A Novel Meta-heuristic Algorithm for Numerical and Engineering Optimization Problems:Piranha Foraging Optimization Algorithm (PFOA)

This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour o...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Cao, Shuai, Qian, Qian, Cao, Yongjun, Li, Wenwei, Huang, Weixi, Liang, Jianan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3267110

Cover

Abstract This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces.
AbstractList This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behavior of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces.
This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces.
Author Qian, Qian
Liang, Jianan
Cao, Shuai
Huang, Weixi
Cao, Yongjun
Li, Wenwei
Author_xml – sequence: 1
  givenname: Shuai
  surname: Cao
  fullname: Cao, Shuai
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 2
  givenname: Qian
  surname: Qian
  fullname: Qian, Qian
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 3
  givenname: Yongjun
  surname: Cao
  fullname: Cao, Yongjun
  organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 4
  givenname: Wenwei
  surname: Li
  fullname: Li, Wenwei
  organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China
– sequence: 5
  givenname: Weixi
  surname: Huang
  fullname: Huang, Weixi
  organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China
– sequence: 6
  givenname: Jianan
  surname: Liang
  fullname: Liang, Jianan
  organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China
BookMark eNqFkc1u1DAUhSNUJErpE8DCEhtYZPBfnJjdaDQDlUpnpMLaunFuMh4l8WAnoLLlxUmbCqp2gTe2j875rOvzMjnpfY9J8prRBWNUf1iuVuvr6wWnXCwEV_kkPktOOVM6FZlQJw_OL5LzGA90WsUkZflp8ntJrvwPbMkXHCDd4xhcHJwly7bxwQ37jtQ-kKuxw-AstAT6iqz7xvU4CX1DtsfBde4XDM73ZBd82WIXP-5cgH4PZOMDNE9s_9jvdpvt8v2r5HkNbcTz-_0s-bZZf119Ti-3ny5Wy8vUSqqHFAQApZWkWMoaLJWqKBkUtcgkzQugKEpVIsiaM4tlJbiouC6UtgwVZJqKs-Ri5lYeDuYYXAfhxnhw5k7woTEQpuFbNCzHDDIra8lRQkEBuZ3utdI601rZiSVn1tgf4eYntO1fIKPmthcD1mKM5rYXc9_LFHs7x47Bfx8xDubgx9BPUxteZDpnUuVyconZZYOPMWD9hD13_pitH6WsG-5-fAjg2v9k38xZh4gPXmOUS1GIP6ZGu_4
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_epsr_2024_111249
crossref_primary_10_3390_app15031359
crossref_primary_10_1109_ACCESS_2024_3384473
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1109_ACCESS_2023_3341492
crossref_primary_10_3390_electronics14061172
crossref_primary_10_1007_s12083_024_01799_4
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_1016_j_energy_2024_132987
crossref_primary_10_1038_s41598_023_38778_3
crossref_primary_10_1109_ACCESS_2024_3487866
crossref_primary_10_3390_biomimetics9100639
Cites_doi 10.1145/234313.234350
10.1038/nmeth.2811
10.1016/j.matcom.2021.08.013
10.1109/CEC.2014.6900380
10.1242/jeb.242336
10.1371/journal.pone.0241316
10.1016/j.eswa.2020.113882
10.1023/A:1015059928466
10.1016/j.eswa.2020.113389
10.1007/s12652-020-02580-0
10.1038/35017500
10.1007/s13198-023-01868-6
10.1007/978-94-009-2065-1_2
10.1016/j.amc.2015.06.025
10.1016/j.jocs.2022.101938
10.1109/ACCESS.2022.3190508
10.1155/2021/9107547
10.1007/978-3-030-12767-1_5
10.1007/978-94-015-7744-1_2
10.3724/SP.J.1087.2012.01958
10.1016/j.compstruct.2017.07.024
10.15282/mekatronika.v1i2.4991
10.1109/CEC.2004.1331139
10.1016/j.bspc.2023.104647
10.1016/j.eswa.2020.113338
10.1016/j.eswa.2021.114685
10.1016/j.advengsoft.2017.03.014
10.1007/s10462-019-09704-9
10.1016/j.compbiomed.2022.105810
10.1016/j.istruc.2021.11.012
10.1016/j.enconman.2022.116639
10.1109/ACCESS.2022.3213066
10.1109/MHS.1995.494215
10.1111/j.1469-7998.1976.tb04664.x
10.3390/buildings12040471
10.1016/S0895-4356(98)00168-1
10.1109/ACCESS.2022.3147821
10.1109/TIT.2016.2555322
10.1016/j.knosys.2021.107486
10.1016/j.future.2020.04.008
10.1016/0143-974X(89)90012-6
10.1007/978-981-16-2164-2_22
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3267110
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_17e5a5c4f42e4a80ae2ca5cf6995996c
10.1109/access.2023.3267110
10_1109_ACCESS_2023_3267110
10102438
Genre orig-research
GrantInformation_xml – fundername: Foshan Science and Technology Innovation Team Project under Grant
  grantid: FS0AA-KJ919-4402-0060
– fundername: the Research and application of intelligent scheduling for mobile cooperative robot cluster oriented to Intelligent manufacturing
  grantid: 2130218003022
– fundername: the Study on Cognitive Mechanism of temporal effect of visual Attention shift of NSFC
  grantid: 32060193
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-a3aa00d40eb4fac0468b1a8f354078a0e3b6bea4f21cebd323d29869c1e6a5903
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:30 EDT 2025
Wed Oct 01 15:38:38 EDT 2025
Sun Jun 29 16:21:11 EDT 2025
Wed Oct 01 03:26:41 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Aug 27 02:21:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-a3aa00d40eb4fac0468b1a8f354078a0e3b6bea4f21cebd323d29869c1e6a5903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-5140-6320
0009-0005-1921-744X
0009-0001-0419-5111
0009-0007-6074-1176
0009-0006-2916-4932
0009-0005-4688-7246
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10102438.pdf
PQID 2859714674
PQPubID 4845423
PageCount 1
ParticipantIDs unpaywall_primary_10_1109_access_2023_3267110
crossref_primary_10_1109_ACCESS_2023_3267110
doaj_primary_oai_doaj_org_article_17e5a5c4f42e4a80ae2ca5cf6995996c
ieee_primary_10102438
proquest_journals_2859714674
crossref_citationtrail_10_1109_ACCESS_2023_3267110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
jiang (ref34) 2017
ref2
ref1
bertolini (ref12) 2016
ref17
ref39
ref16
ref38
ref19
ref18
mao (ref37) 2022; 40
ref24
ref46
li (ref41) 2022
ref23
ref45
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1145/234313.234350
– ident: ref39
  doi: 10.1038/nmeth.2811
– ident: ref8
  doi: 10.1016/j.matcom.2021.08.013
– ident: ref36
  doi: 10.1109/CEC.2014.6900380
– ident: ref32
  doi: 10.1242/jeb.242336
– ident: ref30
  doi: 10.1371/journal.pone.0241316
– volume: 40
  start-page: 1
  year: 2022
  ident: ref37
  article-title: A sparrow search algorithm based on Lévy's flight perturbation strategy
  publication-title: J Appl Sci
– ident: ref23
  doi: 10.1016/j.eswa.2020.113882
– ident: ref13
  doi: 10.1023/A:1015059928466
– ident: ref33
  doi: 10.1016/j.eswa.2020.113389
– ident: ref20
  doi: 10.1007/s12652-020-02580-0
– ident: ref6
  doi: 10.1038/35017500
– ident: ref26
  doi: 10.1007/s13198-023-01868-6
– ident: ref29
  doi: 10.1007/978-94-009-2065-1_2
– ident: ref22
  doi: 10.1016/j.amc.2015.06.025
– ident: ref2
  doi: 10.1016/j.jocs.2022.101938
– ident: ref1
  doi: 10.1109/ACCESS.2022.3190508
– ident: ref16
  doi: 10.1155/2021/9107547
– ident: ref28
  doi: 10.1007/978-3-030-12767-1_5
– ident: ref14
  doi: 10.1007/978-94-015-7744-1_2
– ident: ref35
  doi: 10.3724/SP.J.1087.2012.01958
– ident: ref43
  doi: 10.1016/j.compstruct.2017.07.024
– ident: ref42
  doi: 10.15282/mekatronika.v1i2.4991
– ident: ref11
  doi: 10.1109/CEC.2004.1331139
– ident: ref25
  doi: 10.1016/j.bspc.2023.104647
– ident: ref19
  doi: 10.1016/j.eswa.2020.113338
– ident: ref9
  doi: 10.1016/j.eswa.2021.114685
– ident: ref15
  doi: 10.1016/j.advengsoft.2017.03.014
– year: 2017
  ident: ref34
  article-title: BAS: Beetle antennae search algorithm for optimization problems
  publication-title: arXiv 1710 10724
– year: 2022
  ident: ref41
  article-title: Enhanced sparrow search algorithm based on multiple improved strategies
  publication-title: J Comput Appl
– ident: ref24
  doi: 10.1007/s10462-019-09704-9
– ident: ref4
  doi: 10.1016/j.compbiomed.2022.105810
– ident: ref44
  doi: 10.1016/j.istruc.2021.11.012
– ident: ref27
  doi: 10.1016/j.enconman.2022.116639
– ident: ref17
  doi: 10.1109/ACCESS.2022.3213066
– ident: ref7
  doi: 10.1109/MHS.1995.494215
– ident: ref31
  doi: 10.1111/j.1469-7998.1976.tb04664.x
– ident: ref45
  doi: 10.3390/buildings12040471
– ident: ref40
  doi: 10.1016/S0895-4356(98)00168-1
– ident: ref5
  doi: 10.1109/ACCESS.2022.3147821
– ident: ref38
  doi: 10.1109/TIT.2016.2555322
– start-page: 81
  year: 2016
  ident: ref12
  article-title: Complex systems, evolutionary planning?
  publication-title: A Planner's Encounter with Complexity
– ident: ref18
  doi: 10.1016/j.knosys.2021.107486
– ident: ref21
  doi: 10.1016/j.future.2020.04.008
– ident: ref46
  doi: 10.1016/0143-974X(89)90012-6
– ident: ref3
  doi: 10.1007/978-981-16-2164-2_22
SSID ssj0000816957
Score 2.4167917
Snippet This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Biomimetics
Bionic Algorithms
bionic inspired algorithms
Classification algorithms
Clustering algorithms
Convergence
Design engineering
Design optimization
Foraging behavior
Heuristic methods
Impact analysis
Meta-heuristic Algorithms
Metaheuristics
Nonlinear control
Optimization algorithms
Parameter sensitivity
Particle swarm optimization
Piranha Foraging Optimization Algorithm (PFOA)
Searching
Statistical methods
Statistics
Swarm Intelligence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABFSgipVQ-cACJtI7t2DG3dMVqhdTtHqjUmzVJxi1Smq3obhH3_vDaibukqgQXjolsZ-IZez4Sv0fIh0bUmGPj_EJSkEohWWq00KnUOTgNucvrUIc8nqvZqfx2lp-NqL7CP2EDPPAwcYeZxhx8Byc5SigYIK_9tVMBKMuoOuy-rDCjZKrfg4tMmVxHmKGMmcNyMvFvdBDYwg98yKKzcGZ25Ip6xP5IsfIg2ny67q7g9y9o25HjmW6TFzFipOUg6UvyBLtX5PkIR_A1uS3pfHmDLT3GFaQzXA_wy7Rsz5c--b-4pD40pfP18HWmpdA1dDQAPfH7xmU8kEkXA8XM9Re6-OEd2QXQqTeT80ft_gz-cTE9KT_tkNPp1--TWRrpFdLaJ3WrFAQAY41kWEkHtU-UiyqDwoVKkC6AoahUhSAdz2qsGsFFw02hTJ2hgtww8YZsdcsO3xJqFKCqODoALgXKymSFDz2ASeG4BpEQfj_Tto7Y44ECo7V9DsKMHdRjg3psVE9CPm86XQ3QG39vfhRUuGkacLP7G96abLQm-y9rSshOMIDR87IA2VgkZO_eImxc5Nc2YP_p4GlkQtKNlTySFXrmywey7v4PWd-RZ2HMoR60R7ZWP9f43kdIq2q_Xwx3rUULMw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL5QDj1JEoCAfOIBEljwcO-YWVqwqpG73QKXeookz7lak2apNWsGVP44de5eUCsQtiSaOnZnxjMeebwh5U6cKM6y1USQOIUtZFEqRipCJDLSATGfKxiEP5_zgmH05yU58svqQC4OIw-EznNjLYS-_XqnehsqMhscWQC_fIlsi5y5ZaxNQsRUkZCY8slAcyQ_FdGoGMbEFwifGSxGxTZMdWZ8BpN9XVbnlYN7v2wv4fgNNM7I1s0dkvu6lO2LybdJ31UT9-APA8b-H8Zg89F4nLZyYPCH3sN0lD0ZYhLtkx7qdDrX5KflZ0PnqGht6iB2ES-wdnjMtmtPV5Vm3PKfG16Xz3m33NBTamo5ao0dmIjr3GZ504WrWXH1cnBnDuAQ6M2J3eofsd9tvF7Oj4t0eOZ59_jo9CH25hlCZRWIXQgoQRTWLsGIalFl451UMubaRJZFDhGnFKwSmk1hhVadJWicy51LFyCGTUfqMbLerFp8TKjkgrxLUAOZHIatknBtXBiKW6kRAGpBkzcZSeSxzW1KjKYc1TSRLx_vS8r70vA_I-81LFw7K49_kn6x8bEgtDvfwwPCy9GpdxgIzMOKsWYIM8ggwUeZecwvjJrkKyJ7l_-h7jvUB2V-LW-knjavSYgkKa7lYQMKNCN7pKwyVNG_19cVfPvOS7FgyFzLaJ9vdZY-vjBPVVa8H5fkFtOAYyg
  priority: 102
  providerName: IEEE
Title A Novel Meta-heuristic Algorithm for Numerical and Engineering Optimization Problems:Piranha Foraging Optimization Algorithm (PFOA)
URI https://ieeexplore.ieee.org/document/10102438
https://www.proquest.com/docview/2859714674
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10102438.pdf
https://doaj.org/article/17e5a5c4f42e4a80ae2ca5cf6995996c
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfg4RNiofOIBE0iR2nJhbqKgqpHU9UGmcopfkeavI0mpLNuDMH46duKVjEhLc4shxnPh7fs_Pft8j5HXJCoywVFqQBLiccd-VMYtdHkegYohUVBg_5NFMTBf800l0Yh1uXSwMInaHz9Azl91e_hKrb_FIhIY8TY6EVvF6kaDFPTBseom3LtVdsicibYsPyN5iNk-_mIxygZAu6_YmDyyx5gi6HISeyRjuabMlDkzc7I466lj7bZqVGxbnvbZew_drqKod5TN5RLJNt_szJ1-9tsm94scfjI7__12PyUNrl9K0B9ITcgfrp-TBDlvhM_IzpbPVFVb0CBtwp9j2JM80rU5XF8vm7JxqA5jO2n4PqKJQl3SnAXqsZ6dzG_ZJ530im8v3dL7U6vIM6ESD8fRWvd-Nv5lPjtO3-2Qx-fh5PHVtEge30EvHxgUG4Psl9zHnCgq9HE_yABJl_E1xAj6yXOQIXIVBgXnJQlaGMhGyCFBAJH32nAzqVY0vCJUCUOQhKgD9g5DnMki0gQM-ZyqMgTkk3IxlVliGc5Noo8q6lY4vs3Q81rDODAAyCwCHvNs-tO4JPv5e_YMBybaqYefubugBzaywZ0GMEWiQKx4ih8QHDAtdVsKQu0lROGTfgGDnff2QO-Rwg7nMTiWXmWEYjI0-4w5xtzi81dce2zf6-vIf6x-Q-6bYO5gOyaC5aPGVNrmafNi5KoZddOTQytgvi-EmLg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHFoOBUoRKQV84AAS2TqJ8-IWVqwW6KZ7aKXeookz7lak2apNQHDlj2PH3iWlAnFLIj8zM57x2PMNIa-qQGCIlVSCFIHLA87cNA5il8chyBhCGQrth5zl0fSEfzoNT22weh8Lg4j95TMc6cf-LL9aik67ypSEexpAL7lL7oWc89CEa61dKjqHRBrGFlvIY-lBNh6raYx0ivCRslNiTwfKDvRPD9Nv86rcMDE3u-YSvn-Duh5om8kDkq_GaS6ZfBl1bTkSP_6AcPzviTwk29bupJlhlEfkDjY75P4AjXCHbGnD0-A2PyY_M5ovv2JNZ9iCu8DOIDrTrD5bXp23iwuqrF2ad-bAp6bQVHTQGj1SS9GFjfGkc5O15vrd_FypxgXQiWK8s1vFfrf9ej45yt7skpPJh-Px1LUJG1yhtomtCwEAYxVnWHIJQm29k9KDRGrfUpwAw6CMSgQufU9gWQV-UPlpEqXCwwjClAVPyEazbPApoWkEGJU-SgD1o5CXqZcoYwYYD6QfQ-AQf0XGQlg0c51Uoy76XQ1LC0P7QtO-sLR3yNt1pUsD5vHv4u81f6yLaiTu_oOiZWEFu_BiDEExtOQ-ckgYoC_Uu4w0kFsaCYfsavoP-jOkd8j-it0Ku2xcFxpNMNa6izvEXbPgrbFCn0vzxlj3_tLNS7I5PZ4dFocf88_PyJauYhxI-2SjverwuTKp2vJFL0i_AIFfHBc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOPFsRWpAPHEAi2SR2nIRbWLFaIXW7B1Yqp2jijNsVaXbVJrzO_HDsxLukVEKCWxxNHCf-xjPjxzeEvCyZxAhLpRVJgMsZ9900ZrHL4whUDJGKpJmHPJ6L2ZJ_OI1O7YRbdxYGEbvNZ-iZy24tf4XVt3gsQkOelo6FNvE6SNDqHhg2vcTblOo22ROR9sVHZG85X2SfTEa5QKQu69YmDy2x5hi6HISeyRjuabclDsy52YE56lj7bZqVax7nnbbewPevUFUD4zN9QPJts_s9J5-9tik8-eMPRsf__66H5L71S2nWA-kRuYX1Y3JvwFb4hPzM6Hz9BSt6jA24M2x7kmeaVWfry1VzfkG1A0znbb8GVFGoSzqogJ7o0enCHvukiz6RzdVbulhpc3kOdKrBeHZD7nflrxbTk-z1PllO33-czFybxMGVOnRsXGAAvl9yHwuuQOpwPCkCSJSZb4oT8JEVokDgKgwkFiULWRmmiUhlgAKi1GcHZFSva3xKaCoARRGiAtA_CHmRBol2cMDnTIUxMIeE277MpWU4N4k2qryLdPw0zyYTDevcACC3AHDIm91Dm57g4-_i7wxIdqKGnbu7oTs0t8qeBzFGoEGueIgcEh8wlLqshCF3S4V0yL4BweB9fZc75GiLudwOJVe5YRiMjT3jDnF3OLzR1h7b19r67B_lD8ldU-wnmI7IqLls8bl2uZrihdWrX9L9JDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Meta-Heuristic+Algorithm+for+Numerical+and+Engineering+Optimization+Problems%3A+Piranha+Foraging+Optimization+Algorithm+%28PFOA%29&rft.jtitle=IEEE+access&rft.au=Cao%2C+Shuai&rft.au=Qian%2C+Qian&rft.au=Cao%2C+Yongjun&rft.au=Li%2C+Wenwei&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=92505&rft_id=info:doi/10.1109%2FACCESS.2023.3267110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon