Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience

A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and val...

Full description

Saved in:
Bibliographic Details
Published inJournal of personalized medicine Vol. 12; no. 11; p. 1855
Main Authors Byun, Hayoung, Lee, Seung Hwan, Kim, Tae Hyun, Oh, Jaehoon, Chung, Jae Ho
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.11.2022
MDPI
Subjects
Online AccessGet full text
ISSN2075-4426
2075-4426
DOI10.3390/jpm12111855

Cover

Abstract A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane.
AbstractList A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane.A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane.
A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane.
A machine learning platform operated without coding knowledge (Teachable machine ) has been introduced. The aims of the present study were to assess the performance of the Teachable machine for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine could successfully generate the diagnostic network for classifying tympanic membrane.
Author Oh, Jaehoon
Lee, Seung Hwan
Byun, Hayoung
Kim, Tae Hyun
Chung, Jae Ho
AuthorAffiliation 2 Machine Learning Research Center for Medical Data, Hanyang University, Seoul 04763, Korea
5 Department of HY-KIST Bio-Convergence, College of Medicine, Hanyang University, Seoul 04763, Korea
1 Department of Otolaryngology & Head and Neck Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea
4 Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
3 Department of Computer Science, Hanyang University, Seoul 04763, Korea
AuthorAffiliation_xml – name: 2 Machine Learning Research Center for Medical Data, Hanyang University, Seoul 04763, Korea
– name: 4 Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
– name: 3 Department of Computer Science, Hanyang University, Seoul 04763, Korea
– name: 1 Department of Otolaryngology & Head and Neck Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea
– name: 5 Department of HY-KIST Bio-Convergence, College of Medicine, Hanyang University, Seoul 04763, Korea
Author_xml – sequence: 1
  givenname: Hayoung
  surname: Byun
  fullname: Byun, Hayoung
– sequence: 2
  givenname: Seung Hwan
  orcidid: 0000-0003-2001-7689
  surname: Lee
  fullname: Lee, Seung Hwan
– sequence: 3
  givenname: Tae Hyun
  orcidid: 0000-0002-7995-3984
  surname: Kim
  fullname: Kim, Tae Hyun
– sequence: 4
  givenname: Jaehoon
  orcidid: 0000-0001-8055-1467
  surname: Oh
  fullname: Oh, Jaehoon
– sequence: 5
  givenname: Jae Ho
  orcidid: 0000-0001-6884-7927
  surname: Chung
  fullname: Chung, Jae Ho
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36579584$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEYhC1UREvpiTuyxAUJAv5e-4KEQgtIKVzK2fJ6ncTprr21vYT8e1xSIFQCX2zpfWY07_gxOAoxOACeYvSaUoXebMYBE4yx5PwBOCGo4TPGiDg6eB-Ds5w3qB7JCRHoETimgjeKS3YCri-cyb71vS87GJewrB28NHbtg4MLZ1LwYQU_u7KN6RqWCN97swoxO3i1G0YTvIWXbmiT-YlnH0OGW1_WcSpwHrtb8fn30SXvgnVPwMOl6bM7u7tPwdeL86v5x9niy4dP83eLmWVIlZmiliiFKFGdbFrcIq4YlsJaJGXLWKeQpKKxvE4YbzrROd5YSynmglBrGD0Fr_a-UxjNbmv6Xo_JDybtNEb6tjZ9UFvF3-7xcWoH11kXSjJ_JNF4_fck-LVexW9aCdUIrKrBizuDFG8ml4sefLau72srccqaNFwRwbjEFX1-D93EKYXaRqUoE4wJSSv17DDR7yi_vq0CeA_YFHNObqmtL6bU-mtA3_9jzZf3NP8r5QeG8bkw
CitedBy_id crossref_primary_10_1016_j_anl_2024_04_003
crossref_primary_10_1177_10668969231204955
crossref_primary_10_1016_j_ijporl_2023_111741
crossref_primary_10_7759_cureus_44591
Cites_doi 10.1001/archpedi.155.10.1137
10.1016/j.neunet.2020.03.023
10.1016/j.ebiom.2019.06.050
10.1371/journal.pone.0229226
10.17135/jdhs.2020.20.4.206
10.1111/coa.13925
10.3390/app9091827
10.1002/lary.29302
10.1186/s40463-019-0389-9
10.3390/jcm10153198
10.1016/j.jsurg.2015.07.011
10.1016/j.bspc.2017.07.015
10.1542/peds.2020-049584
10.1136/bmjopen-2020-041139
10.1016/j.ijporl.2008.01.030
10.1542/peds.2020-034546
10.1038/s42256-021-00305-2
10.1038/s41598-021-90345-w
10.7717/peerj-cs.405
10.1097/MAO.0000000000003210
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/jpm12111855
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID 10.3390/jpm12111855
PMC9697619
36579584
10_3390_jpm12111855
Genre Journal Article
GrantInformation_xml – fundername: Korea Health Industry Development Institute
  grantid: HI21C1574
– fundername: Ministry of Health & Welfare, Republic of Korea
  grantid: HI21C1574
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2021R1F1A1054810
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c409t-93c2990329d87b1b0594186cc088b44d908367c51b0457d6de57cc3315623ca43
IEDL.DBID M48
ISSN 2075-4426
IngestDate Sun Oct 26 04:16:58 EDT 2025
Tue Sep 30 17:18:26 EDT 2025
Wed Oct 01 13:10:29 EDT 2025
Fri Jul 25 11:53:11 EDT 2025
Thu Apr 03 07:11:00 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Thu Oct 16 04:24:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords accuracy
diagnosis
middle ear disease
machine learning
tympanic membrane
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-93c2990329d87b1b0594186cc088b44d908367c51b0457d6de57cc3315623ca43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7995-3984
0000-0003-2001-7689
0000-0001-8055-1467
0000-0001-6884-7927
OpenAccessLink https://www.proquest.com/docview/2734644683?pq-origsite=%requestingapplication%&accountid=15518
PMID 36579584
PQID 2734644683
PQPubID 2032376
ParticipantIDs unpaywall_primary_10_3390_jpm12111855
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9697619
proquest_miscellaneous_2759264581
proquest_journals_2734644683
pubmed_primary_36579584
crossref_citationtrail_10_3390_jpm12111855
crossref_primary_10_3390_jpm12111855
PublicationCentury 2000
PublicationDate 20221107
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: 20221107
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of personalized medicine
PublicationTitleAlternate J Pers Med
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Alhudhaif (ref_7) 2021; 7
Crowson (ref_16) 2021; 147
Tsutsumi (ref_14) 2021; 42
ref_13
Korot (ref_9) 2021; 3
Livingstone (ref_18) 2019; 48
ref_20
Zeng (ref_6) 2021; 11
Jeong (ref_10) 2020; 20
Oyewumi (ref_11) 2016; 73
ref_3
Wu (ref_4) 2021; 131
Buchanan (ref_1) 2008; 72
Habib (ref_8) 2022; 47
Pichichero (ref_12) 2001; 155
Khan (ref_5) 2020; 126
Cha (ref_15) 2019; 45
Myburgh (ref_19) 2018; 39
Pichichero (ref_2) 2021; 147
Cai (ref_17) 2021; 11
References_xml – volume: 155
  start-page: 1137
  year: 2001
  ident: ref_12
  article-title: Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media
  publication-title: Arch. Pediatr. Adolesc. Med.
  doi: 10.1001/archpedi.155.10.1137
– volume: 126
  start-page: 384
  year: 2020
  ident: ref_5
  article-title: Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.03.023
– volume: 45
  start-page: 606
  year: 2019
  ident: ref_15
  article-title: Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.06.050
– ident: ref_20
  doi: 10.1371/journal.pone.0229226
– volume: 20
  start-page: 206
  year: 2020
  ident: ref_10
  article-title: Feasibility Study of Google’s Teachable Machine in Diagnosis of Tooth-Marked Tongue
  publication-title: J. Dent. Hyg. Sci.
  doi: 10.17135/jdhs.2020.20.4.206
– volume: 47
  start-page: 401
  year: 2022
  ident: ref_8
  article-title: Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis
  publication-title: Clin. Otolaryngol.
  doi: 10.1111/coa.13925
– ident: ref_13
  doi: 10.3390/app9091827
– volume: 131
  start-page: E2344
  year: 2021
  ident: ref_4
  article-title: Deep Learning for Classification of Pediatric Otitis Media
  publication-title: Laryngoscope
  doi: 10.1002/lary.29302
– volume: 48
  start-page: 66
  year: 2019
  ident: ref_18
  article-title: Building an Otoscopic screening prototype tool using deep learning
  publication-title: J. Otolaryngol.-Head Neck Surg.
  doi: 10.1186/s40463-019-0389-9
– ident: ref_3
  doi: 10.3390/jcm10153198
– volume: 73
  start-page: 129
  year: 2016
  ident: ref_11
  article-title: Objective Evaluation of Otoscopy Skills Among Family and Community Medicine, Pediatric, and Otolaryngology Residents
  publication-title: J. Surg. Educ.
  doi: 10.1016/j.jsurg.2015.07.011
– volume: 39
  start-page: 34
  year: 2018
  ident: ref_19
  article-title: Towards low cost automated smartphone- and cloud-based otitis media diagnosis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.015
– volume: 147
  start-page: e2020049584
  year: 2021
  ident: ref_2
  article-title: Can Machine Learning and AI Replace Otoscopy for Diagnosis of Otitis Media?
  publication-title: Pediatrics
  doi: 10.1542/peds.2020-049584
– volume: 11
  start-page: e041139
  year: 2021
  ident: ref_17
  article-title: Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: A prediction model development and validation study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-041139
– volume: 72
  start-page: 669
  year: 2008
  ident: ref_1
  article-title: Recognition of paediatric otopathology by General Practitioners
  publication-title: Int. J. Pediatr. Otorhinolaryngol.
  doi: 10.1016/j.ijporl.2008.01.030
– volume: 147
  start-page: e2020034546
  year: 2021
  ident: ref_16
  article-title: Machine Learning for Accurate Intraoperative Pediatric Middle Ear Effusion Diagnosis
  publication-title: Pediatrics
  doi: 10.1542/peds.2020-034546
– volume: 3
  start-page: 288
  year: 2021
  ident: ref_9
  article-title: Code-free deep learning for multi-modality medical image classification
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00305-2
– volume: 11
  start-page: 10839
  year: 2021
  ident: ref_6
  article-title: Efficient and accurate identification of ear diseases using an ensemble deep learning model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90345-w
– volume: 7
  start-page: e405
  year: 2021
  ident: ref_7
  article-title: Otitis media detection using tympanic membrane images with a novel multi-class machine learning algorithm
  publication-title: PeerJ. Comput. Sci.
  doi: 10.7717/peerj-cs.405
– volume: 42
  start-page: e1382
  year: 2021
  ident: ref_14
  article-title: A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0000000000003210
SSID ssj0000852260
Score 2.244287
Snippet A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the...
A machine learning platform operated without coding knowledge (Teachable machine ) has been introduced. The aims of the present study were to assess the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1855
SubjectTerms Artificial intelligence
Classification
Ear diseases
Effusion
Learning algorithms
Machine learning
Otitis media
Precision medicine
Thermometers
Tympanic membrane
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFdQX8dtolRXqixB6uc1-PYhobSnCHSIt9C1sdvdq9ZqcNofcf-9Mskl7VPq8A1kyszO_mZ39DcAuIiFnx0GnpUQLzuXcox_UJlV-LLxTYztvh8FMZ_LoJP96Kk63YNa_haG2yt4nto7a145q5HtEw4KxW2r-cfk7palRdLvaj9CwcbSC_9BSjN2B7QkxY41g-_PB7Nv3oeqCAAPxxrh7qMcx39_7ubwgljMMW2IzNN3AmzfbJu-tqqVd_7WLxbWYdPgQHkQwyT512n8EW6F6DHen8br8CfxCgBfbX9esnjMEe2zadk8GFolVz9isawRnTc2-dH13gR2vyUucOzYNF5hOt-JUVrtkVLetVw3brynosSum5KdwcnhwvH-UxukKqcOcrkkNdxSK-MR4rcqsJOKWTEvn0O-Uee4N8VYrJ3AlF8pLH4RyjvOMEJOzOX8Go6quwgtgUnohtNHBCZ57XdpMWWF14MrOdZB5Au_7H1u4SD1OEzAWBaYgpIXimhYS2B2Elx3jxv_FdnoNFfHYXRZXRpLA22EZDwzdguDPqlckIwyiQKGzBJ53Ch2-w6VQBiFZAmpD1YMAkXFvrlTnP1pSbiMNVYQSeDcYxW3bf3n79l_B_Qm9s6D6tdqBUfNnFV4j-mnKN9Gk_wF7JgXq
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgJexjcEBjLSeEHK2tTxR57QNJgmpFY8rNJ4ihzbGWVdUm0JqPz13CVpaBlCSDz7Ejvx-e539vl3APuIhKwZeR1mEjU4lrlDO6iTULmRcFaNTN4Ug5lM5cks_ngmzjZu8VNaJYbi88ZIj9GfhTH6kGE0HkbREH2LGC5d_u5bt5cUSUmc_M118h0pEI0PYGc2_XT4mWrKrZ9ur-VxjO6HX5eXxGlGL9p2RDfQ5c0kyTt1sTSr72ax2PBAx_fArMfeJp5cHNRVdmB__Ebr-D8fdx92O3jKDlt9egC3fPEQbk-6A_hHcIGQsUuoXbEyZwgf2aTJx_Sso2o9Z9M2tZxVJXvfZvJ5droiuzO3bOIvMUBvxKn_a0Y7wWVdsaOS3Cj7xb38GGbHH06PTsKuXkNoMUqswoRbcm58nDitsigjKphIS2vRkmVx7BJiwlZWYEsslJPOC2Ut5xFhMGti_gQGRVn4Z8CkdELoRHsreOx0ZiJlhNGeK5NrL-MA3q4nL7UdmTnV1FikGNTQTKcbMx3Afi-8bDk8_iy2t9aCtFvI1ymx_yBklJoH8LpvxiVI5yr4s8qaZESCuFLoKICnrdL0_XApVIIgLwC1pU69ANF7b7cU8y8NzXciE9pjCuBNr3h_G_7zf5R7AXfHdIWDtsbVHgyqq9q_RGBVZa-6tfMTIQoduA
  priority: 102
  providerName: Unpaywall
Title Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience
URI https://www.ncbi.nlm.nih.gov/pubmed/36579584
https://www.proquest.com/docview/2734644683
https://www.proquest.com/docview/2759264581
https://pubmed.ncbi.nlm.nih.gov/PMC9697619
https://www.mdpi.com/2075-4426/12/11/1855/pdf?version=1667805007
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: GX1
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M48
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQwJeEN8ERmWkwQNSWFPHXw8IjbExIaWa0CqVpyixXdjokm5LBf3vuUvSsLIJ8Rqfksh39v3ufP4dwDYiIZv1vQ5ziRYcy4nDfVCbULm-cFb1s0ndDCYZysNR_HksxmuwvELQTuDljaEd9ZMaXUzf_jpfvMcF_44iTgzZd05nZ0RUhp5HvJ6dh9RRik5e2_Ya67CJXstQW4ekhf6nTX0WIg9KwQzQa4Yxeqrm-t7fr1x1WNdQ6PViytvzYpYtfmbT6RVPdXAP7rYQk-02NnEf1nzxAG4l7SH6Q_iBsK8til2wcsIQArKkrqn0rKVb_caGTXk4q0r2sanG8-x4QXvHiWWJP8MguxanZNslo2xuOa_YXkmukP3hT34Eo4P9473DsO25EFqcpCo03JKD4gPjtMqjnOhcIi2txd0oj2NniM1aWYEjsVBOOi-UtZxHhKNsFvPHsFGUhX8KTEonhDbaW8Fjp_MsUpnItOcqm2gv4wDeLCc2tS0hOfXFmKYYmJAW0itaCGC7E541PBw3i20tNZQubSklBh-EfVLzAF52w7iM6GwEJ6uck4wwiA2FjgJ40ii0-w6XQhkEagGoFVV3AkTRvTpSnHyvqbqNNJQnCuBVZxT_-v1n__F_z-HOgK5gUGpbbcFGdTH3LxAYVXkPNj_sD4--9GD90zjq1faOz0bDo92vvwHaAxFC
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLZKK1EuiGdZKDBI7QVp1U1m53WoEPShlHYjhFKpt2V3ZgKFNBtIoip_jt-Gva82Kuqt57GS1dhjf_Z4PgNsIRKyWeR1mEu04FgOHfpBbULlIuGsirJhOQwm6cveafz5TJytwN_mLQy1VTY-sXTUrrBUI98hGhaM3VLzD5PfIU2NotvVZoRGVo9WcLslxVj9sOPYLy4xhZvuHu2jvre73cODwV4vrKcMhBZzm1louCWXzLvGaZV3ciIw6WhpLZ6_PI6dIf5mZQWuxEI56bxQ1nLeIeRgs5jj796DtZjHBpO_tU8H_S9f2yoPAhrEN1H1MJBzE-38nFwQqxqGSbEcCm_g25ttmuvz8SRbXGaj0bUYePgIHtbglX2srO0xrPjxE7if1NfzT-EXAsq63XbBiiFDcMmSslvTs5rI9TvrV43nbFaw_arPz7PBgrzSuWWJv8D0vRSnMt6UUZ24mM_YXkFBll0xMz-D0zvZ5-ewOi7G_gUwKZ0Q2mhvBY-dzrOOykSmPVfZUHsZB_C-2djU1lTnNHFjlGLKQ1pIr2khgK1WeFIxfPxfbLPRUFof82l6ZZQBvGuX8YDSrQtuVjEnGWEQdQrdCWCjUmj7P1wKZRACBqCWVN0KEPn38sr4_EdJAm6koQpUANutUdz2-S9v__y3sN4bJCfpyVH_-BU86NIbD6qdq01Ynf2Z-9eIvGb5m9q8GXy76xP1Dx1cQBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkGgvqE9qStutBJdKVh7rffiAqpYQQWkiVIHEzbV31y1tiNPGEcpf7K_qjL0xRFTcOO8osXZe387OfgOwg0jIpG2nw0yiBUcytxgHdRwq2xbWqHaaV8NgBkN5eBZ9PhfnK_B38RaG2ioXMbEK1LYwVCNvEQ0L5m6peSv3bREnvf6Hye-QJkjRTetinEbqxyzYvYpuzD_yOHbzKzzOTfeOeqj73W63f3C6fxj6iQOhwXNOGcbcUHjm3dhqlXUyIjPpaGkM-mIWRTYmLmdlBK5EQllpnVDGcN4hFGHSiOPvPoA1uvzCILH26WB48rWp-CC4QazTrh8Jch63Wz8nl8SwhilTLKfFW1j3dsvmw9l4ks6v0tHoRj7sP4YND2TZx9rynsCKGz-F9YG_qn8GvxBc-tbbOStyhkCTDarOTcc8qet3Nqyb0FlZsF7d8-fY6Zwi1IVhA3eJR_lKnEp6U0Y142JWsv2CEi67Zml-Dmf3ss8vYHVcjN1LYFJaIXSsnRE8sjpLOyoVqXZcpbl2Mgrg_WJjE-Npz2n6xijB4w9pIbmhhQB2GuFJzfbxf7HthYYS7_LT5NpAA3jXLKOz0g0MblYxIxkRIwIVuhPAZq3Q5n-4FCpGOBiAWlJ1I0BE4Msr44sfFSF4LGOqRgWw2xjFXZ-_dffnv4V19Kzky9Hw-BU86tJzDyqjq21YLf_M3GsEYWX2xls3g2_37VD_AOsaREs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgJexjcEBjLSeEHK2tTxR57QNJgmpFY8rNJ4ihzbGWVdUm0JqPz13CVpaBlCSDz7Ejvx-e539vl3APuIhKwZeR1mEjU4lrlDO6iTULmRcFaNTN4Ug5lM5cks_ngmzjZu8VNaJYbi88ZIj9GfhTH6kGE0HkbREH2LGC5d_u5bt5cUSUmc_M118h0pEI0PYGc2_XT4mWrKrZ9ur-VxjO6HX5eXxGlGL9p2RDfQ5c0kyTt1sTSr72ax2PBAx_fArMfeJp5cHNRVdmB__Ebr-D8fdx92O3jKDlt9egC3fPEQbk-6A_hHcIGQsUuoXbEyZwgf2aTJx_Sso2o9Z9M2tZxVJXvfZvJ5droiuzO3bOIvMUBvxKn_a0Y7wWVdsaOS3Cj7xb38GGbHH06PTsKuXkNoMUqswoRbcm58nDitsigjKphIS2vRkmVx7BJiwlZWYEsslJPOC2Ut5xFhMGti_gQGRVn4Z8CkdELoRHsreOx0ZiJlhNGeK5NrL-MA3q4nL7UdmTnV1FikGNTQTKcbMx3Afi-8bDk8_iy2t9aCtFvI1ymx_yBklJoH8LpvxiVI5yr4s8qaZESCuFLoKICnrdL0_XApVIIgLwC1pU69ANF7b7cU8y8NzXciE9pjCuBNr3h_G_7zf5R7AXfHdIWDtsbVHgyqq9q_RGBVZa-6tfMTIQoduA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+the+Machine+Learning+Network+to+Diagnose+Tympanic+Membrane+Lesions+without+Coding+Experience&rft.jtitle=Journal+of+personalized+medicine&rft.au=Byun%2C+Hayoung&rft.au=Lee%2C+Seung+Hwan&rft.au=Kim%2C+Tae+Hyun&rft.au=Oh%2C+Jaehoon&rft.date=2022-11-07&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fjpm12111855&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon