Identification of key design parameters for earthquake resistance of reinforced concrete shell structures

•The factors determining the earthquake resistance of reinforced concrete shells are investigated.•Vibrational properties and displacement and stress response to earthquake loading is analyzed.•Singly curved and doubly curved shells with square plan of 20 m by 20 m and thickness of 8 cm are consider...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 153; pp. 411 - 420
Main Authors Michiels, Tim, Adriaenssens, Sigrid
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.12.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2017.10.043

Cover

Abstract •The factors determining the earthquake resistance of reinforced concrete shells are investigated.•Vibrational properties and displacement and stress response to earthquake loading is analyzed.•Singly curved and doubly curved shells with square plan of 20 m by 20 m and thickness of 8 cm are considered.•It is shown that shells with high fundamental frequency perform superior under earthquake loading.•Furthermore, shells with small to medium span can be intrinsically earthquake resistant. Concrete roof shells have shown to be inherently able to sustain earthquakes, but the reasons for this apparent seismic resistance have been subject to limited research. Concrete shells exhibit a high structural efficiency and thus can be constructed very thin. Because of their relative lightweight nature, the earthquake forces induced in a thin shell structure are relatively low. However, the shape of a shell structure is typically established so that it performs optimally under gravity loads, carrying the loads to the foundations mainly through membrane action over the shell surface. Unanticipated horizontal forces induced by earthquakes generate bending stresses in concrete shell structures, which could lead to structural damage. Through a parametric study of 8 cm thick, concrete roof shells with a square plan, the research presented in this paper demonstrates that small to mid-sized (span<15 m) thin concrete roof shells can indeed be intrinsically earthquake resistant. They owe this resistance to their great geometric stiffness and low mass, which lead to high fundamental frequencies that are well above the driving frequencies of realistic seismic actions. Due to these characteristics the shells analyzed in this paper behave elastically under the earthquake excitation, without surpassing the maximum allowable concrete strength. For shallow shells it is observed that the vertical components of the earthquake vibrations, can induce larger stresses in the shell than the horizontal components. It is further demonstrated that by increasing the rise and curvature of larger shells (20 m by 20 m), their fundamental frequencies are increased and the damaging effect of the vertical earthquake vibration components mitigated.
AbstractList •The factors determining the earthquake resistance of reinforced concrete shells are investigated.•Vibrational properties and displacement and stress response to earthquake loading is analyzed.•Singly curved and doubly curved shells with square plan of 20 m by 20 m and thickness of 8 cm are considered.•It is shown that shells with high fundamental frequency perform superior under earthquake loading.•Furthermore, shells with small to medium span can be intrinsically earthquake resistant. Concrete roof shells have shown to be inherently able to sustain earthquakes, but the reasons for this apparent seismic resistance have been subject to limited research. Concrete shells exhibit a high structural efficiency and thus can be constructed very thin. Because of their relative lightweight nature, the earthquake forces induced in a thin shell structure are relatively low. However, the shape of a shell structure is typically established so that it performs optimally under gravity loads, carrying the loads to the foundations mainly through membrane action over the shell surface. Unanticipated horizontal forces induced by earthquakes generate bending stresses in concrete shell structures, which could lead to structural damage. Through a parametric study of 8 cm thick, concrete roof shells with a square plan, the research presented in this paper demonstrates that small to mid-sized (span<15 m) thin concrete roof shells can indeed be intrinsically earthquake resistant. They owe this resistance to their great geometric stiffness and low mass, which lead to high fundamental frequencies that are well above the driving frequencies of realistic seismic actions. Due to these characteristics the shells analyzed in this paper behave elastically under the earthquake excitation, without surpassing the maximum allowable concrete strength. For shallow shells it is observed that the vertical components of the earthquake vibrations, can induce larger stresses in the shell than the horizontal components. It is further demonstrated that by increasing the rise and curvature of larger shells (20 m by 20 m), their fundamental frequencies are increased and the damaging effect of the vertical earthquake vibration components mitigated.
Concrete roof shells have shown to be inherently able to sustain earthquakes, but the reasons for this apparent seismic resistance have been subject to limited research. Concrete shells exhibit a high structural efficiency and thus can be constructed very thin. Because of their relative lightweight nature, the earthquake forces induced in a thin shell structure are relatively low. However, the shape of a shell structure is typically established so that it performs optimally under gravity loads, carrying the loads to the foundations mainly through membrane action over the shell surface. Unanticipated horizontal forces induced by earthquakes generate bending stresses in concrete shell structures, which could lead to structural damage. Through a parametric study of 8 cm thick, concrete roof shells with a square plan, the research presented in this paper demonstrates that small to mid-sized (span < 15 m) thin concrete roof shells can indeed be intrinsically earthquake resistant. They owe this resistance to their great geometric stiffness and low mass, which lead to high fundamental frequencies that are well above the driving frequencies of realistic seismic actions. Due to these characteristics the shells analyzed in this paper behave elastically under the earthquake excitation, without surpassing the maximum allowable concrete strength. For shallow shells it is observed that the vertical components of the earthquake vibrations, can induce larger stresses in the shell than the horizontal components. It is further demonstrated that by increasing the rise and curvature of larger shells (20 m by 20 m), their fundamental frequencies are increased and the damaging effect of the vertical earthquake vibration components mitigated.
Author Adriaenssens, Sigrid
Michiels, Tim
Author_xml – sequence: 1
  givenname: Tim
  surname: Michiels
  fullname: Michiels, Tim
  email: michiels@princeton.edu
– sequence: 2
  givenname: Sigrid
  surname: Adriaenssens
  fullname: Adriaenssens, Sigrid
BookMark eNqNkD1PHDEQQK2ISDlIfkMsUe_FH8t6XaRAKAEkJBpSW7P2LPg47GPsReLfx5eLUtCQypL93nj0jtlRygkZ-yrFWgo5fNusMd2XSouvayWkabdr0esPbCVHozujlT5iKyF72Qllh0_suJSNEEKNo1ixeB0w1ThHDzXmxPPMH_GVByzxPvEdEDxhRSp8zsQRqD48L_CInBpQKiSPe4UwpgZ4DNzn5KkpvDzgdssPiy0N_8w-zrAt-OXvecJ-_fxxd3HV3dxeXl-c33S-F7Z2Fi0ECNIY2Z_pAb3pJ6OHswCj6q21IdgZpmGCSQWP0yzACO9H0HqcpQerT9jpYe6O8vOCpbpNXii1L520o1KiV1Y1yhwoT7kUwtntKD4BvTop3L6r27h_Xd2-6_6hdW3m9zemj_VPvEoQt__hnx98bBFeIpIrPmILGSJhY0OO7874DcSooD8
CitedBy_id crossref_primary_10_1177_0956059919893212
crossref_primary_10_1016_j_engstruct_2019_03_044
crossref_primary_10_1016_j_engstruct_2021_113514
crossref_primary_10_1177_13694332231202290
crossref_primary_10_1016_j_engstruct_2019_109521
crossref_primary_10_1007_s11069_023_06157_w
crossref_primary_10_1002_suco_202400324
crossref_primary_10_1016_j_istruc_2020_12_045
crossref_primary_10_1515_cls_2020_0017
crossref_primary_10_1515_eng_2022_0417
crossref_primary_10_1007_s13369_021_05874_3
crossref_primary_10_1016_j_engstruct_2018_12_043
crossref_primary_10_1016_j_conbuildmat_2020_119394
crossref_primary_10_1016_j_engstruct_2023_116045
crossref_primary_10_1016_j_conbuildmat_2024_137171
Cites_doi 10.1080/15583058.2012.694967
10.1016/j.soildyn.2014.06.001
10.1016/j.engstruct.2015.11.023
10.6028/jres.045.026
10.1016/j.compstruc.2011.10.013
10.1260/136943306777641940
10.1002/eqe.4290020306
10.1002/eqe.4290090207
10.1016/S0263-8231(02)00019-8
10.1016/j.cma.2008.09.009
10.1061/(ASCE)AE.1943-5568.0000074
10.1201/9781315616995-209
10.1016/j.tws.2009.02.001
10.1002/eqe.4290180412
10.1007/s00158-011-0742-8
10.1016/j.jcsr.2014.01.015
10.1061/(ASCE)0733-9445(1985)111:9(1930)
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2017
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2017.10.043
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
EndPage 420
ExternalDocumentID 10_1016_j_engstruct_2017_10_043
S0141029616308082
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c409t-9e9adad17714536ec74b7365da824999dd9fab6bab2dcebf0a70cc8a338f1ca93
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 04:30:40 EDT 2025
Wed Oct 01 03:41:38 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 23 02:26:50 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9e9adad17714536ec74b7365da824999dd9fab6bab2dcebf0a70cc8a338f1ca93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1982204292
PQPubID 2045481
PageCount 10
ParticipantIDs proquest_journals_1982204292
crossref_primary_10_1016_j_engstruct_2017_10_043
crossref_citationtrail_10_1016_j_engstruct_2017_10_043
elsevier_sciencedirect_doi_10_1016_j_engstruct_2017_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Governm. Press Office; 1950.
Wilson, Der Kiureghian, Bayo (b0140) 1981; 9
Bletzinger (b0105) 2010; 199
Sabouri-Ghomi (b0065) 2006; 9
ACI. Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute; 2008.
Ahn, Gould (b0085) 1989; 18
South A, Zweifel C. Disaster survivability of thin-shell concrete dome structures: experience and practice. In: IASS-SLTE 2014 symposium “Shells, Membranes and Spatial Structures: Footprints”, Brasilia; 2014.
Yu (b0075) 2016; 108
7-10, A.S.C.E. Minimum design loads for buildings and other structures. Reston (VA): American Society of Civil Engineers; 2006.
(b0030) 2014
Michiels T, Garlock M, Adriaenssens S. Seismic assessment of Félix Candela’s concrete shells and their behavior during the 1985 Mexico City earthquake. A case study on the Church of Our Lady of the Miraculous Medal. In Structural analysis of historical constructions: anamnesis, diagnosis, therapy, controls, Leuven, Belgium; 2016.
Rihal S, Roufegarinejad A, Walters M. Seismic behavior of an earth-formed / earth-covered concrete shell during the 2003 San Simeon, California earthquake. In: Proceedings of the IASS-SLTE 2014 symposium “Shells, Membranes and Spatial Structures: Footprints” 15–19 September 2014, Brasilia, Brazil; 2014.
Gould, Sen, Suryoutomo (b0090) 1973; 2
Leissa AW, Qatu MS. Vibrations of continuous systems. McGraw-Hill; 2011.
Shrestha B. Vertical ground motions and its effect on engineering structures: a state-of-the-art review. In: Proceeding of international seminar on hazard management for sustainable development in Kathmandu, Nepal; 2009.
Lee, Gould (b0080) 1985; 111
Sweedan (b0050) 2009; 47
Michiels T, Adriaenssens S, Rhode-Barbarigos L. Size optimization of a cylindrical thin shell subjected to 1992 Landers earthquake. In: Proceedings of the international association for shell and spatial structures (IASS) symposium 2015, Amsterdam. Future Visions, 17–20 August 2015, Amsterdam, The Netherlands; 2015.
Ostovari-Dailamani (b0040) 2010
C.E.N. Eurocode 8–design of structures for earthquake resistance–Part 1: general rules, seismic actions and rules for buildings. EN 1998-1. European Standard NF EN; 2004.
Liu, Ye (b0055) 2014; 97
Adriaenssens (b0025) 2012; 18
7-10, A.S.C.E., Minimum design loads for buildings and other structures. 2006: American Society of Civil Engineers, Reston, Virginia.
Arnout, Firl, Bletzinger (b0100) 2012; 45
Adriaenssens (b0005) 2014; 8
Garlock MEM, Billington DP. Félix Candela: engineer, builder, structural artist. Princeton University Art Museum; 2008.
Joedicke JR. Shell architecture. With contributions by Walter Bauersfeld and Herbert Kupfer. New York: Reinhold; 1963.
Firl M. Optimal shape design of shell structures. Universität München; 2010.
Medwadowski (b0160) 2004; 45
Nasir (b0045) 2002; 40
Sasaki (b0035) 2014
Lin (b0070) 2014; 65
Arnout (b0095) 2012; 92
Altair Engineering I. HyperWorks 13.0 Optistruct user guide. Altair; 2014.
Wilson (10.1016/j.engstruct.2017.10.043_b0140) 1981; 9
Liu (10.1016/j.engstruct.2017.10.043_b0055) 2014; 97
Adriaenssens (10.1016/j.engstruct.2017.10.043_b0025) 2012; 18
10.1016/j.engstruct.2017.10.043_b0060
10.1016/j.engstruct.2017.10.043_b0145
Gould (10.1016/j.engstruct.2017.10.043_b0090) 1973; 2
10.1016/j.engstruct.2017.10.043_b0125
10.1016/j.engstruct.2017.10.043_b0120
10.1016/j.engstruct.2017.10.043_b0020
10.1016/j.engstruct.2017.10.043_b0165
Lin (10.1016/j.engstruct.2017.10.043_b0070) 2014; 65
Ahn (10.1016/j.engstruct.2017.10.043_b0085) 1989; 18
Ostovari-Dailamani (10.1016/j.engstruct.2017.10.043_b0040) 2010
Bletzinger (10.1016/j.engstruct.2017.10.043_b0105) 2010; 199
Sasaki (10.1016/j.engstruct.2017.10.043_b0035) 2014
Sabouri-Ghomi (10.1016/j.engstruct.2017.10.043_b0065) 2006; 9
Arnout (10.1016/j.engstruct.2017.10.043_b0100) 2012; 45
10.1016/j.engstruct.2017.10.043_b0170
Yu (10.1016/j.engstruct.2017.10.043_b0075) 2016; 108
10.1016/j.engstruct.2017.10.043_b0150
10.1016/j.engstruct.2017.10.043_b0135
Sweedan (10.1016/j.engstruct.2017.10.043_b0050) 2009; 47
10.1016/j.engstruct.2017.10.043_b0115
10.1016/j.engstruct.2017.10.043_b0015
10.1016/j.engstruct.2017.10.043_b0010
Lee (10.1016/j.engstruct.2017.10.043_b0080) 1985; 111
10.1016/j.engstruct.2017.10.043_b0130
Nasir (10.1016/j.engstruct.2017.10.043_b0045) 2002; 40
10.1016/j.engstruct.2017.10.043_b0155
Medwadowski (10.1016/j.engstruct.2017.10.043_b0160) 2004; 45
10.1016/j.engstruct.2017.10.043_b0110
Adriaenssens (10.1016/j.engstruct.2017.10.043_b0005) 2014; 8
(10.1016/j.engstruct.2017.10.043_b0030) 2014
Arnout (10.1016/j.engstruct.2017.10.043_b0095) 2012; 92
References_xml – volume: 9
  start-page: 433
  year: 2006
  end-page: 442
  ident: b0065
  article-title: Numerical study of the nonlinear dynamic behaviour of reinforced concrete cooling towers under earthquake excitation
  publication-title: Adv Struct Eng
– volume: 18
  start-page: 593
  year: 1989
  end-page: 609
  ident: b0085
  article-title: Soil-pile-structure interaction effects on the seismic response of a cooling tower
  publication-title: Earthq Eng Struct Dyn
– reference: Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Governm. Press Office; 1950.
– volume: 9
  start-page: 187
  year: 1981
  end-page: 192
  ident: b0140
  article-title: A replacement for the SRSS method in seismic analysis
  publication-title: Earthq Eng Struct Dyn
– reference: C.E.N. Eurocode 8–design of structures for earthquake resistance–Part 1: general rules, seismic actions and rules for buildings. EN 1998-1. European Standard NF EN; 2004.
– volume: 8
  start-page: 498
  year: 2014
  end-page: 516
  ident: b0005
  article-title: Structural analysis of reinforced concrete folded hyperbolic paraboloid: a case study of the modern Miami Marine Stadium
  publication-title: Int J Architect Heritage
– reference: 7-10, A.S.C.E., Minimum design loads for buildings and other structures. 2006: American Society of Civil Engineers, Reston, Virginia.
– year: 2014
  ident: b0030
  publication-title: Shell structures for architecture: form finding and optimization
– volume: 65
  start-page: 43
  year: 2014
  end-page: 54
  ident: b0070
  article-title: Prediction of ground motion due to the collapse of a large-scale cooling tower under strong earthquakes
  publication-title: Soil Dyn Earthq Eng
– reference: Shrestha B. Vertical ground motions and its effect on engineering structures: a state-of-the-art review. In: Proceeding of international seminar on hazard management for sustainable development in Kathmandu, Nepal; 2009.
– reference: Firl M. Optimal shape design of shell structures. Universität München; 2010.
– reference: ACI. Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute; 2008.
– reference: Michiels T, Garlock M, Adriaenssens S. Seismic assessment of Félix Candela’s concrete shells and their behavior during the 1985 Mexico City earthquake. A case study on the Church of Our Lady of the Miraculous Medal. In Structural analysis of historical constructions: anamnesis, diagnosis, therapy, controls, Leuven, Belgium; 2016.
– year: 2010
  ident: b0040
  article-title: Behaviour of cylindrical and doubly-curved shell roofs under earthquake
– reference: Rihal S, Roufegarinejad A, Walters M. Seismic behavior of an earth-formed / earth-covered concrete shell during the 2003 San Simeon, California earthquake. In: Proceedings of the IASS-SLTE 2014 symposium “Shells, Membranes and Spatial Structures: Footprints” 15–19 September 2014, Brasilia, Brazil; 2014.
– reference: Altair Engineering I. HyperWorks 13.0 Optistruct user guide. Altair; 2014.
– volume: 45
  start-page: 801
  year: 2012
  end-page: 814
  ident: b0100
  article-title: Parameter free shape and thickness optimisation considering stress response
  publication-title: Struct Multidisciplinary Optimization
– volume: 45
  start-page: 51
  year: 2004
  end-page: 63
  ident: b0160
  article-title: Buckling of concrete shells: an overview
  publication-title: J Int Assoc Shell Spatial Struct
– volume: 18
  start-page: 206
  year: 2012
  end-page: 213
  ident: b0025
  article-title: Finding the form of an irregular meshed steel and glass shell based on construction constraints
  publication-title: J Architect Eng
– volume: 40
  start-page: 665
  year: 2002
  end-page: 690
  ident: b0045
  article-title: Dynamics of axisymmetric hyperbolic shell structures
  publication-title: Thin-Walled Struct
– volume: 2
  start-page: 269
  year: 1973
  end-page: 280
  ident: b0090
  article-title: Dynamic analysis of column-supported hyperboloidal shells
  publication-title: Earthq Eng Struct Dyn
– volume: 92
  start-page: 308
  year: 2012
  end-page: 316
  ident: b0095
  article-title: The optimal design of a barrel vault in the conceptual design stage
  publication-title: Comput Struct
– volume: 47
  start-page: 942
  year: 2009
  end-page: 952
  ident: b0050
  article-title: Equivalent mechanical model for seismic forces in combined tanks subjected to vertical earthquake excitation
  publication-title: Thin-Walled Struct
– volume: 111
  year: 1985
  ident: b0080
  article-title: Seismic response of pile supported cooling towers
  publication-title: J Struct Eng
– reference: Leissa AW, Qatu MS. Vibrations of continuous systems. McGraw-Hill; 2011.
– reference: South A, Zweifel C. Disaster survivability of thin-shell concrete dome structures: experience and practice. In: IASS-SLTE 2014 symposium “Shells, Membranes and Spatial Structures: Footprints”, Brasilia; 2014.
– volume: 199
  start-page: 324
  year: 2010
  end-page: 333
  ident: b0105
  article-title: Optimal shapes of mechanically motivated surfaces
  publication-title: Comput Methods Appl Mech Eng
– volume: 108
  start-page: 77
  year: 2016
  end-page: 89
  ident: b0075
  article-title: Collapse-resistant performance of super-large cooling towers subjected to seismic actions
  publication-title: Eng Struct
– reference: 7-10, A.S.C.E. Minimum design loads for buildings and other structures. Reston (VA): American Society of Civil Engineers; 2006.
– reference: Michiels T, Adriaenssens S, Rhode-Barbarigos L. Size optimization of a cylindrical thin shell subjected to 1992 Landers earthquake. In: Proceedings of the international association for shell and spatial structures (IASS) symposium 2015, Amsterdam. Future Visions, 17–20 August 2015, Amsterdam, The Netherlands; 2015.
– volume: 97
  start-page: 59
  year: 2014
  end-page: 68
  ident: b0055
  article-title: Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
  publication-title: J Constr Steel Res
– reference: Joedicke JR. Shell architecture. With contributions by Walter Bauersfeld and Herbert Kupfer. New York: Reinhold; 1963.
– reference: Garlock MEM, Billington DP. Félix Candela: engineer, builder, structural artist. Princeton University Art Museum; 2008.
– start-page: 259
  year: 2014
  end-page: 270
  ident: b0035
  article-title: Structural design of free-curved RC shells
  publication-title: Shell structures for architecture form finding and optimization
– volume: 8
  start-page: 498
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2017.10.043_b0005
  article-title: Structural analysis of reinforced concrete folded hyperbolic paraboloid: a case study of the modern Miami Marine Stadium
  publication-title: Int J Architect Heritage
  doi: 10.1080/15583058.2012.694967
– volume: 65
  start-page: 43
  year: 2014
  ident: 10.1016/j.engstruct.2017.10.043_b0070
  article-title: Prediction of ground motion due to the collapse of a large-scale cooling tower under strong earthquakes
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2014.06.001
– volume: 108
  start-page: 77
  year: 2016
  ident: 10.1016/j.engstruct.2017.10.043_b0075
  article-title: Collapse-resistant performance of super-large cooling towers subjected to seismic actions
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.11.023
– start-page: 259
  year: 2014
  ident: 10.1016/j.engstruct.2017.10.043_b0035
  article-title: Structural design of free-curved RC shells
– year: 2010
  ident: 10.1016/j.engstruct.2017.10.043_b0040
– ident: 10.1016/j.engstruct.2017.10.043_b0135
  doi: 10.6028/jres.045.026
– ident: 10.1016/j.engstruct.2017.10.043_b0060
– ident: 10.1016/j.engstruct.2017.10.043_b0115
– ident: 10.1016/j.engstruct.2017.10.043_b0150
– ident: 10.1016/j.engstruct.2017.10.043_b0110
– volume: 92
  start-page: 308
  year: 2012
  ident: 10.1016/j.engstruct.2017.10.043_b0095
  article-title: The optimal design of a barrel vault in the conceptual design stage
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.10.013
– volume: 9
  start-page: 433
  issue: 3
  year: 2006
  ident: 10.1016/j.engstruct.2017.10.043_b0065
  article-title: Numerical study of the nonlinear dynamic behaviour of reinforced concrete cooling towers under earthquake excitation
  publication-title: Adv Struct Eng
  doi: 10.1260/136943306777641940
– volume: 2
  start-page: 269
  issue: 3
  year: 1973
  ident: 10.1016/j.engstruct.2017.10.043_b0090
  article-title: Dynamic analysis of column-supported hyperboloidal shells
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290020306
– ident: 10.1016/j.engstruct.2017.10.043_b0120
– volume: 9
  start-page: 187
  issue: 2
  year: 1981
  ident: 10.1016/j.engstruct.2017.10.043_b0140
  article-title: A replacement for the SRSS method in seismic analysis
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290090207
– ident: 10.1016/j.engstruct.2017.10.043_b0145
– volume: 45
  start-page: 51
  issue: 1
  year: 2004
  ident: 10.1016/j.engstruct.2017.10.043_b0160
  article-title: Buckling of concrete shells: an overview
  publication-title: J Int Assoc Shell Spatial Struct
– ident: 10.1016/j.engstruct.2017.10.043_b0015
– volume: 40
  start-page: 665
  issue: 7–8
  year: 2002
  ident: 10.1016/j.engstruct.2017.10.043_b0045
  article-title: Dynamics of axisymmetric hyperbolic shell structures
  publication-title: Thin-Walled Struct
  doi: 10.1016/S0263-8231(02)00019-8
– year: 2014
  ident: 10.1016/j.engstruct.2017.10.043_b0030
– volume: 199
  start-page: 324
  issue: 5–8
  year: 2010
  ident: 10.1016/j.engstruct.2017.10.043_b0105
  article-title: Optimal shapes of mechanically motivated surfaces
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.09.009
– ident: 10.1016/j.engstruct.2017.10.043_b0130
– ident: 10.1016/j.engstruct.2017.10.043_b0155
– ident: 10.1016/j.engstruct.2017.10.043_b0170
– volume: 18
  start-page: 206
  issue: 3
  year: 2012
  ident: 10.1016/j.engstruct.2017.10.043_b0025
  article-title: Finding the form of an irregular meshed steel and glass shell based on construction constraints
  publication-title: J Architect Eng
  doi: 10.1061/(ASCE)AE.1943-5568.0000074
– ident: 10.1016/j.engstruct.2017.10.043_b0020
  doi: 10.1201/9781315616995-209
– volume: 47
  start-page: 942
  issue: 8–9
  year: 2009
  ident: 10.1016/j.engstruct.2017.10.043_b0050
  article-title: Equivalent mechanical model for seismic forces in combined tanks subjected to vertical earthquake excitation
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2009.02.001
– volume: 18
  start-page: 593
  issue: 4
  year: 1989
  ident: 10.1016/j.engstruct.2017.10.043_b0085
  article-title: Soil-pile-structure interaction effects on the seismic response of a cooling tower
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290180412
– ident: 10.1016/j.engstruct.2017.10.043_b0165
– volume: 45
  start-page: 801
  issue: 6
  year: 2012
  ident: 10.1016/j.engstruct.2017.10.043_b0100
  article-title: Parameter free shape and thickness optimisation considering stress response
  publication-title: Struct Multidisciplinary Optimization
  doi: 10.1007/s00158-011-0742-8
– volume: 97
  start-page: 59
  year: 2014
  ident: 10.1016/j.engstruct.2017.10.043_b0055
  article-title: Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2014.01.015
– volume: 111
  issue: 9
  year: 1985
  ident: 10.1016/j.engstruct.2017.10.043_b0080
  article-title: Seismic response of pile supported cooling towers
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1985)111:9(1930)
– ident: 10.1016/j.engstruct.2017.10.043_b0125
– ident: 10.1016/j.engstruct.2017.10.043_b0010
SSID ssj0002880
Score 2.3240077
Snippet •The factors determining the earthquake resistance of reinforced concrete shells are investigated.•Vibrational properties and displacement and stress response...
Concrete roof shells have shown to be inherently able to sustain earthquakes, but the reasons for this apparent seismic resistance have been subject to limited...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Bending stresses
Curvature
Design parameters
Earthquake construction
Earthquake damage
Earthquake resistance
Earthquakes
Gravitation
Gravity
Horizontal loads
Parameter identification
Reinforced concrete
Resonant frequencies
Seismic activity
Seismic design
Seismic engineering
Shallow shells
Shells
Stiffness
Stresses
Structural damage
Thin walled shells
Vibrations
Title Identification of key design parameters for earthquake resistance of reinforced concrete shell structures
URI https://dx.doi.org/10.1016/j.engstruct.2017.10.043
https://www.proquest.com/docview/1982204292
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AKRWK
  dateStart: 19781001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14LfS52_VGiAQ1clESbs2-qvgoKHD1tzvTB4qJ4eCx7UzTnc7OfNN-O0vIBY-scpkSThAa4YRWSSdm0ncCIwEOKCOC_Ef73ZANRuHNOBrXSK9aC4O0yjL2FzE9j9blmU5pzc5sMunc5xRFXzBAFAB7YozD2P0LfLr9-U3z8ON89zQUdlB6jeNls8eiTStyvHgbaV5h8FeG-hWr8wTU3yO7JXKk3eLh9knNZgdk50c_wUMyKZbdpuV3ODpNKcxRanKWBsUu32_IfplTQKoUXHzx9L6UL5ZCyY0wEsaOKh8276YKpqFQLAOqXFg6R74oLUaxBPEjMupfPfQGTrmXgqOhgls4wgpppPE498IoYFbzUPGARUbGPhY9xohUKqak8o22KnUld7WOJVSwqaelCI5JPZtm9oRQqVzBdeTJ2FqY8amE6pqzkGsdWJ2mUYOwyn6JLhuN434Xr0nFKHtOVoZP0PB4AQzfIO5KcVb02tisclm9oGTNbRLICJuVm9UrTcqZO088bGiIWdo__c-9z8g2HiHxxYuapA4C9hzgy0K1cv9ska3u9e1g-AUrFvTm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcgAOiFXs-MA1NKsdc6sqUEuXCyBxs7wFylKWlv9nJnEqQEI9cI09UTK237xJnseEnPLM6ZBpESSpFUHqtApypuIgsQrogLYiKX-0D0ese5te3WV3DdKp98KgrNJjf4XpJVr7Ky3vzdbbeNy6LiWKsWDAKID25IDDS2kGmNwkS-1evzuaA3KclweoYf8ADX7IvNzkvqrUijIvfoZKrzT5K0j9gusyBl2ukzVPHmm7er4N0nCTTbL6raTgFhlXO28L_ymOvhYUlim1pVCDYqHvFxTATCmQVQqzfPbw_qmeHIWsG5kkvD6afLiyoCp4h0K-DMRy5ugUJaO0eotP6L5Nbi8vbjrdwB-nEBhI4maBcEJZZSPOozRLmDM81TxhmVV5jHmPtaJQmmmlY2ucLkLFQ2NyBUlsERklkh3SnLxO3C6hSoeCmyxSuXOw6AsFCTZnKTcmcaYosj3Cav9J42uN45EXz7IWlT3KueMlOh4bwPF7JJwbvlXlNhabnNcDJH_MHAlBYbHxYT2k0i_eqYywpiEG6nj_P_c-Icvdm-FADnqj_gFZwRbUwUTZIWlCZ3cEbGamj_1s_QJxoveR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+key+design+parameters+for+earthquake+resistance+of+reinforced+concrete+shell+structures&rft.jtitle=Engineering+structures&rft.au=Michiels%2C+Tim&rft.au=Adriaenssens%2C+Sigrid&rft.date=2017-12-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=153&rft.spage=411&rft_id=info:doi/10.1016%2Fj.engstruct.2017.10.043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon