Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during t...
Saved in:
Published in | Astrophysical journal. Letters Vol. 842; no. 2; p. L10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Austin
The American Astronomical Society
20.06.2017
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 2041-8205 2041-8213 |
DOI | 10.3847/2041-8213/aa775f |
Cover
Abstract | We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals. |
---|---|
AbstractList | We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals. |
Author | Ott, Christian D. Radice, David Roberts, Luke F. Pozzo, Walter Del Bernuzzi, Sebastiano |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0001-6982-1008 surname: Radice fullname: Radice, David organization: Princeton University Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544, USA – sequence: 2 givenname: Sebastiano orcidid: 0000-0002-2334-0935 surname: Bernuzzi fullname: Bernuzzi, Sebastiano organization: Istituto Nazionale di Fisica Nucleare , Sezione Milano Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy – sequence: 3 givenname: Walter Del surname: Pozzo fullname: Pozzo, Walter Del organization: Università di Pisa Dipartimento di Fisica "Enrico Fermi," , Pisa I-56127, Italy – sequence: 4 givenname: Luke F. surname: Roberts fullname: Roberts, Luke F. organization: Michigan State University NSCL/FRIB and Department of Physics & Astronomy, 640 S Shaw Lane, East Lansing, MI 48824, USA – sequence: 5 givenname: Christian D. orcidid: 0000-0003-4993-2055 surname: Ott fullname: Ott, Christian D. organization: California Institute of Technology TAPIR, Walter Burke Institute for Theoretical Physics, 1200 E. California Boulevard, Pasadena, CA 91125, USA |
BackLink | https://www.osti.gov/biblio/22654460$$D View this record in Osti.gov |
BookMark | eNp9kEFPGzEQha2KSgXKvUdLlXpiG6_X680eKQpppaRUBc7WrHccHCX2YjsB_j27DSJSBZxm9PS-p5l3RA6cd0jIl5x9L8aiGnEm8mzM82IEUFWl-UAOX6SDl52Vn8hRjEvGOJP5-JAs_wTfWLegk4cUcI1Ziy7a9EjnkBIGem_TLZ0G2NoEyXoHq-wetkgvm4hh-0-K1Bv6wzoIj_Q3blLwjl4lCHSOYdFH_MW1A5fiZ_LRwCriyfM8JjcXk-vzn9nscvrr_GyWacHqlLW1MYzV2EgU2tQCc103NRiUbVWKQnJemhaxlky0sqp7iTWgZQOsAiGNKI7J112uj8mqqG1Cfau9c6iT4lyWQki2d3XB320wJrX0m9D_FxUvZCnzivMhi-1cOvgYAxrVBbvuP1U5U0PvaihWDSWrXe89Iv9D9HN3KYBdvQd-24HWd_tjoFuu1FhwxdWsR7t2MJ6-Ynwz9wkfiaWn |
CitedBy_id | crossref_primary_10_1103_PhysRevD_109_064009 crossref_primary_10_1093_mnras_stab2793 crossref_primary_10_1088_1475_7516_2021_07_011 crossref_primary_10_1103_PhysRevD_103_123020 crossref_primary_10_1103_PhysRevD_98_104005 crossref_primary_10_1103_PhysRevLett_120_111101 crossref_primary_10_1103_PhysRevD_97_064016 crossref_primary_10_3390_particles2010004 crossref_primary_10_1088_1674_4527_adbc37 crossref_primary_10_3390_universe7110408 crossref_primary_10_1093_mnras_staa4006 crossref_primary_10_1103_PhysRevD_111_063054 crossref_primary_10_1103_PhysRevD_101_043021 crossref_primary_10_1103_PhysRevD_102_123023 crossref_primary_10_1088_1361_6382_ad9b68 crossref_primary_10_21468_SciPostPhys_13_5_109 crossref_primary_10_1103_PhysRevD_109_044071 crossref_primary_10_3390_universe8070370 crossref_primary_10_3847_1538_4357_aaf054 crossref_primary_10_1088_1475_7516_2020_07_023 crossref_primary_10_1088_1361_6471_aa7bdc crossref_primary_10_1103_PhysRevD_102_043011 crossref_primary_10_1093_mnras_stae057 crossref_primary_10_1088_1361_6471_ab9d06 crossref_primary_10_1007_s10714_020_02751_6 crossref_primary_10_1103_PhysRevD_101_044006 crossref_primary_10_1093_mnras_stz613 crossref_primary_10_1103_PhysRevD_102_083030 crossref_primary_10_1103_PhysRevD_102_103003 crossref_primary_10_1103_PhysRevD_96_014031 crossref_primary_10_3847_2041_8213_aaa402 crossref_primary_10_3390_jlpea8020015 crossref_primary_10_1007_s40065_021_00357_7 crossref_primary_10_1093_mnras_staa725 crossref_primary_10_1093_mnras_stab1287 crossref_primary_10_1093_mnras_stae1979 crossref_primary_10_1093_mnras_stac589 crossref_primary_10_3847_1538_4357_abafaa crossref_primary_10_1140_epja_i2019_12810_7 crossref_primary_10_3390_universe5050099 crossref_primary_10_3390_particles6030045 crossref_primary_10_1103_PhysRevD_109_044012 crossref_primary_10_1103_PhysRevD_104_083029 crossref_primary_10_1016_j_nuclphysa_2020_122059 crossref_primary_10_3847_1538_4357_abc9be crossref_primary_10_1103_PhysRevD_105_104019 crossref_primary_10_1140_epjs_s11734_021_00006_2 crossref_primary_10_1103_PhysRevD_101_123030 crossref_primary_10_1140_epja_i2018_12456_y crossref_primary_10_1103_PhysRevC_101_034904 crossref_primary_10_1007_s10714_020_02752_5 crossref_primary_10_1093_mnras_stad1266 crossref_primary_10_1103_PhysRevD_109_043053 crossref_primary_10_1103_PhysRevD_110_063004 crossref_primary_10_1103_PhysRevD_110_084046 crossref_primary_10_1088_1361_6382_abf898 crossref_primary_10_1103_PhysRevD_108_103023 crossref_primary_10_3390_universe5050129 crossref_primary_10_1038_s41586_022_05497_0 crossref_primary_10_1088_1361_6382_aa9f5a crossref_primary_10_3847_1538_4357_ac19ab crossref_primary_10_1103_PhysRevD_97_024049 crossref_primary_10_1103_PhysRevD_110_043002 crossref_primary_10_1103_PhysRevD_104_083004 crossref_primary_10_1142_S0218271820410151 crossref_primary_10_1103_PhysRevD_110_123005 crossref_primary_10_1088_1361_6382_acc231 crossref_primary_10_1103_PhysRevD_100_104029 crossref_primary_10_1103_PhysRevD_105_124021 crossref_primary_10_1103_PhysRevC_110_045802 crossref_primary_10_1093_mnras_stae1642 crossref_primary_10_1103_PhysRevD_104_042001 crossref_primary_10_1103_PhysRevD_98_043015 crossref_primary_10_1103_PhysRevD_111_043013 crossref_primary_10_1140_epja_s10050_020_00073_4 crossref_primary_10_1088_1361_6382_ad56ed crossref_primary_10_1088_1361_6382_aaebc0 crossref_primary_10_3847_1538_4357_aba3c7 crossref_primary_10_1093_mnras_staa1860 crossref_primary_10_3847_1538_4357_ab97b7 crossref_primary_10_1103_PhysRevD_109_064032 crossref_primary_10_1103_PhysRevD_109_123009 crossref_primary_10_1103_PhysRevD_104_124012 crossref_primary_10_3847_2041_8213_ab43e0 crossref_primary_10_3847_1538_4357_ab6a9e crossref_primary_10_1103_PhysRevD_96_124035 crossref_primary_10_1016_j_physletb_2018_04_048 crossref_primary_10_1016_j_ppnp_2019_103714 crossref_primary_10_1051_0004_6361_201731604 crossref_primary_10_1103_PhysRevD_100_043005 crossref_primary_10_1103_PhysRevD_105_123007 crossref_primary_10_1103_PhysRevLett_128_161102 crossref_primary_10_1103_PhysRevD_111_023001 crossref_primary_10_1146_annurev_nucl_013120_114541 crossref_primary_10_1103_PhysRevD_109_103008 crossref_primary_10_1103_PhysRevLett_122_061102 crossref_primary_10_1103_PhysRevD_109_043015 crossref_primary_10_1093_mnras_stad107 crossref_primary_10_1103_PhysRevD_100_044047 crossref_primary_10_1007_s41114_022_00035_w crossref_primary_10_1103_PhysRevC_99_052802 crossref_primary_10_1103_PhysRevLett_122_061101 crossref_primary_10_1103_PhysRevD_101_103006 crossref_primary_10_1140_epja_s10050_022_00772_0 crossref_primary_10_1140_epjp_s13360_022_02439_7 |
Cites_doi | 10.1103/PhysRevD.90.023002 10.1146/annurev-nucl-102711-095018 10.1038/nature09466 10.1046/j.1365-2966.2003.07032.x 10.1103/PhysRevLett.115.091101 10.1103/PhysRevD.73.064027 10.1103/PhysRevD.93.044019 10.1016/S0370-2693(00)00780-2 10.1103/PhysRevLett.116.181101 10.1088/0264-9381/31/7/075012 10.1103/PhysRevD.91.124056 10.1103/PhysRevD.90.062004 10.1103/PhysRevLett.112.201101 10.1093/mnras/stw1227 10.1103/PhysRevD.93.064001 10.1080/01621459.1995.10476572 10.1111/j.1365-2966.2011.19493.x 10.1103/PhysRevX.4.031006 10.1103/physrevd.95.104036 10.1103/PhysRevD.93.124051 10.1103/PhysRevD.85.123007 10.1088/0067-0049/214/2/22 10.1103/PhysRevC.62.035803 10.1016/j.nuclphysa.2010.02.010 10.12942/lrr-2009-2 10.1103/PhysRevD.88.044042 10.1103/PhysRevLett.107.211101 10.1103/PhysRevLett.113.091104 10.1103/PhysRevLett.114.161103 10.1103/PhysRevD.92.104008 10.1126/science.1233232 10.1103/PhysRevD.94.024023 10.1103/PhysRevC.81.015803 10.1103/PhysRevD.93.064082 10.1103/PhysRevD.88.044026 10.1103/PhysRevLett.108.011101 10.1088/0264-9381/33/8/085003 10.1103/PhysRevD.78.084033 10.1103/PhysRevLett.111.071101 10.1088/0264-9381/31/19/195010 10.1088/0264-9381/28/9/094013 10.1103/PhysRevLett.107.051102 10.1103/PhysRevD.92.044045 10.1088/0264-9381/31/20/205006 10.1088/0264-9381/27/8/084007 10.1103/PhysRevD.91.124062 10.1103/PhysRevD.86.082001 |
ContentType | Journal Article |
Copyright | 2017. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Jun 20, 2017 |
Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Jun 20, 2017 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/2041-8213/aa775f |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants |
EISSN | 2041-8213 |
ExternalDocumentID | 22654460 10_3847_2041_8213_aa775f apjlaa775f |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS EJD FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M OTOTI |
ID | FETCH-LOGICAL-c409t-d9ff009eb6e4cf94e1c9b9afe6d75436225fdee9604d6795430bac6ba07a46f43 |
IEDL.DBID | O3W |
ISSN | 2041-8205 |
IngestDate | Thu May 18 22:21:31 EDT 2023 Wed Aug 13 06:11:06 EDT 2025 Tue Jul 01 02:52:49 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Wed Aug 21 03:32:11 EDT 2024 Thu Jan 07 13:52:06 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-d9ff009eb6e4cf94e1c9b9afe6d75436225fdee9604d6795430bac6ba07a46f43 |
Notes | LET34812 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4993-2055 0000-0002-2334-0935 0000-0001-6982-1008 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/2041-8213/aa775f/pdf |
PQID | 2365617224 |
PQPubID | 4562431 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2365617224 crossref_primary_10_3847_2041_8213_aa775f osti_scitechconnect_22654460 crossref_citationtrail_10_3847_2041_8213_aa775f iop_journals_10_3847_2041_8213_aa775f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-20 |
PublicationDateYYYYMMDD | 2017-06-20 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Austin |
PublicationPlace_xml | – name: Austin – name: United States |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2017 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Stergioulas (apjlaa775fbib47) 2011; 418 Sathyaprakash (apjlaa775fbib41) 2009; 12 Baiotti (apjlaa775fbib3) 2016 Typel (apjlaa775fbib49) 2010; 81 Bernuzzi (apjlaa775fbib9) 2014; 112 Field (apjlaa775fbib20) 2014; 4 Hempel (apjlaa775fbib23) 2010; A837 Bernuzzi (apjlaa775fbib11) 2016; 94 Demorest (apjlaa775fbib18) 2010; 467 Lackey (apjlaa775fbib29) 2017; 95 Rosswog (apjlaa775fbib40) 2003; 345 Clark (apjlaa775fbib14) 2016; 33 Hotokezaka (apjlaa775fbib27) 2016; 93 Bernuzzi (apjlaa775fbib8) 2015a; 115 Takami (apjlaa775fbib48) 2014; 113 Lattimer (apjlaa775fbib30) 2012; 62 Shoemaker (apjlaa775fbib45) 2010 Damour (apjlaa775fbib15) 2012; 85 Hild (apjlaa775fbib24) 2011; 28 Clark (apjlaa775fbib13) 2014; 90 Read (apjlaa775fbib38) 2013; 88 Gair (apjlaa775fbib22) 2015; 91 Del Pozzo (apjlaa775fbib16) 2014; 31 Sekiguchi (apjlaa775fbib43) 2011b; 107 Bernuzzi (apjlaa775fbib10) 2015b; 114 Punturo (apjlaa775fbib34) 2010; 27 Steiner (apjlaa775fbib46) 2000; 486 Del Pozzo (apjlaa775fbib17) 2013; 111 Hotokezaka (apjlaa775fbib26) 2013; 88 Radice (apjlaa775fbib37) 2014; 31 Chatziioannou (apjlaa775fbib12) 2015; 92 Antoniadis (apjlaa775fbib1) 2013; 340 Bauswein (apjlaa775fbib6) 2015; 91 Radice (apjlaa775fbib36) 2016; 460 Vallisneri (apjlaa775fbib50) 2012; 86 Pons (apjlaa775fbib33) 2000; 62 Bauswein (apjlaa775fbib7) 2014; 90 Kass (apjlaa775fbib28) 1995; 90 Sekiguchi (apjlaa775fbib42) 2011a; 107 Moore (apjlaa775fbib31) 2016; 93 Baiotti (apjlaa775fbib2) 2008; 78 Palenzuela (apjlaa775fbib32) 2015; 92 Dietrich (apjlaa775fbib19) 2016 Bauswein (apjlaa775fbib5) 2012; 108 Pürrer (apjlaa775fbib35) 2014; 31 Foucart (apjlaa775fbib21) 2016; 93 Hinderer (apjlaa775fbib25) 2016; 116 Banik (apjlaa775fbib4) 2014; 214 Rezzolla (apjlaa775fbib39) 2016; 93 Shibata (apjlaa775fbib44) 2006; 73 |
References_xml | – volume: 90 start-page: 023002 year: 2014 ident: apjlaa775fbib7 publication-title: PhRvD doi: 10.1103/PhysRevD.90.023002 – volume: 62 start-page: 485 year: 2012 ident: apjlaa775fbib30 publication-title: ARNPS doi: 10.1146/annurev-nucl-102711-095018 – volume: 467 start-page: 1081 year: 2010 ident: apjlaa775fbib18 publication-title: Natur doi: 10.1038/nature09466 – volume: 345 start-page: 1077 year: 2003 ident: apjlaa775fbib40 publication-title: MNRAS doi: 10.1046/j.1365-2966.2003.07032.x – volume: 115 start-page: 091101 year: 2015a ident: apjlaa775fbib8 publication-title: PhRvL doi: 10.1103/PhysRevLett.115.091101 – volume: 73 start-page: 064027 year: 2006 ident: apjlaa775fbib44 publication-title: PhRvD doi: 10.1103/PhysRevD.73.064027 – volume: 93 start-page: 044019 year: 2016 ident: apjlaa775fbib21 publication-title: PhRvD doi: 10.1103/PhysRevD.93.044019 – volume: 486 start-page: 239 year: 2000 ident: apjlaa775fbib46 publication-title: PhLB doi: 10.1016/S0370-2693(00)00780-2 – volume: 116 start-page: 181101 year: 2016 ident: apjlaa775fbib25 publication-title: PhRvL doi: 10.1103/PhysRevLett.116.181101 – volume: 31 start-page: 075012 year: 2014 ident: apjlaa775fbib37 publication-title: CQGra doi: 10.1088/0264-9381/31/7/075012 – volume: 91 start-page: 124056 year: 2015 ident: apjlaa775fbib6 publication-title: PhRvD doi: 10.1103/PhysRevD.91.124056 – volume: 90 start-page: 062004 year: 2014 ident: apjlaa775fbib13 publication-title: PhRvD doi: 10.1103/PhysRevD.90.062004 – volume: 112 start-page: 201101 year: 2014 ident: apjlaa775fbib9 publication-title: PhRvL doi: 10.1103/PhysRevLett.112.201101 – volume: 460 start-page: 3255 year: 2016 ident: apjlaa775fbib36 publication-title: MNRAS doi: 10.1093/mnras/stw1227 – volume: 93 start-page: 064001 year: 2016 ident: apjlaa775fbib31 publication-title: PhRvD doi: 10.1103/PhysRevD.93.064001 – year: 2010 ident: apjlaa775fbib45 – year: 2016 ident: apjlaa775fbib3 – year: 2016 ident: apjlaa775fbib19 – volume: 90 start-page: 773 year: 1995 ident: apjlaa775fbib28 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 418 start-page: 427 year: 2011 ident: apjlaa775fbib47 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19493.x – volume: 4 start-page: 031006 year: 2014 ident: apjlaa775fbib20 publication-title: PhRvX doi: 10.1103/PhysRevX.4.031006 – volume: 95 start-page: 104036 year: 2017 ident: apjlaa775fbib29 doi: 10.1103/physrevd.95.104036 – volume: 93 start-page: 124051 year: 2016 ident: apjlaa775fbib39 publication-title: PhRvD doi: 10.1103/PhysRevD.93.124051 – volume: 85 start-page: 123007 year: 2012 ident: apjlaa775fbib15 publication-title: PhRvD doi: 10.1103/PhysRevD.85.123007 – volume: 214 start-page: 22 year: 2014 ident: apjlaa775fbib4 publication-title: ApJS doi: 10.1088/0067-0049/214/2/22 – volume: 62 start-page: 035803 year: 2000 ident: apjlaa775fbib33 publication-title: PhRvC doi: 10.1103/PhysRevC.62.035803 – volume: A837 start-page: 210 year: 2010 ident: apjlaa775fbib23 publication-title: NuPhA doi: 10.1016/j.nuclphysa.2010.02.010 – volume: 12 start-page: 2 year: 2009 ident: apjlaa775fbib41 publication-title: LRR doi: 10.12942/lrr-2009-2 – volume: 88 start-page: 044042 year: 2013 ident: apjlaa775fbib38 publication-title: PhRvD doi: 10.1103/PhysRevD.88.044042 – volume: 107 start-page: 211101 year: 2011b ident: apjlaa775fbib43 publication-title: PhRvL doi: 10.1103/PhysRevLett.107.211101 – volume: 113 start-page: 091104 year: 2014 ident: apjlaa775fbib48 publication-title: PhRvL doi: 10.1103/PhysRevLett.113.091104 – volume: 114 start-page: 161103 year: 2015b ident: apjlaa775fbib10 publication-title: PhRvL doi: 10.1103/PhysRevLett.114.161103 – volume: 92 start-page: 104008 year: 2015 ident: apjlaa775fbib12 publication-title: PhRvD doi: 10.1103/PhysRevD.92.104008 – volume: 340 start-page: 6131 year: 2013 ident: apjlaa775fbib1 publication-title: Sci doi: 10.1126/science.1233232 – volume: 94 start-page: 024023 year: 2016 ident: apjlaa775fbib11 doi: 10.1103/PhysRevD.94.024023 – volume: 81 start-page: 015803 year: 2010 ident: apjlaa775fbib49 publication-title: PhRvC doi: 10.1103/PhysRevC.81.015803 – volume: 93 start-page: 064082 year: 2016 ident: apjlaa775fbib27 publication-title: PhRvD doi: 10.1103/PhysRevD.93.064082 – volume: 88 start-page: 044026 year: 2013 ident: apjlaa775fbib26 publication-title: PhRvD doi: 10.1103/PhysRevD.88.044026 – volume: 108 start-page: 011101 year: 2012 ident: apjlaa775fbib5 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.011101 – volume: 33 start-page: 085003 year: 2016 ident: apjlaa775fbib14 publication-title: CQGra doi: 10.1088/0264-9381/33/8/085003 – volume: 78 start-page: 084033 year: 2008 ident: apjlaa775fbib2 publication-title: PhRvD doi: 10.1103/PhysRevD.78.084033 – volume: 111 year: 2013 ident: apjlaa775fbib17 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.071101 – volume: 31 year: 2014 ident: apjlaa775fbib35 publication-title: CQGra doi: 10.1088/0264-9381/31/19/195010 – volume: 28 start-page: 094013 year: 2011 ident: apjlaa775fbib24 publication-title: CQGra doi: 10.1088/0264-9381/28/9/094013 – volume: 107 start-page: 051102 year: 2011a ident: apjlaa775fbib42 publication-title: PhRvL doi: 10.1103/PhysRevLett.107.051102 – volume: 92 start-page: 044045 year: 2015 ident: apjlaa775fbib32 publication-title: PhRvD doi: 10.1103/PhysRevD.92.044045 – volume: 31 year: 2014 ident: apjlaa775fbib16 publication-title: CQGra doi: 10.1088/0264-9381/31/20/205006 – volume: 27 start-page: 084007 year: 2010 ident: apjlaa775fbib34 publication-title: CQGra doi: 10.1088/0264-9381/27/8/084007 – volume: 91 start-page: 124062 year: 2015 ident: apjlaa775fbib22 publication-title: PhRvD doi: 10.1103/PhysRevD.91.124062 – volume: 86 start-page: 082001 year: 2012 ident: apjlaa775fbib50 publication-title: PhRvD doi: 10.1103/PhysRevD.86.082001 |
SSID | ssj0020618 |
Score | 2.5859654 |
Snippet | We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L10 |
SubjectTerms | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BINARY STARS BLACK HOLES Computer simulation DEGREES OF FREEDOM DENSITY Detectors EQUATIONS OF STATE EXCEPTIONS GRAVITATIONAL WAVES LUMINOSITY NEUTRON STARS PHASE TRANSFORMATIONS Phase transitions Relativity SIMULATION Softening Star mergers stars: neutron Stellar evolution SUPERNOVA REMNANTS |
Title | Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/aa775f https://www.proquest.com/docview/2365617224 https://www.osti.gov/biblio/22654460 |
Volume | 842 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZYeuGCWloELQ8faCUOhsRxko16AsSjVZdFCAQ3y49xpdWyWe0GKP--M0lYhECIm5WMH_HY428m9mfGtkIBrvDWiLibO0EEXqKbhFigMyQjAAhxTZLUO81OLtXv6_R6jv2cnYUpx63p38FkQxTcdCHN7wRtKbrrKhZdGSe7xuR5GjrsQ4K4nDyvfnI187Zwoaqvo2uko7T5R_lqCc_WpA7Wi_a5xBn2wj7Xi87RR7bYokW-17TtE5uD0RJb2ZtS_Lq8eeA_eJ1uwhPTz2xwRrRKo7_88F9FgT_haX969cB7NY0mp6grP56Yu5aZ2wzFvbkD3rez4OyUl4Hv16d0-SncUk0cEemE9-ic5oSfw029d-YLuzw6vDg4Ee1tCsKhD1cJX4SAgApsBsqFQkHsCluYAJnPU4XrmEyDByCyFp_lBT6KrHGZNVFuVBZUsszmR-UIVhgPkU8gk0Qlb5X3FkGiD3T5oyK6NWlW2e5jf2rXfhDdeDHU6HKQBjRpQJMGdKOBVbY9yzFuaDbekP2OKtLtXJu-Ibf5TM6MB0PdVVJL_QfzjD1KrJGaNY44Ysx1tLXIVRoRaYpecoSvH9X_VIpMEAEj6pPq6zvb8Y0tSMICUYYmaY3NV5NbWEckU9kN1vnVP9uox-1_VYjtPA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8EE-KLEdRwitIHNPGh3m63u3v7iMKByB3ESOSt6cfUhBy3l7sF5b93prucIRjiW7Pbr-2009_Mtr9hbCdU4CpvjUgHpRNE4CUGWUgFGkMyAYCQRpKk0bg4PFNH5_l5F-c03oWpZ53q_4jJlii4HUJa3xnqUjTXVSoGMs36xpRlHvozH1bY4zxDbIwT-iT7sbS4cLOKIenaEkne_qf8Zy139qUVbBt1dI2r7J6OjhvP8Bl72iFGvtv2b509gukG29xdkA-7vrzh73lMty6KxXN2cUrUStOffP93Q84_4emMenPDR5FKk5PnlR_MzXXHzm0m4pe5Bn5ilw7aBa8D_xRv6vIxXFFLHFHpnI_oruacf4PLeH7mBTsb7n__fCi6iArCoR3XCF-FgKAKbAHKhUpB6ipbmQCFL3OFe5nMgwcgwhZflBU-SqxxhTVJaVQRVPaSrU7rKWwyHhKfQSGJTt4q7y0CRR8oAKQiyjVpeqx_O57adR9EUS8mGs0OkoAmCWiSgG4l0GMfliVmLdXGA3nfoYh0t94WD-TbvpPPzC4meqCklvoYy-DM6bEtErPGWUesuY6OF7lGIyrN0VJO8PWt-P_WIjNEwYj8pHr1n_3YZmune0N9_GX89TV7IgkaJAVqqC222syv4A0Cm8a-jZP3D41S8DE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Extreme-density+Matter+with+Gravitational-wave+Observations+of+Binary+Neutron+Star+Merger+Remnants&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Radice%2C+David&rft.au=Bernuzzi%2C+Sebastiano&rft.au=Pozzo%2C+Walter+Del&rft.au=Roberts%2C+Luke+F.&rft.date=2017-06-20&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=842&rft.issue=2&rft.spage=L10&rft_id=info:doi/10.3847%2F2041-8213%2Faa775f&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_2041_8213_aa775f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |