Advanced Meta-Heuristic Algorithm Based on Particle Swarm and Al-Biruni Earth Radius Optimization Methods for Oral Cancer Detection
Oral cancer is a deadly form of cancerous tumor that is widely spread in low and middle-income countries. An early and affordable oral cancer diagnosis might be achieved by automating the detection of precancerous and malignant lesions in the mouth. There are many research attempts to develop a robu...
Saved in:
| Published in | IEEE access Vol. 11; pp. 23681 - 23700 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3253430 |
Cover
| Abstract | Oral cancer is a deadly form of cancerous tumor that is widely spread in low and middle-income countries. An early and affordable oral cancer diagnosis might be achieved by automating the detection of precancerous and malignant lesions in the mouth. There are many research attempts to develop a robust machine-learning model that can detect oral cancer from images. However, these are still lacking high precision in oral cancer detection. Therefore, this work aims to propose a new approach capable of detecting oral cancer in medical images with higher accuracy. In this work, a novel and robust oral cancer detection based on a convolutional neural network (CNN) and optimized deep belief network (DBN). The design parameters of CNN and DBN are optimized using a new optimization algorithm, which is developed as a hybrid of Particle Swarm Optimization (PSO) and Al-Biruni Earth Radius (BER) Optimization algorithms and is denoted by (PSOBER). Using a standard biomedical images dataset available on the Kaggle repository, the proposed approach shows promising results outperforming various competing approaches with an accuracy of 97.35%. In addition, a set of statistical tests, such as One-way analysis-of-variance (ANOVA) and Wilcoxon signed-rank tests, are conducted to prove the significance and stability of the proposed approach. The proposed methodology is solid and efficient, and specialists can adopt it. However, additional research on a larger scale dataset is required to confirm the findings and highlight other oral features that can be utilized for cancer detection. |
|---|---|
| AbstractList | Oral cancer is a deadly form of cancerous tumor that is widely spread in low and middle-income countries. An early and affordable oral cancer diagnosis might be achieved by automating the detection of precancerous and malignant lesions in the mouth. There are many research attempts to develop a robust machine-learning model that can detect oral cancer from images. However, these are still lacking high precision in oral cancer detection. Therefore, this work aims to propose a new approach capable of detecting oral cancer in medical images with higher accuracy. In this work, a novel and robust oral cancer detection based on a convolutional neural network (CNN) and optimized deep belief network (DBN). The design parameters of CNN and DBN are optimized using a new optimization algorithm, which is developed as a hybrid of Particle Swarm Optimization (PSO) and Al-Biruni Earth Radius (BER) Optimization algorithms and is denoted by (PSOBER). Using a standard biomedical images dataset available on the Kaggle repository, the proposed approach shows promising results outperforming various competing approaches with an accuracy of 97.35%. In addition, a set of statistical tests, such as One-way analysis-of-variance (ANOVA) and Wilcoxon signed-rank tests, are conducted to prove the significance and stability of the proposed approach. The proposed methodology is solid and efficient, and specialists can adopt it. However, additional research on a larger scale dataset is required to confirm the findings and highlight other oral features that can be utilized for cancer detection. |
| Author | Myriam, Hadjouni Jamjoom, Mona M. Ibrahim, Abdelhameed Khafaga, Doaa Sami A. Abdelhamid, Abdelaziz El-Kenawy, El-Sayed M. Eid, Marwa Metwally |
| Author_xml | – sequence: 1 givenname: Hadjouni orcidid: 0000-0001-9070-6821 surname: Myriam fullname: Myriam, Hadjouni organization: Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia – sequence: 2 givenname: Abdelaziz orcidid: 0000-0001-7080-1979 surname: A. Abdelhamid fullname: A. Abdelhamid, Abdelaziz email: abdelaziz@su.edu.sa organization: Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia – sequence: 3 givenname: El-Sayed M. orcidid: 0000-0002-9221-7658 surname: El-Kenawy fullname: El-Kenawy, El-Sayed M. email: skenawy@ieee.org organization: Department of Communications and Electronics, Delta Higher Institute for Engineering and Technology (DHIET), Mansoura, Egypt – sequence: 4 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt – sequence: 5 givenname: Marwa Metwally surname: Eid fullname: Eid, Marwa Metwally organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt – sequence: 6 givenname: Mona M. orcidid: 0000-0001-9149-2810 surname: Jamjoom fullname: Jamjoom, Mona M. email: mfhaojouni@pnu.edu.sa organization: Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia – sequence: 7 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami organization: Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia |
| BookMark | eNptUUtvEzEQXqEiUUp_ARwscd7g13rXxzQEWqkoiPRuzdrextFmHWxvq3Llj-N0o6qK8MXWzPfwzPe-OBv8YIviI8EzQrD8Ml8sluv1jGLKZoxWjDP8pjinRMiSVUycvXq_Ky5j3OJ8mlyq6vPi79w8wKCtQT9sgvLajsHF5DSa9_c-uLTZoSuIue0H9BNC7vQWrR8h7BAMJqPKKxfGwaFlbm7QLzBujGi1T27n_kBymZaFN95E1PmAVgF6tDgYBvTVJqsPiA_F2w76aC-P90Vx9215t7gub1ffbxbz21JzLFNpqqbjRgtRVVAzWbekawmupaWkBWI7wUVV11Y0-aUxtI0RnEtsGGXQcGAXxc0kazxs1T64HYQn5cGp54IP9-o4oGIYM55XVGugvBGNbDGB1jZNNqKsq7IWn7TGYQ9Pj9D3L4IEq0MsCrS2MapDLOoYS6Z9nmj74H-PNia19WMY8tCK1o2QdVVLklFyQungYwy2U9ql512mAK5_cZiCP3VgJ9zTf_2f9WliOWvtKwYWhEjK_gH7jbmV |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1038_s41598_025_87627_y crossref_primary_10_1155_2023_2662719 crossref_primary_10_3390_math11163601 crossref_primary_10_1016_j_critrevonc_2024_104528 crossref_primary_10_1016_j_engappai_2023_106587 crossref_primary_10_1109_ACCESS_2023_3332479 crossref_primary_10_1007_s42979_024_02883_5 crossref_primary_10_1109_JBHI_2024_3411658 crossref_primary_10_1080_17434440_2024_2434732 crossref_primary_10_3390_diagnostics13223461 crossref_primary_10_1007_s41060_023_00502_9 crossref_primary_10_1109_ACCESS_2024_3422313 crossref_primary_10_1142_S0218348X25400547 crossref_primary_10_1142_S0218348X25400286 crossref_primary_10_1007_s11042_024_19398_z crossref_primary_10_3389_froh_2024_1494867 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1080_26896583_2024_2445957 |
| Cites_doi | 10.1016/j.bspc.2021.103356 10.1109/TII.2022.3148250 10.1371/journal.pone.0217293 10.1109/ACCESS.2019.2906757 10.1007/978-981-15-9735-0_13 10.1109/ICCES45898.2019.9002372 10.1016/j.jid.2018.01.028 10.1111/exsy.12764 10.1109/ACCESS.2021.3123472 10.1023/A:1008202821328 10.1038/s41598-017-12320-8 10.1109/ACCESS.2020.3010180 10.1109/BIBE52308.2021.9635261 10.1109/TBME.2018.2866166 10.3390/ijms23031562 10.18517/ijaseit.10.2.11446 10.1007/s11042-020-09384-6 10.1016/j.micron.2011.09.016 10.1016/j.dib.2020.105114 10.1109/ISPCC.2013.6663401 10.1007/978-3-030-13469-3_85 10.1109/ACCESS.2019.2950286 10.1109/ACCESS.2022.3188276 10.1109/ISBI.2018.8363686 10.38094/jastt20165 10.3390/s19010204 10.1109/JSEN.2022.3156819 10.1007/978-3-030-50516-5_22 10.1007/978-3-030-80432-9_31 10.1016/j.ejca.2019.05.023 10.1109/ISDA.2007.101 10.1364/BOE.9.005318 10.1109/ACCESS.2021.3079204 10.1109/SIU53274.2021.9477985 10.1109/ACCESS.2017.2736558 10.1109/IES50839.2020.9231676 10.1109/ACCESS.2022.3196660 10.1109/ACCESS.2020.2998098 10.1007/s10916-018-0932-7 10.1109/HIC.2017.8227605 10.1109/ACCESS.2018.2828609 10.1007/s11128-018-2004-9 10.1186/s13673-020-00245-7 10.1371/journal.pone.0207493 10.1109/BIBM.2018.8621112 10.1038/nature21056 10.1109/ACCESS.2022.3195863 10.1007/s11042-020-09067-2 10.1109/ACCESS.2020.2999454 10.48550/ARXIV.1511.08458 10.1016/j.advengsoft.2016.01.008 10.1093/comjnl/bxaa136 10.32604/csse.2023.032497 10.1117/1.JBO.27.1.015001 10.33851/JMIS.2019.6.2.81 10.3390/app12115714 10.1109/ACCESS.2022.3198971 10.1007/978-981-16-9221-5_11 10.1007/s11042-020-10304-x 10.1016/j.scs.2020.102572 10.1109/IGARSS39084.2020.9323727 10.1007/978-981-13-6783-0_4 10.1109/ICHI.2017.69 10.1109/ACCESS.2022.3190508 10.1007/s00432-018-02834-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3253430 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 23700 |
| ExternalDocumentID | oai_doaj_org_article_300348167ca248689b01abe88ba123f5 10.1109/access.2023.3253430 10_1109_ACCESS_2023_3253430 10061192 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia funderid: 10.13039/501100004242 – fundername: Princess Nourah bint Abdulrahman University Researchers Supporting Project grantid: PNURSP2023R193 funderid: 10.13039/501100004242 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-d58f4dc6655a7397b1fb1079e21ba1ef646577e68f64c0ab8d64490d323a84a3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:46 EDT 2025 Tue Aug 19 19:44:03 EDT 2025 Sun Jun 29 16:39:56 EDT 2025 Wed Oct 01 03:26:33 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Wed Aug 27 02:49:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-d58f4dc6655a7397b1fb1079e21ba1ef646577e68f64c0ab8d64490d323a84a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7080-1979 0000-0002-9221-7658 0000-0002-9843-6392 0000-0001-9070-6821 0000-0002-8352-6731 0000-0001-9149-2810 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10061192 |
| PQID | 2786975791 |
| PQPubID | 4845423 |
| PageCount | 20 |
| ParticipantIDs | ieee_primary_10061192 unpaywall_primary_10_1109_access_2023_3253430 crossref_citationtrail_10_1109_ACCESS_2023_3253430 proquest_journals_2786975791 doaj_primary_oai_doaj_org_article_300348167ca248689b01abe88ba123f5 crossref_primary_10_1109_ACCESS_2023_3253430 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 Storn (ref67) 1997; 11 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Baro (ref61) 2020 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 Anthony (ref44) 2007 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 |
| References_xml | – ident: ref60 doi: 10.1016/j.bspc.2021.103356 – ident: ref8 doi: 10.1109/TII.2022.3148250 – year: 2007 ident: ref44 article-title: Classification of images using support vector machines publication-title: arXiv:0709.3967 – ident: ref42 doi: 10.1371/journal.pone.0217293 – ident: ref64 doi: 10.1109/ACCESS.2019.2906757 – ident: ref16 doi: 10.1007/978-981-15-9735-0_13 – ident: ref66 doi: 10.1109/ICCES45898.2019.9002372 – ident: ref41 doi: 10.1016/j.jid.2018.01.028 – ident: ref10 doi: 10.1111/exsy.12764 – ident: ref9 doi: 10.1109/ACCESS.2021.3123472 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: ref67 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: ref38 doi: 10.1038/s41598-017-12320-8 – ident: ref2 doi: 10.1109/ACCESS.2020.3010180 – ident: ref5 doi: 10.1109/BIBE52308.2021.9635261 – ident: ref21 doi: 10.1109/TBME.2018.2866166 – ident: ref1 doi: 10.3390/ijms23031562 – ident: ref18 doi: 10.18517/ijaseit.10.2.11446 – ident: ref11 doi: 10.1007/s11042-020-09384-6 – ident: ref37 doi: 10.1016/j.micron.2011.09.016 – ident: ref12 doi: 10.1016/j.dib.2020.105114 – ident: ref35 doi: 10.1109/ISPCC.2013.6663401 – ident: ref23 doi: 10.1007/978-3-030-13469-3_85 – ident: ref27 doi: 10.1109/ACCESS.2019.2950286 – ident: ref57 doi: 10.1109/ACCESS.2022.3188276 – ident: ref32 doi: 10.1109/ISBI.2018.8363686 – ident: ref45 doi: 10.38094/jastt20165 – ident: ref51 doi: 10.3390/s19010204 – ident: ref7 doi: 10.1109/JSEN.2022.3156819 – ident: ref13 doi: 10.1007/978-3-030-50516-5_22 – ident: ref17 doi: 10.1007/978-3-030-80432-9_31 – ident: ref40 doi: 10.1016/j.ejca.2019.05.023 – ident: ref52 doi: 10.1109/ISDA.2007.101 – ident: ref30 doi: 10.1364/BOE.9.005318 – ident: ref62 doi: 10.1109/ACCESS.2021.3079204 – ident: ref39 doi: 10.1109/SIU53274.2021.9477985 – ident: ref50 doi: 10.1109/ACCESS.2017.2736558 – ident: ref22 doi: 10.1109/IES50839.2020.9231676 – ident: ref59 doi: 10.1109/ACCESS.2022.3196660 – ident: ref24 doi: 10.1109/ACCESS.2020.2998098 – ident: ref49 doi: 10.1007/s10916-018-0932-7 – ident: ref33 doi: 10.1109/HIC.2017.8227605 – ident: ref56 doi: 10.1109/ACCESS.2018.2828609 – ident: ref46 doi: 10.1007/s11128-018-2004-9 – ident: ref3 doi: 10.1186/s13673-020-00245-7 – ident: ref31 doi: 10.1371/journal.pone.0207493 – ident: ref34 doi: 10.1109/BIBM.2018.8621112 – ident: ref43 doi: 10.1038/nature21056 – ident: ref55 doi: 10.1109/ACCESS.2022.3195863 – ident: ref25 doi: 10.1007/s11042-020-09067-2 – ident: ref20 doi: 10.1109/ACCESS.2020.2999454 – ident: ref48 doi: 10.48550/ARXIV.1511.08458 – ident: ref65 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref19 doi: 10.1093/comjnl/bxaa136 – ident: ref53 doi: 10.32604/csse.2023.032497 – ident: ref15 doi: 10.1117/1.JBO.27.1.015001 – ident: ref28 doi: 10.33851/JMIS.2019.6.2.81 – volume-title: Oral Cancer (Lips and Tongue) Images Dataset year: 2020 ident: ref61 – ident: ref63 doi: 10.3390/app12115714 – ident: ref54 doi: 10.1109/ACCESS.2022.3198971 – ident: ref6 doi: 10.1007/978-981-16-9221-5_11 – ident: ref14 doi: 10.1007/s11042-020-10304-x – ident: ref4 doi: 10.1016/j.scs.2020.102572 – ident: ref47 doi: 10.1109/IGARSS39084.2020.9323727 – ident: ref26 doi: 10.1007/978-981-13-6783-0_4 – ident: ref36 doi: 10.1109/ICHI.2017.69 – ident: ref58 doi: 10.1109/ACCESS.2022.3190508 – ident: ref29 doi: 10.1007/s00432-018-02834-7 |
| SSID | ssj0000816957 |
| Score | 2.4557173 |
| Snippet | Oral cancer is a deadly form of cancerous tumor that is widely spread in low and middle-income countries. An early and affordable oral cancer diagnosis might... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 23681 |
| SubjectTerms | Al-Biruni earth radius algorithm Algorithms Artificial neural networks Belief networks Cancer Cancer detection convolutional neural network Convolutional neural networks Datasets deep belief network Deep learning Design parameters Feature extraction Heuristic methods Lesions Machine learning Medical imaging metaheuristic optimization Metaheuristics Optimization Oral cancer Particle swarm optimization Rank tests Robustness Statistical tests Variance analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABFSgiUCofOJI2D8eP4-7SaoVUiqBIvVnj2GFX2s1W2URVz_3jHSfuKlUluHCLEj_GM_b4m8T5hpDPpefUUgy9n1NlzCzw2ODGEVvjMCJiAoMiHyief-fz3-zbVXE1SvXlz4QN9MCD4k5yz6AiUy5KyJjkUpkkBeOkNIBOt-rZSxOpRsFU74OxhipEoBlKE3Uymc1wRMc-W_hxnhU58-eeR1tRz9gfUqw8QpvPu_oabm9gtRptPGf75FVAjHQySPqaPHP1G_JyxCP4ltxNwpd8eu5aiOeuG_iX6WT1Z4PR_2JNp7hbWbqp6Y8wZPrrBpo1hdpiqXi6bLp6SU_x4YL-BLvstvQCvck6_KbpG15s7JYixqUXDcoz8x029Ktr-8Nc9QG5PDu9nM3jkF0hLjGma2NbyIrZkvOiAIGoxKSVwVhQuSxF1bqKM14I4bjEqzIBIy1CJ5XYPMtBMsjfkb16U7v3hKJBrFDeW4BjqbLKq75EHMEqBjyBiGQPetZlYB73CTBWuo9AEqUH42hvHB2ME5Evu0rXA_HG34tPvQF3RT1rdn8D55IOitX_mksROfDmH_WHaAchcEQOH-aDDkt8qzMhuRKFUGlE4t0ceSIr9HkvH8n64X_I-pG88G0Ob4MOyV7bdO4T4qPWHPVL4R79IAX1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEO7o7MF48LlGdDV98CjMAP2gj8y4m4nJPqK7yXrqNHSzQ2SYCQNZ9eoftxp6JrOamOiNQAHVVNH1FV18hdC73HJqCQKznxG5T7RifgaBw9eZgYyIcEiKbKJ4esbmV-TjNb12H9z6f2GMMX3xmQnsZr-WX5rqGx-zyJKniTGDEA9JArzuEIoAnwRrXdxHB4wCFh-hg6uzi_SL7SgXMuHH_drka0esOVZ9D8LAdgwP4ojGxNY-74WjnrXftVm5gzgfdPVafb9VVbUXfE4eI7lVe6g5-Rp0bRbkP35jdPz_cT1BjxwuxengSE_RPVM_Qw_32Aqfo5-pqxfAp6ZV_tx0A8szTqubVVO2iyWeQkzUeFXjC-eR-POtapZY1Rqk_GnZdHWJj-HgAn9Suuw2-BzmrKX7GdReeLHSGwxIGp83oM_M3rDBH0zbl4zVh-jy5PhyNvddDwc_h8yx9TVNCqJzxihVHLBPFhYZZJzCRGGmQlMwwijnhiWwlU9UlmgAaGKi4yhWCVHxCzSqV7V5ifAkVJoLOycpQ0KhBROU54BWSEEUmygPRVtLytzxm9s2G5Xs85yJkOlsBk4trfmlM7-H3u9OWg_0Hn8Xn1oX2Ylabu5-B5hTugcrY8v5k4SM5yoiCUtEBqpnJklgwFFcUA8dWhfYu99gcA8dbT1OuolkIyOeMMEpF6GH_J0X_qHr4Nl3dH31j_JHaNQ2nXkDGKvN3roX6RdKrR6i priority: 102 providerName: Unpaywall |
| Title | Advanced Meta-Heuristic Algorithm Based on Particle Swarm and Al-Biruni Earth Radius Optimization Methods for Oral Cancer Detection |
| URI | https://ieeexplore.ieee.org/document/10061192 https://www.proquest.com/docview/2786975791 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10061192.pdf https://doaj.org/article/300348167ca248689b01abe88ba123f5 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOQAHnkWklJUPHEnIw7HjY3ZptULqtoJWKqfIr3RX7CZVNlFVrvxxxol3tQWBuFmJE48zY88j428Qeq8sphYnsPsZrnyiBfUlKA5fSwMeEWHgFFlH8XRGp5fk81V65Q6r92dhjDF98pkJbLP_l69r1dlQGaxw0D5gkuyhPZbR4bDWNqBiK0jwlDlkoSjkH_PJBCYR2ALhQRKnCbGpzjvapwfpd1VV7hmYj7rqRtzdiuVyR9ecPEOzDZVDisn3oGtloH78BuD439N4jp46qxPng5i8QA9M9RI92cEifIV-5i4bAJ-aVvhT0w0YzjhfXtfNop2v8Bg0nsZ1hc-dvOGvt6JZYVFp6OWPF01XLfAx3JzjL0IvujU-gx1p5Y562hfPa73GYCfjswbomdgBG_zJtH1CWHWALk6OLyZT31Vo8BX4ha2v06wkWlGapoKBZSOjUoI_yU0cSRGZkhKaMmZoBi0VCplpML94qJM4ERkRyWu0X9WVeYNwGAnNuN1xhCER19zyUoEtQkoiaCg8FG8YVyiHXm6LaCyL3osJeTFwu7DcLhy3PfRh-9DNAN7x7-5jKxHbrhZ5u78A3Cvchy0Si-gDosaUiElGMy6BdGmyDCYcJ2XqoQPL8Z3xBmZ76GgjYIXbJtZFDGLMWcp45CF_K3R_0Cr62pn3aD38yzBv0WPbbQgSHaH9tunMOzCbWjnqww2jftGM0MPL2Xn-7RfixBOb |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC4isIAPHEnJw4_42JZdFdh2ERRpb5ZjO7SiTVZpohVc-eOME7fqgkDcosSOx5mxZ8aZ-QahV9phagkCu58VOiRGsTAHxRGa3IJHRDg4Rc5RnM7Y5At5f0EvfLJ6lwtjre2Cz-zAXXb_8k2lW3dUBisctA-YJDfRLUoIoX261u5IxdWQEJR7bKE4Em-G4zFMY-BKhA_ShKbEBTvv6Z8Opt_XVblmYh625aX6fqVWqz1tc3oPzbZ09kEm3wZtkw_0j98gHP97IvfRXW934mEvKA_QDVs-RHf20AgfoZ9DHw-Ap7ZR4cS2PYozHq6-VvWyWazxCHSewVWJP3qJw5-vVL3GqjTQKhwt67Zc4hN4uMCflFm2G3wOe9LaJ3u6Fy8qs8FgKePzGugZuwFr_NY2XUhYeYTmpyfz8ST0NRpCDZ5hExqaFcRoxihVHGybPC5y8CiFTeJcxbZghFHOLcvgSkcqzwwYYCIyaZKqjKj0MTooq9I-QTiKleHC7TnKklgY4XipwRohBVEsUgFKtoyT2uOXuzIaK9n5MZGQPbel47b03A7Q612nyx6-49_NR04idk0d9nZ3A7gn_YeVqcP0AVHjWiUkY5nIgfTcZhlMOEkLGqAjx_G98XpmB-h4K2DSbxQbmfCMCU65iAMU7oTuD1pVVz3zGq1P_zLMS3Q4mU_P5Nm72Ydn6Lbr0h8ZHaODpm7tczCimvxFt3R-AU2tFEM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEO7o7MF48LlGdDV98CjMAP2gj8y4m4nJPqK7yXrqNHSzQ2SYCQNZ9eoftxp6JrOamOiNQAHVVNH1FV18hdC73HJqCQKznxG5T7RifgaBw9eZgYyIcEiKbKJ4esbmV-TjNb12H9z6f2GMMX3xmQnsZr-WX5rqGx-zyJKniTGDEA9JArzuEIoAnwRrXdxHB4wCFh-hg6uzi_SL7SgXMuHH_drka0esOVZ9D8LAdgwP4ojGxNY-74WjnrXftVm5gzgfdPVafb9VVbUXfE4eI7lVe6g5-Rp0bRbkP35jdPz_cT1BjxwuxengSE_RPVM_Qw_32Aqfo5-pqxfAp6ZV_tx0A8szTqubVVO2iyWeQkzUeFXjC-eR-POtapZY1Rqk_GnZdHWJj-HgAn9Suuw2-BzmrKX7GdReeLHSGwxIGp83oM_M3rDBH0zbl4zVh-jy5PhyNvddDwc_h8yx9TVNCqJzxihVHLBPFhYZZJzCRGGmQlMwwijnhiWwlU9UlmgAaGKi4yhWCVHxCzSqV7V5ifAkVJoLOycpQ0KhBROU54BWSEEUmygPRVtLytzxm9s2G5Xs85yJkOlsBk4trfmlM7-H3u9OWg_0Hn8Xn1oX2Ylabu5-B5hTugcrY8v5k4SM5yoiCUtEBqpnJklgwFFcUA8dWhfYu99gcA8dbT1OuolkIyOeMMEpF6GH_J0X_qHr4Nl3dH31j_JHaNQ2nXkDGKvN3roX6RdKrR6i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Meta-Heuristic+Algorithm+Based+on+Particle+Swarm+and+Al-Biruni+Earth+Radius+Optimization+Methods+for+Oral+Cancer+Detection&rft.jtitle=IEEE+access&rft.au=Myriam%2C+Hadjouni&rft.au=A.+Abdelhamid%2C+Abdelaziz&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Ibrahim%2C+Abdelhameed&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=23681&rft.epage=23700&rft_id=info:doi/10.1109%2FACCESS.2023.3253430&rft.externalDocID=10061192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |