Application of Binary Slime Mould Algorithm for Solving Unit Commitment Problem

A challenging engineering optimization problem in electrical power generation is the unit commitment problem (UCP). Determining the scheduling for the economic consumption of production assets over a specific period is the premier objective of UCP. This paper presents a take on solving UCP with Bina...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 45279 - 45300
Main Authors Rifat, Md. Sayed Hasan, Niloy, Md. Ashaduzzaman, Rizvi, Mutasim Fuad, Ahmed, Ashik, Ahshan, Razzaqul, Nengroo, Sarvar Hussain, Lee, Sangkeum
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3273928

Cover

More Information
Summary:A challenging engineering optimization problem in electrical power generation is the unit commitment problem (UCP). Determining the scheduling for the economic consumption of production assets over a specific period is the premier objective of UCP. This paper presents a take on solving UCP with Binary Slime Mould Algorithm (BSMA). SMA is a recently created optimization method that draws inspiration from nature and mimics the vegetative growth of slime mould. A binarized SMA with constraint handling is proposed and implemented to UCP to generate optimal scheduling for available power resources. To test BSMA as a UCP optimizer, IEEE standard generating systems ranging from 10 to 100 units along with IEEE 118-bus system are used, and the results are then compared with existing approaches. The comparison reveals the superiority of BSMA over all the classical and evolutionary approaches and most of the hybridized methods considered in this paper in terms of total cost and convergence characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3273928