A Novel Meta-heuristic Algorithm for Numerical and Engineering Optimization Problems:Piranha Foraging Optimization Algorithm (PFOA)
This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour o...
        Saved in:
      
    
          | Published in | IEEE access Vol. 11; p. 1 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.01.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2023.3267110 | 
Cover
| Abstract | This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces. | 
    
|---|---|
| AbstractList | This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behavior of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces. This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and engineering optimization: Piranha Foraging Optimization Algorithm (PFOA). The algorithm is inspired by the flexible and mobile foraging behaviour of piranha swarm and divides their foraging behavior into three patterns: localized group attack, bloodthirsty cluster attack and scavenging foraging, simulates the above behaviors to construct two dynamic search processes for exploration and exploitation. PFOA uses three strategies of non-linear parameter control, population survival and reverse evasion search to enable populations to have better population diversity at different stages of the search and to help find better solutions. To gain insight into the performance of PFOA, visualization methods were used to assess the efficiency of PFOA optimization and to analyse the impact of the characteristics of the three foraging modes, the sensitivity of the parameters and the size of the piranha population on the algorithm. The algorithm performance was further tested with 27 CEC benchmark functions and four real engineering design optimization problems, and the results were compared with 13 well-known meta-heuristics. Test results based on statistical methods such as box-line plots, Wilcoxon rank sum test and Friedman test in multiple dimensions (30, 50, 100 and fixed dimensions) show significant differences compared to other algorithms and that the performance of the algorithm is stable and in significant improvement. The unique advantages of PFOA in terms of the equilibrium of convergence speed and exploration can avoid getting trapped in local optimum regions and effectively solve optimization problems in complex search spaces.  | 
    
| Author | Qian, Qian Liang, Jianan Cao, Shuai Huang, Weixi Cao, Yongjun Li, Wenwei  | 
    
| Author_xml | – sequence: 1 givenname: Shuai surname: Cao fullname: Cao, Shuai organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China – sequence: 2 givenname: Qian surname: Qian fullname: Qian, Qian organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China – sequence: 3 givenname: Yongjun surname: Cao fullname: Cao, Yongjun organization: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China – sequence: 4 givenname: Wenwei surname: Li fullname: Li, Wenwei organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China – sequence: 5 givenname: Weixi surname: Huang fullname: Huang, Weixi organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China – sequence: 6 givenname: Jianan surname: Liang fullname: Liang, Jianan organization: Robotic Laboratory, South China Robotics Innovation Research Institute, Foshan, China  | 
    
| BookMark | eNqFkc1u1DAUhSNUJErpE8DCEhtYZPBfnJjdaDQDlUpnpMLaunFuMh4l8WAnoLLlxUmbCqp2gTe2j875rOvzMjnpfY9J8prRBWNUf1iuVuvr6wWnXCwEV_kkPktOOVM6FZlQJw_OL5LzGA90WsUkZflp8ntJrvwPbMkXHCDd4xhcHJwly7bxwQ37jtQ-kKuxw-AstAT6iqz7xvU4CX1DtsfBde4XDM73ZBd82WIXP-5cgH4PZOMDNE9s_9jvdpvt8v2r5HkNbcTz-_0s-bZZf119Ti-3ny5Wy8vUSqqHFAQApZWkWMoaLJWqKBkUtcgkzQugKEpVIsiaM4tlJbiouC6UtgwVZJqKs-Ri5lYeDuYYXAfhxnhw5k7woTEQpuFbNCzHDDIra8lRQkEBuZ3utdI601rZiSVn1tgf4eYntO1fIKPmthcD1mKM5rYXc9_LFHs7x47Bfx8xDubgx9BPUxteZDpnUuVyconZZYOPMWD9hD13_pitH6WsG-5-fAjg2v9k38xZh4gPXmOUS1GIP6ZGu_4 | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1016_j_epsr_2024_111249 crossref_primary_10_3390_app15031359 crossref_primary_10_1109_ACCESS_2024_3384473 crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1109_ACCESS_2023_3341492 crossref_primary_10_3390_electronics14061172 crossref_primary_10_1007_s12083_024_01799_4 crossref_primary_10_1038_s41598_024_70497_1 crossref_primary_10_1016_j_energy_2024_132987 crossref_primary_10_1038_s41598_023_38778_3 crossref_primary_10_1109_ACCESS_2024_3487866 crossref_primary_10_3390_biomimetics9100639  | 
    
| Cites_doi | 10.1145/234313.234350 10.1038/nmeth.2811 10.1016/j.matcom.2021.08.013 10.1109/CEC.2014.6900380 10.1242/jeb.242336 10.1371/journal.pone.0241316 10.1016/j.eswa.2020.113882 10.1023/A:1015059928466 10.1016/j.eswa.2020.113389 10.1007/s12652-020-02580-0 10.1038/35017500 10.1007/s13198-023-01868-6 10.1007/978-94-009-2065-1_2 10.1016/j.amc.2015.06.025 10.1016/j.jocs.2022.101938 10.1109/ACCESS.2022.3190508 10.1155/2021/9107547 10.1007/978-3-030-12767-1_5 10.1007/978-94-015-7744-1_2 10.3724/SP.J.1087.2012.01958 10.1016/j.compstruct.2017.07.024 10.15282/mekatronika.v1i2.4991 10.1109/CEC.2004.1331139 10.1016/j.bspc.2023.104647 10.1016/j.eswa.2020.113338 10.1016/j.eswa.2021.114685 10.1016/j.advengsoft.2017.03.014 10.1007/s10462-019-09704-9 10.1016/j.compbiomed.2022.105810 10.1016/j.istruc.2021.11.012 10.1016/j.enconman.2022.116639 10.1109/ACCESS.2022.3213066 10.1109/MHS.1995.494215 10.1111/j.1469-7998.1976.tb04664.x 10.3390/buildings12040471 10.1016/S0895-4356(98)00168-1 10.1109/ACCESS.2022.3147821 10.1109/TIT.2016.2555322 10.1016/j.knosys.2021.107486 10.1016/j.future.2020.04.008 10.1016/0143-974X(89)90012-6 10.1007/978-981-16-2164-2_22  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2023.3267110 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Statistics  | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | oai_doaj_org_article_17e5a5c4f42e4a80ae2ca5cf6995996c 10.1109/access.2023.3267110 10_1109_ACCESS_2023_3267110 10102438  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Foshan Science and Technology Innovation Team Project under Grant grantid: FS0AA-KJ919-4402-0060 – fundername: the Research and application of intelligent scheduling for mobile cooperative robot cluster oriented to Intelligent manufacturing grantid: 2130218003022 – fundername: the Study on Cognitive Mechanism of temporal effect of visual Attention shift of NSFC grantid: 32060193  | 
    
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c409t-a3aa00d40eb4fac0468b1a8f354078a0e3b6bea4f21cebd323d29869c1e6a5903 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:52:30 EDT 2025 Wed Oct 01 15:38:38 EDT 2025 Sun Jun 29 16:21:11 EDT 2025 Wed Oct 01 03:26:41 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Aug 27 02:21:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c409t-a3aa00d40eb4fac0468b1a8f354078a0e3b6bea4f21cebd323d29869c1e6a5903 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0005-5140-6320 0009-0005-1921-744X 0009-0001-0419-5111 0009-0007-6074-1176 0009-0006-2916-4932 0009-0005-4688-7246  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10102438.pdf | 
    
| PQID | 2859714674 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_access_2023_3267110 crossref_primary_10_1109_ACCESS_2023_3267110 doaj_primary_oai_doaj_org_article_17e5a5c4f42e4a80ae2ca5cf6995996c ieee_primary_10102438 proquest_journals_2859714674 crossref_citationtrail_10_1109_ACCESS_2023_3267110  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-01 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 jiang (ref34) 2017 ref2 ref1 bertolini (ref12) 2016 ref17 ref39 ref16 ref38 ref19 ref18 mao (ref37) 2022; 40 ref24 ref46 li (ref41) 2022 ref23 ref45 ref26 ref25 ref20 ref42 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref10 doi: 10.1145/234313.234350 – ident: ref39 doi: 10.1038/nmeth.2811 – ident: ref8 doi: 10.1016/j.matcom.2021.08.013 – ident: ref36 doi: 10.1109/CEC.2014.6900380 – ident: ref32 doi: 10.1242/jeb.242336 – ident: ref30 doi: 10.1371/journal.pone.0241316 – volume: 40 start-page: 1 year: 2022 ident: ref37 article-title: A sparrow search algorithm based on Lévy's flight perturbation strategy publication-title: J Appl Sci – ident: ref23 doi: 10.1016/j.eswa.2020.113882 – ident: ref13 doi: 10.1023/A:1015059928466 – ident: ref33 doi: 10.1016/j.eswa.2020.113389 – ident: ref20 doi: 10.1007/s12652-020-02580-0 – ident: ref6 doi: 10.1038/35017500 – ident: ref26 doi: 10.1007/s13198-023-01868-6 – ident: ref29 doi: 10.1007/978-94-009-2065-1_2 – ident: ref22 doi: 10.1016/j.amc.2015.06.025 – ident: ref2 doi: 10.1016/j.jocs.2022.101938 – ident: ref1 doi: 10.1109/ACCESS.2022.3190508 – ident: ref16 doi: 10.1155/2021/9107547 – ident: ref28 doi: 10.1007/978-3-030-12767-1_5 – ident: ref14 doi: 10.1007/978-94-015-7744-1_2 – ident: ref35 doi: 10.3724/SP.J.1087.2012.01958 – ident: ref43 doi: 10.1016/j.compstruct.2017.07.024 – ident: ref42 doi: 10.15282/mekatronika.v1i2.4991 – ident: ref11 doi: 10.1109/CEC.2004.1331139 – ident: ref25 doi: 10.1016/j.bspc.2023.104647 – ident: ref19 doi: 10.1016/j.eswa.2020.113338 – ident: ref9 doi: 10.1016/j.eswa.2021.114685 – ident: ref15 doi: 10.1016/j.advengsoft.2017.03.014 – year: 2017 ident: ref34 article-title: BAS: Beetle antennae search algorithm for optimization problems publication-title: arXiv 1710 10724 – year: 2022 ident: ref41 article-title: Enhanced sparrow search algorithm based on multiple improved strategies publication-title: J Comput Appl – ident: ref24 doi: 10.1007/s10462-019-09704-9 – ident: ref4 doi: 10.1016/j.compbiomed.2022.105810 – ident: ref44 doi: 10.1016/j.istruc.2021.11.012 – ident: ref27 doi: 10.1016/j.enconman.2022.116639 – ident: ref17 doi: 10.1109/ACCESS.2022.3213066 – ident: ref7 doi: 10.1109/MHS.1995.494215 – ident: ref31 doi: 10.1111/j.1469-7998.1976.tb04664.x – ident: ref45 doi: 10.3390/buildings12040471 – ident: ref40 doi: 10.1016/S0895-4356(98)00168-1 – ident: ref5 doi: 10.1109/ACCESS.2022.3147821 – ident: ref38 doi: 10.1109/TIT.2016.2555322 – start-page: 81 year: 2016 ident: ref12 article-title: Complex systems, evolutionary planning? publication-title: A Planner's Encounter with Complexity – ident: ref18 doi: 10.1016/j.knosys.2021.107486 – ident: ref21 doi: 10.1016/j.future.2020.04.008 – ident: ref46 doi: 10.1016/0143-974X(89)90012-6 – ident: ref3 doi: 10.1007/978-981-16-2164-2_22  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.4167917 | 
    
| Snippet | This paper provides a novel meta-heuristic optimization algorithm for solving continuous optimization problems efficiently in the field of numerical and... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Biomimetics Bionic Algorithms bionic inspired algorithms Classification algorithms Clustering algorithms Convergence Design engineering Design optimization Foraging behavior Heuristic methods Impact analysis Meta-heuristic Algorithms Metaheuristics Nonlinear control Optimization algorithms Parameter sensitivity Particle swarm optimization Piranha Foraging Optimization Algorithm (PFOA) Searching Statistical methods Statistics Swarm Intelligence  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABFSgipVQ-cACJtI7t2DG3dMVqhdTtHqjUmzVJxi1Smq3obhH3_vDaibukqgQXjolsZ-IZez4Sv0fIh0bUmGPj_EJSkEohWWq00KnUOTgNucvrUIc8nqvZqfx2lp-NqL7CP2EDPPAwcYeZxhx8Byc5SigYIK_9tVMBKMuoOuy-rDCjZKrfg4tMmVxHmKGMmcNyMvFvdBDYwg98yKKzcGZ25Ip6xP5IsfIg2ny67q7g9y9o25HjmW6TFzFipOUg6UvyBLtX5PkIR_A1uS3pfHmDLT3GFaQzXA_wy7Rsz5c--b-4pD40pfP18HWmpdA1dDQAPfH7xmU8kEkXA8XM9Re6-OEd2QXQqTeT80ft_gz-cTE9KT_tkNPp1--TWRrpFdLaJ3WrFAQAY41kWEkHtU-UiyqDwoVKkC6AoahUhSAdz2qsGsFFw02hTJ2hgtww8YZsdcsO3xJqFKCqODoALgXKymSFDz2ASeG4BpEQfj_Tto7Y44ECo7V9DsKMHdRjg3psVE9CPm86XQ3QG39vfhRUuGkacLP7G96abLQm-y9rSshOMIDR87IA2VgkZO_eImxc5Nc2YP_p4GlkQtKNlTySFXrmywey7v4PWd-RZ2HMoR60R7ZWP9f43kdIq2q_Xwx3rUULMw priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL5QDj1JEoCAfOIBEljwcO-YWVqwqpG73QKXeookz7lak2apNWsGVP44de5eUCsQtiSaOnZnxjMeebwh5U6cKM6y1USQOIUtZFEqRipCJDLSATGfKxiEP5_zgmH05yU58svqQC4OIw-EznNjLYS-_XqnehsqMhscWQC_fIlsi5y5ZaxNQsRUkZCY8slAcyQ_FdGoGMbEFwifGSxGxTZMdWZ8BpN9XVbnlYN7v2wv4fgNNM7I1s0dkvu6lO2LybdJ31UT9-APA8b-H8Zg89F4nLZyYPCH3sN0lD0ZYhLtkx7qdDrX5KflZ0PnqGht6iB2ES-wdnjMtmtPV5Vm3PKfG16Xz3m33NBTamo5ao0dmIjr3GZ504WrWXH1cnBnDuAQ6M2J3eofsd9tvF7Oj4t0eOZ59_jo9CH25hlCZRWIXQgoQRTWLsGIalFl451UMubaRJZFDhGnFKwSmk1hhVadJWicy51LFyCGTUfqMbLerFp8TKjkgrxLUAOZHIatknBtXBiKW6kRAGpBkzcZSeSxzW1KjKYc1TSRLx_vS8r70vA_I-81LFw7K49_kn6x8bEgtDvfwwPCy9GpdxgIzMOKsWYIM8ggwUeZecwvjJrkKyJ7l_-h7jvUB2V-LW-knjavSYgkKa7lYQMKNCN7pKwyVNG_19cVfPvOS7FgyFzLaJ9vdZY-vjBPVVa8H5fkFtOAYyg priority: 102 providerName: IEEE  | 
    
| Title | A Novel Meta-heuristic Algorithm for Numerical and Engineering Optimization Problems:Piranha Foraging Optimization Algorithm (PFOA) | 
    
| URI | https://ieeexplore.ieee.org/document/10102438 https://www.proquest.com/docview/2859714674 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10102438.pdf https://doaj.org/article/17e5a5c4f42e4a80ae2ca5cf6995996c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfg4RNiofOIBE0iR2nJhbqKgqpHU9UGmcopfkeavI0mpLNuDMH46duKVjEhLc4shxnPh7fs_Pft8j5HXJCoywVFqQBLiccd-VMYtdHkegYohUVBg_5NFMTBf800l0Yh1uXSwMInaHz9Azl91e_hKrb_FIhIY8TY6EVvF6kaDFPTBseom3LtVdsicibYsPyN5iNk-_mIxygZAu6_YmDyyx5gi6HISeyRjuabMlDkzc7I466lj7bZqVGxbnvbZew_drqKod5TN5RLJNt_szJ1-9tsm94scfjI7__12PyUNrl9K0B9ITcgfrp-TBDlvhM_IzpbPVFVb0CBtwp9j2JM80rU5XF8vm7JxqA5jO2n4PqKJQl3SnAXqsZ6dzG_ZJ530im8v3dL7U6vIM6ESD8fRWvd-Nv5lPjtO3-2Qx-fh5PHVtEge30EvHxgUG4Psl9zHnCgq9HE_yABJl_E1xAj6yXOQIXIVBgXnJQlaGMhGyCFBAJH32nAzqVY0vCJUCUOQhKgD9g5DnMki0gQM-ZyqMgTkk3IxlVliGc5Noo8q6lY4vs3Q81rDODAAyCwCHvNs-tO4JPv5e_YMBybaqYefubugBzaywZ0GMEWiQKx4ih8QHDAtdVsKQu0lROGTfgGDnff2QO-Rwg7nMTiWXmWEYjI0-4w5xtzi81dce2zf6-vIf6x-Q-6bYO5gOyaC5aPGVNrmafNi5KoZddOTQytgvi-EmLg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHFoOBUoRKQV84AAS2TqJ8-IWVqwW6KZ7aKXeookz7lak2apNQHDlj2PH3iWlAnFLIj8zM57x2PMNIa-qQGCIlVSCFIHLA87cNA5il8chyBhCGQrth5zl0fSEfzoNT22weh8Lg4j95TMc6cf-LL9aik67ypSEexpAL7lL7oWc89CEa61dKjqHRBrGFlvIY-lBNh6raYx0ivCRslNiTwfKDvRPD9Nv86rcMDE3u-YSvn-Duh5om8kDkq_GaS6ZfBl1bTkSP_6AcPzviTwk29bupJlhlEfkDjY75P4AjXCHbGnD0-A2PyY_M5ovv2JNZ9iCu8DOIDrTrD5bXp23iwuqrF2ad-bAp6bQVHTQGj1SS9GFjfGkc5O15vrd_FypxgXQiWK8s1vFfrf9ej45yt7skpPJh-Px1LUJG1yhtomtCwEAYxVnWHIJQm29k9KDRGrfUpwAw6CMSgQufU9gWQV-UPlpEqXCwwjClAVPyEazbPApoWkEGJU-SgD1o5CXqZcoYwYYD6QfQ-AQf0XGQlg0c51Uoy76XQ1LC0P7QtO-sLR3yNt1pUsD5vHv4u81f6yLaiTu_oOiZWEFu_BiDEExtOQ-ckgYoC_Uu4w0kFsaCYfsavoP-jOkd8j-it0Ku2xcFxpNMNa6izvEXbPgrbFCn0vzxlj3_tLNS7I5PZ4dFocf88_PyJauYhxI-2SjverwuTKp2vJFL0i_AIFfHBc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOPFsRWpAPHEAi2SR2nIRbWLFaIXW7B1Yqp2jijNsVaXbVJrzO_HDsxLukVEKCWxxNHCf-xjPjxzeEvCyZxAhLpRVJgMsZ9900ZrHL4whUDJGKpJmHPJ6L2ZJ_OI1O7YRbdxYGEbvNZ-iZy24tf4XVt3gsQkOelo6FNvE6SNDqHhg2vcTblOo22ROR9sVHZG85X2SfTEa5QKQu69YmDy2x5hi6HISeyRjuabclDsy52YE56lj7bZqVax7nnbbewPevUFUD4zN9QPJts_s9J5-9tik8-eMPRsf__66H5L71S2nWA-kRuYX1Y3JvwFb4hPzM6Hz9BSt6jA24M2x7kmeaVWfry1VzfkG1A0znbb8GVFGoSzqogJ7o0enCHvukiz6RzdVbulhpc3kOdKrBeHZD7nflrxbTk-z1PllO33-czFybxMGVOnRsXGAAvl9yHwuuQOpwPCkCSJSZb4oT8JEVokDgKgwkFiULWRmmiUhlgAKi1GcHZFSva3xKaCoARRGiAtA_CHmRBol2cMDnTIUxMIeE277MpWU4N4k2qryLdPw0zyYTDevcACC3AHDIm91Dm57g4-_i7wxIdqKGnbu7oTs0t8qeBzFGoEGueIgcEh8wlLqshCF3S4V0yL4BweB9fZc75GiLudwOJVe5YRiMjT3jDnF3OLzR1h7b19r67B_lD8ldU-wnmI7IqLls8bl2uZrihdWrX9L9JDg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Meta-Heuristic+Algorithm+for+Numerical+and+Engineering+Optimization+Problems%3A+Piranha+Foraging+Optimization+Algorithm+%28PFOA%29&rft.jtitle=IEEE+access&rft.au=Cao%2C+Shuai&rft.au=Qian%2C+Qian&rft.au=Cao%2C+Yongjun&rft.au=Li%2C+Wenwei&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=92505&rft_id=info:doi/10.1109%2FACCESS.2023.3267110&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |