129
crossref_primary_10_1038_s41586_022_05497_0
crossref_primary_10_1088_1361_6382_aa9f5a
crossref_primary_10_3847_1538_4357_ac19ab
crossref_primary_10_1103_PhysRevD_97_024049
crossref_primary_10_1103_PhysRevD_110_043002
crossref_primary_10_1103_PhysRevD_104_083004
crossref_primary_10_1142_S0218271820410151
crossref_primary_10_1103_PhysRevD_110_123005
crossref_primary_10_1088_1361_6382_acc231
crossref_primary_10_1103_PhysRevD_100_104029
crossref_primary_10_1103_PhysRevD_105_124021
crossref_primary_10_1103_PhysRevC_110_045802
crossref_primary_10_1093_mnras_stae1642
crossref_primary_10_1103_PhysRevD_104_042001
crossref_primary_10_1103_PhysRevD_98_043015
crossref_primary_10_1103_PhysRevD_111_043013
crossref_primary_10_1140_epja_s10050_020_00073_4
crossref_primary_10_1088_1361_6382_ad56ed
crossref_primary_10_1088_1361_6382_aaebc0
crossref_primary_10_3847_1538_4357_aba3c7
crossref_primary_10_1093_mnras_staa1860
crossref_primary_10_3847_1538_4357_ab97b7
crossref_primary_10_1103_PhysRevD_109_064032
crossref_primary_10_1103_PhysRevD_109_123009
crossref_primary_10_1103_PhysRevD_104_124012
crossref_primary_10_3847_2041_8213_ab43e0
crossref_primary_10_3847_1538_4357_ab6a9e
crossref_primary_10_1103_PhysRevD_96_124035
crossref_primary_10_1016_j_physletb_2018_04_048
crossref_primary_10_1016_j_ppnp_2019_103714
crossref_primary_10_1051_0004_6361_201731604
crossref_primary_10_1103_PhysRevD_100_043005
crossref_primary_10_1103_PhysRevD_105_123007
crossref_primary_10_1103_PhysRevLett_128_161102
crossref_primary_10_1103_PhysRevD_111_023001
crossref_primary_10_1146_annurev_nucl_013120_114541
crossref_primary_10_1103_PhysRevD_109_103008
crossref_primary_10_1103_PhysRevLett_122_061102
crossref_primary_10_1103_PhysRevD_109_043015
crossref_primary_10_1093_mnras_stad107
crossref_primary_10_1103_PhysRevD_100_044047
crossref_primary_10_1007_s41114_022_00035_w
crossref_primary_10_1103_PhysRevC_99_052802
crossref_primary_10_1103_PhysRevLett_122_061101
crossref_primary_10_1103_PhysRevD_101_103006
crossref_primary_10_1140_epja_s10050_022_00772_0
crossref_primary_10_1140_epjp_s13360_022_02439_7
Cites_doi 10.1103/PhysRevD.90.023002
10.1146/annurev-nucl-102711-095018
10.1038/nature09466
10.1046/j.1365-2966.2003.07032.x
10.1103/PhysRevLett.115.091101
10.1103/PhysRevD.73.064027
10.1103/PhysRevD.93.044019
10.1016/S0370-2693(00)00780-2
10.1103/PhysRevLett.116.181101
10.1088/0264-9381/31/7/075012
10.1103/PhysRevD.91.124056
10.1103/PhysRevD.90.062004
10.1103/PhysRevLett.112.201101
10.1093/mnras/stw1227
10.1103/PhysRevD.93.064001
10.1080/01621459.1995.10476572
10.1111/j.1365-2966.2011.19493.x
10.1103/PhysRevX.4.031006
10.1103/physrevd.95.104036
10.1103/PhysRevD.93.124051
10.1103/PhysRevD.85.123007
10.1088/0067-0049/214/2/22
10.1103/PhysRevC.62.035803
10.1016/j.nuclphysa.2010.02.010
10.12942/lrr-2009-2
10.1103/PhysRevD.88.044042
10.1103/PhysRevLett.107.211101
10.1103/PhysRevLett.113.091104
10.1103/PhysRevLett.114.161103
10.1103/PhysRevD.92.104008
10.1126/science.1233232
10.1103/PhysRevD.94.024023
10.1103/PhysRevC.81.015803
10.1103/PhysRevD.93.064082
10.1103/PhysRevD.88.044026
10.1103/PhysRevLett.108.011101
10.1088/0264-9381/33/8/085003
10.1103/PhysRevD.78.084033
10.1103/PhysRevLett.111.071101
10.1088/0264-9381/31/19/195010
10.1088/0264-9381/28/9/094013
10.1103/PhysRevLett.107.051102
10.1103/PhysRevD.92.044045
10.1088/0264-9381/31/20/205006
10.1088/0264-9381/27/8/084007
10.1103/PhysRevD.91.124062
10.1103/PhysRevD.86.082001
ContentType Journal Article
Copyright 2017. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jun 20, 2017
Copyright_xml – notice: 2017. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jun 20, 2017
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOI 10.3847/2041-8213/aa775f
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants
EISSN 2041-8213
ExternalDocumentID 22654460
10_3847_2041_8213_aa775f
apjlaa775f
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
EJD
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OTOTI
ID FETCH-LOGICAL-c409t-d9ff009eb6e4cf94e1c9b9afe6d75436225fdee9604d6795430bac6ba07a46f43
IEDL.DBID O3W
ISSN 2041-8205
IngestDate Thu May 18 22:21:31 EDT 2023
Wed Aug 13 06:11:06 EDT 2025
Tue Jul 01 02:52:49 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Aug 21 03:32:11 EDT 2024
Thu Jan 07 13:52:06 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-d9ff009eb6e4cf94e1c9b9afe6d75436225fdee9604d6795430bac6ba07a46f43
Notes LET34812
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4993-2055
0000-0002-2334-0935
0000-0001-6982-1008
OpenAccessLink https://iopscience.iop.org/article/10.3847/2041-8213/aa775f/pdf
PQID 2365617224
PQPubID 4562431
PageCount 5
ParticipantIDs proquest_journals_2365617224
crossref_primary_10_3847_2041_8213_aa775f
osti_scitechconnect_22654460
crossref_citationtrail_10_3847_2041_8213_aa775f
iop_journals_10_3847_2041_8213_aa775f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-20
PublicationDateYYYYMMDD 2017-06-20
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-20
  day: 20
PublicationDecade 2010
PublicationPlace Austin
PublicationPlace_xml – name: Austin
– name: United States
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2017
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Stergioulas (apjlaa775fbib47) 2011; 418
Sathyaprakash (apjlaa775fbib41) 2009; 12
Baiotti (apjlaa775fbib3) 2016
Typel (apjlaa775fbib49) 2010; 81
Bernuzzi (apjlaa775fbib9) 2014; 112
Field (apjlaa775fbib20) 2014; 4
Hempel (apjlaa775fbib23) 2010; A837
Bernuzzi (apjlaa775fbib11) 2016; 94
Demorest (apjlaa775fbib18) 2010; 467
Lackey (apjlaa775fbib29) 2017; 95
Rosswog (apjlaa775fbib40) 2003; 345
Clark (apjlaa775fbib14) 2016; 33
Hotokezaka (apjlaa775fbib27) 2016; 93
Bernuzzi (apjlaa775fbib8) 2015a; 115
Takami (apjlaa775fbib48) 2014; 113
Lattimer (apjlaa775fbib30) 2012; 62
Shoemaker (apjlaa775fbib45) 2010
Damour (apjlaa775fbib15) 2012; 85
Hild (apjlaa775fbib24) 2011; 28
Clark (apjlaa775fbib13) 2014; 90
Read (apjlaa775fbib38) 2013; 88
Gair (apjlaa775fbib22) 2015; 91
Del Pozzo (apjlaa775fbib16) 2014; 31
Sekiguchi (apjlaa775fbib43) 2011b; 107
Bernuzzi (apjlaa775fbib10) 2015b; 114
Punturo (apjlaa775fbib34) 2010; 27
Steiner (apjlaa775fbib46) 2000; 486
Del Pozzo (apjlaa775fbib17) 2013; 111
Hotokezaka (apjlaa775fbib26) 2013; 88
Radice (apjlaa775fbib37) 2014; 31
Chatziioannou (apjlaa775fbib12) 2015; 92
Antoniadis (apjlaa775fbib1) 2013; 340
Bauswein (apjlaa775fbib6) 2015; 91
Radice (apjlaa775fbib36) 2016; 460
Vallisneri (apjlaa775fbib50) 2012; 86
Pons (apjlaa775fbib33) 2000; 62
Bauswein (apjlaa775fbib7) 2014; 90
Kass (apjlaa775fbib28) 1995; 90
Sekiguchi (apjlaa775fbib42) 2011a; 107
Moore (apjlaa775fbib31) 2016; 93
Baiotti (apjlaa775fbib2) 2008; 78
Palenzuela (apjlaa775fbib32) 2015; 92
Dietrich (apjlaa775fbib19) 2016
Bauswein (apjlaa775fbib5) 2012; 108
Pürrer (apjlaa775fbib35) 2014; 31
Foucart (apjlaa775fbib21) 2016; 93
Hinderer (apjlaa775fbib25) 2016; 116
Banik (apjlaa775fbib4) 2014; 214
Rezzolla (apjlaa775fbib39) 2016; 93
Shibata (apjlaa775fbib44) 2006; 73
References_xml – volume: 90
  start-page: 023002
  year: 2014
  ident: apjlaa775fbib7
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.023002
– volume: 62
  start-page: 485
  year: 2012
  ident: apjlaa775fbib30
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-102711-095018
– volume: 467
  start-page: 1081
  year: 2010
  ident: apjlaa775fbib18
  publication-title: Natur
  doi: 10.1038/nature09466
– volume: 345
  start-page: 1077
  year: 2003
  ident: apjlaa775fbib40
  publication-title: MNRAS
  doi: 10.1046/j.1365-2966.2003.07032.x
– volume: 115
  start-page: 091101
  year: 2015a
  ident: apjlaa775fbib8
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.115.091101
– volume: 73
  start-page: 064027
  year: 2006
  ident: apjlaa775fbib44
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.73.064027
– volume: 93
  start-page: 044019
  year: 2016
  ident: apjlaa775fbib21
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.044019
– volume: 486
  start-page: 239
  year: 2000
  ident: apjlaa775fbib46
  publication-title: PhLB
  doi: 10.1016/S0370-2693(00)00780-2
– volume: 116
  start-page: 181101
  year: 2016
  ident: apjlaa775fbib25
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.116.181101
– volume: 31
  start-page: 075012
  year: 2014
  ident: apjlaa775fbib37
  publication-title: CQGra
  doi: 10.1088/0264-9381/31/7/075012
– volume: 91
  start-page: 124056
  year: 2015
  ident: apjlaa775fbib6
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.124056
– volume: 90
  start-page: 062004
  year: 2014
  ident: apjlaa775fbib13
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.062004
– volume: 112
  start-page: 201101
  year: 2014
  ident: apjlaa775fbib9
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.112.201101
– volume: 460
  start-page: 3255
  year: 2016
  ident: apjlaa775fbib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1227
– volume: 93
  start-page: 064001
  year: 2016
  ident: apjlaa775fbib31
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.064001
– year: 2010
  ident: apjlaa775fbib45
– year: 2016
  ident: apjlaa775fbib3
– year: 2016
  ident: apjlaa775fbib19
– volume: 90
  start-page: 773
  year: 1995
  ident: apjlaa775fbib28
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 418
  start-page: 427
  year: 2011
  ident: apjlaa775fbib47
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19493.x
– volume: 4
  start-page: 031006
  year: 2014
  ident: apjlaa775fbib20
  publication-title: PhRvX
  doi: 10.1103/PhysRevX.4.031006
– volume: 95
  start-page: 104036
  year: 2017
  ident: apjlaa775fbib29
  doi: 10.1103/physrevd.95.104036
– volume: 93
  start-page: 124051
  year: 2016
  ident: apjlaa775fbib39
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.124051
– volume: 85
  start-page: 123007
  year: 2012
  ident: apjlaa775fbib15
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.85.123007
– volume: 214
  start-page: 22
  year: 2014
  ident: apjlaa775fbib4
  publication-title: ApJS
  doi: 10.1088/0067-0049/214/2/22
– volume: 62
  start-page: 035803
  year: 2000
  ident: apjlaa775fbib33
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.62.035803
– volume: A837
  start-page: 210
  year: 2010
  ident: apjlaa775fbib23
  publication-title: NuPhA
  doi: 10.1016/j.nuclphysa.2010.02.010
– volume: 12
  start-page: 2
  year: 2009
  ident: apjlaa775fbib41
  publication-title: LRR
  doi: 10.12942/lrr-2009-2
– volume: 88
  start-page: 044042
  year: 2013
  ident: apjlaa775fbib38
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.044042
– volume: 107
  start-page: 211101
  year: 2011b
  ident: apjlaa775fbib43
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.107.211101
– volume: 113
  start-page: 091104
  year: 2014
  ident: apjlaa775fbib48
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.113.091104
– volume: 114
  start-page: 161103
  year: 2015b
  ident: apjlaa775fbib10
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.114.161103
– volume: 92
  start-page: 104008
  year: 2015
  ident: apjlaa775fbib12
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.104008
– volume: 340
  start-page: 6131
  year: 2013
  ident: apjlaa775fbib1
  publication-title: Sci
  doi: 10.1126/science.1233232
– volume: 94
  start-page: 024023
  year: 2016
  ident: apjlaa775fbib11
  doi: 10.1103/PhysRevD.94.024023
– volume: 81
  start-page: 015803
  year: 2010
  ident: apjlaa775fbib49
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.81.015803
– volume: 93
  start-page: 064082
  year: 2016
  ident: apjlaa775fbib27
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.064082
– volume: 88
  start-page: 044026
  year: 2013
  ident: apjlaa775fbib26
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.044026
– volume: 108
  start-page: 011101
  year: 2012
  ident: apjlaa775fbib5
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.011101
– volume: 33
  start-page: 085003
  year: 2016
  ident: apjlaa775fbib14
  publication-title: CQGra
  doi: 10.1088/0264-9381/33/8/085003
– volume: 78
  start-page: 084033
  year: 2008
  ident: apjlaa775fbib2
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.78.084033
– volume: 111
  year: 2013
  ident: apjlaa775fbib17
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.071101
– volume: 31
  year: 2014
  ident: apjlaa775fbib35
  publication-title: CQGra
  doi: 10.1088/0264-9381/31/19/195010
– volume: 28
  start-page: 094013
  year: 2011
  ident: apjlaa775fbib24
  publication-title: CQGra
  doi: 10.1088/0264-9381/28/9/094013
– volume: 107
  start-page: 051102
  year: 2011a
  ident: apjlaa775fbib42
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.107.051102
– volume: 92
  start-page: 044045
  year: 2015
  ident: apjlaa775fbib32
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.044045
– volume: 31
  year: 2014
  ident: apjlaa775fbib16
  publication-title: CQGra
  doi: 10.1088/0264-9381/31/20/205006
– volume: 27
  start-page: 084007
  year: 2010
  ident: apjlaa775fbib34
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/8/084007
– volume: 91
  start-page: 124062
  year: 2015
  ident: apjlaa775fbib22
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.124062
– volume: 86
  start-page: 082001
  year: 2012
  ident: apjlaa775fbib50
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.86.082001
SSID ssj0020618
Score 2.5859654
Snippet We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage L10
SubjectTerms ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BINARY STARS
BLACK HOLES
Computer simulation
DEGREES OF FREEDOM
DENSITY
Detectors
EQUATIONS OF STATE
EXCEPTIONS
GRAVITATIONAL WAVES
LUMINOSITY
NEUTRON STARS
PHASE TRANSFORMATIONS
Phase transitions
Relativity
SIMULATION
Softening
Star mergers
stars: neutron
Stellar evolution
SUPERNOVA REMNANTS
Title Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants
URI https://iopscience.iop.org/article/10.3847/2041-8213/aa775f
https://www.proquest.com/docview/2365617224
https://www.osti.gov/biblio/22654460
Volume 842
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZYeuGCWloELQ8faCUOhsRxko16AsSjVZdFCAQ3y49xpdWyWe0GKP--M0lYhECIm5WMH_HY428m9mfGtkIBrvDWiLibO0EEXqKbhFigMyQjAAhxTZLUO81OLtXv6_R6jv2cnYUpx63p38FkQxTcdCHN7wRtKbrrKhZdGSe7xuR5GjrsQ4K4nDyvfnI187Zwoaqvo2uko7T5R_lqCc_WpA7Wi_a5xBn2wj7Xi87RR7bYokW-17TtE5uD0RJb2ZtS_Lq8eeA_eJ1uwhPTz2xwRrRKo7_88F9FgT_haX969cB7NY0mp6grP56Yu5aZ2wzFvbkD3rez4OyUl4Hv16d0-SncUk0cEemE9-ic5oSfw029d-YLuzw6vDg4Ee1tCsKhD1cJX4SAgApsBsqFQkHsCluYAJnPU4XrmEyDByCyFp_lBT6KrHGZNVFuVBZUsszmR-UIVhgPkU8gk0Qlb5X3FkGiD3T5oyK6NWlW2e5jf2rXfhDdeDHU6HKQBjRpQJMGdKOBVbY9yzFuaDbekP2OKtLtXJu-Ibf5TM6MB0PdVVJL_QfzjD1KrJGaNY44Ysx1tLXIVRoRaYpecoSvH9X_VIpMEAEj6pPq6zvb8Y0tSMICUYYmaY3NV5NbWEckU9kN1vnVP9uox-1_VYjtPA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8EE-KLEdRwitIHNPGh3m63u3v7iMKByB3ESOSt6cfUhBy3l7sF5b93prucIRjiW7Pbr-2009_Mtr9hbCdU4CpvjUgHpRNE4CUGWUgFGkMyAYCQRpKk0bg4PFNH5_l5F-c03oWpZ53q_4jJlii4HUJa3xnqUjTXVSoGMs36xpRlHvozH1bY4zxDbIwT-iT7sbS4cLOKIenaEkne_qf8Zy139qUVbBt1dI2r7J6OjhvP8Bl72iFGvtv2b509gukG29xdkA-7vrzh73lMty6KxXN2cUrUStOffP93Q84_4emMenPDR5FKk5PnlR_MzXXHzm0m4pe5Bn5ilw7aBa8D_xRv6vIxXFFLHFHpnI_oruacf4PLeH7mBTsb7n__fCi6iArCoR3XCF-FgKAKbAHKhUpB6ipbmQCFL3OFe5nMgwcgwhZflBU-SqxxhTVJaVQRVPaSrU7rKWwyHhKfQSGJTt4q7y0CRR8oAKQiyjVpeqx_O57adR9EUS8mGs0OkoAmCWiSgG4l0GMfliVmLdXGA3nfoYh0t94WD-TbvpPPzC4meqCklvoYy-DM6bEtErPGWUesuY6OF7lGIyrN0VJO8PWt-P_WIjNEwYj8pHr1n_3YZmune0N9_GX89TV7IgkaJAVqqC222syv4A0Cm8a-jZP3D41S8DE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Extreme-density+Matter+with+Gravitational-wave+Observations+of+Binary+Neutron+Star+Merger+Remnants&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Radice%2C+David&rft.au=Bernuzzi%2C+Sebastiano&rft.au=Pozzo%2C+Walter+Del&rft.au=Roberts%2C+Luke+F.&rft.date=2017-06-20&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=842&rft.issue=2&rft.spage=L10&rft_id=info:doi/10.3847%2F2041-8213%2Faa775f&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_2041_8213_aa775f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon