Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience
A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and val...
Saved in:
| Published in | Journal of personalized medicine Vol. 12; no. 11; p. 1855 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
07.11.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4426 2075-4426 |
| DOI | 10.3390/jpm12111855 |
Cover
| Abstract | A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane. |
|---|---|
| AbstractList | A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane.A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane. A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the performance of the Teachable machine® for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine® automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine® for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine® could successfully generate the diagnostic network for classifying tympanic membrane. A machine learning platform operated without coding knowledge (Teachable machine ) has been introduced. The aims of the present study were to assess the performance of the Teachable machine for diagnosing tympanic membrane lesions. A total of 3024 tympanic membrane images were used to train and validate the diagnostic performance of the network. Tympanic membrane images were labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), and cholesteatoma. According to the complexity of the categorization, Level I refers to normal versus abnormal tympanic membrane; Level II was defined as normal, OME, or COM + cholesteatoma; and Level III distinguishes between all four pathologies. In addition, eighty representative test images were used to assess the performance. Teachable machine automatically creates a classification network and presents diagnostic performance when images are uploaded. The mean accuracy of the Teachable machine for classifying tympanic membranes as normal or abnormal (Level I) was 90.1%. For Level II, the mean accuracy was 89.0% and for Level III it was 86.2%. The overall accuracy of the classification of the 80 representative tympanic membrane images was 78.75%, and the hit rates for normal, OME, COM, and cholesteatoma were 95.0%, 70.0%, 90.0%, and 60.0%, respectively. Teachable machine could successfully generate the diagnostic network for classifying tympanic membrane. |
| Author | Oh, Jaehoon Lee, Seung Hwan Byun, Hayoung Kim, Tae Hyun Chung, Jae Ho |
| AuthorAffiliation | 2 Machine Learning Research Center for Medical Data, Hanyang University, Seoul 04763, Korea 5 Department of HY-KIST Bio-Convergence, College of Medicine, Hanyang University, Seoul 04763, Korea 1 Department of Otolaryngology & Head and Neck Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea 4 Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea 3 Department of Computer Science, Hanyang University, Seoul 04763, Korea |
| AuthorAffiliation_xml | – name: 2 Machine Learning Research Center for Medical Data, Hanyang University, Seoul 04763, Korea – name: 4 Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea – name: 3 Department of Computer Science, Hanyang University, Seoul 04763, Korea – name: 1 Department of Otolaryngology & Head and Neck Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea – name: 5 Department of HY-KIST Bio-Convergence, College of Medicine, Hanyang University, Seoul 04763, Korea |
| Author_xml | – sequence: 1 givenname: Hayoung surname: Byun fullname: Byun, Hayoung – sequence: 2 givenname: Seung Hwan orcidid: 0000-0003-2001-7689 surname: Lee fullname: Lee, Seung Hwan – sequence: 3 givenname: Tae Hyun orcidid: 0000-0002-7995-3984 surname: Kim fullname: Kim, Tae Hyun – sequence: 4 givenname: Jaehoon orcidid: 0000-0001-8055-1467 surname: Oh fullname: Oh, Jaehoon – sequence: 5 givenname: Jae Ho orcidid: 0000-0001-6884-7927 surname: Chung fullname: Chung, Jae Ho |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36579584$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEYhC1UREvpiTuyxAUJAv5e-4KEQgtIKVzK2fJ6ncTprr21vYT8e1xSIFQCX2zpfWY07_gxOAoxOACeYvSaUoXebMYBE4yx5PwBOCGo4TPGiDg6eB-Ds5w3qB7JCRHoETimgjeKS3YCri-cyb71vS87GJewrB28NHbtg4MLZ1LwYQU_u7KN6RqWCN97swoxO3i1G0YTvIWXbmiT-YlnH0OGW1_WcSpwHrtb8fn30SXvgnVPwMOl6bM7u7tPwdeL86v5x9niy4dP83eLmWVIlZmiliiFKFGdbFrcIq4YlsJaJGXLWKeQpKKxvE4YbzrROd5YSynmglBrGD0Fr_a-UxjNbmv6Xo_JDybtNEb6tjZ9UFvF3-7xcWoH11kXSjJ_JNF4_fck-LVexW9aCdUIrKrBizuDFG8ml4sefLau72srccqaNFwRwbjEFX1-D93EKYXaRqUoE4wJSSv17DDR7yi_vq0CeA_YFHNObqmtL6bU-mtA3_9jzZf3NP8r5QeG8bkw |
| CitedBy_id | crossref_primary_10_1016_j_anl_2024_04_003 crossref_primary_10_1177_10668969231204955 crossref_primary_10_1016_j_ijporl_2023_111741 crossref_primary_10_7759_cureus_44591 |
| Cites_doi | 10.1001/archpedi.155.10.1137 10.1016/j.neunet.2020.03.023 10.1016/j.ebiom.2019.06.050 10.1371/journal.pone.0229226 10.17135/jdhs.2020.20.4.206 10.1111/coa.13925 10.3390/app9091827 10.1002/lary.29302 10.1186/s40463-019-0389-9 10.3390/jcm10153198 10.1016/j.jsurg.2015.07.011 10.1016/j.bspc.2017.07.015 10.1542/peds.2020-049584 10.1136/bmjopen-2020-041139 10.1016/j.ijporl.2008.01.030 10.1542/peds.2020-034546 10.1038/s42256-021-00305-2 10.1038/s41598-021-90345-w 10.7717/peerj-cs.405 10.1097/MAO.0000000000003210 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/jpm12111855 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection ProQuest Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4426 |
| ExternalDocumentID | 10.3390/jpm12111855 PMC9697619 36579584 10_3390_jpm12111855 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Korea Health Industry Development Institute grantid: HI21C1574 – fundername: Ministry of Health & Welfare, Republic of Korea grantid: HI21C1574 – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1F1A1054810 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c409t-93c2990329d87b1b0594186cc088b44d908367c51b0457d6de57cc3315623ca43 |
| IEDL.DBID | M48 |
| ISSN | 2075-4426 |
| IngestDate | Sun Oct 26 04:16:58 EDT 2025 Tue Sep 30 17:18:26 EDT 2025 Wed Oct 01 13:10:29 EDT 2025 Fri Jul 25 11:53:11 EDT 2025 Thu Apr 03 07:11:00 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Thu Oct 16 04:24:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | accuracy diagnosis middle ear disease machine learning tympanic membrane |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-93c2990329d87b1b0594186cc088b44d908367c51b0457d6de57cc3315623ca43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7995-3984 0000-0003-2001-7689 0000-0001-8055-1467 0000-0001-6884-7927 |
| OpenAccessLink | https://www.proquest.com/docview/2734644683?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 36579584 |
| PQID | 2734644683 |
| PQPubID | 2032376 |
| ParticipantIDs | unpaywall_primary_10_3390_jpm12111855 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9697619 proquest_miscellaneous_2759264581 proquest_journals_2734644683 pubmed_primary_36579584 crossref_citationtrail_10_3390_jpm12111855 crossref_primary_10_3390_jpm12111855 |
| PublicationCentury | 2000 |
| PublicationDate | 20221107 |
| PublicationDateYYYYMMDD | 2022-11-07 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221107 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Journal of personalized medicine |
| PublicationTitleAlternate | J Pers Med |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Alhudhaif (ref_7) 2021; 7 Crowson (ref_16) 2021; 147 Tsutsumi (ref_14) 2021; 42 ref_13 Korot (ref_9) 2021; 3 Livingstone (ref_18) 2019; 48 ref_20 Zeng (ref_6) 2021; 11 Jeong (ref_10) 2020; 20 Oyewumi (ref_11) 2016; 73 ref_3 Wu (ref_4) 2021; 131 Buchanan (ref_1) 2008; 72 Habib (ref_8) 2022; 47 Pichichero (ref_12) 2001; 155 Khan (ref_5) 2020; 126 Cha (ref_15) 2019; 45 Myburgh (ref_19) 2018; 39 Pichichero (ref_2) 2021; 147 Cai (ref_17) 2021; 11 |
| References_xml | – volume: 155 start-page: 1137 year: 2001 ident: ref_12 article-title: Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media publication-title: Arch. Pediatr. Adolesc. Med. doi: 10.1001/archpedi.155.10.1137 – volume: 126 start-page: 384 year: 2020 ident: ref_5 article-title: Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.03.023 – volume: 45 start-page: 606 year: 2019 ident: ref_15 article-title: Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.06.050 – ident: ref_20 doi: 10.1371/journal.pone.0229226 – volume: 20 start-page: 206 year: 2020 ident: ref_10 article-title: Feasibility Study of Google’s Teachable Machine in Diagnosis of Tooth-Marked Tongue publication-title: J. Dent. Hyg. Sci. doi: 10.17135/jdhs.2020.20.4.206 – volume: 47 start-page: 401 year: 2022 ident: ref_8 article-title: Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis publication-title: Clin. Otolaryngol. doi: 10.1111/coa.13925 – ident: ref_13 doi: 10.3390/app9091827 – volume: 131 start-page: E2344 year: 2021 ident: ref_4 article-title: Deep Learning for Classification of Pediatric Otitis Media publication-title: Laryngoscope doi: 10.1002/lary.29302 – volume: 48 start-page: 66 year: 2019 ident: ref_18 article-title: Building an Otoscopic screening prototype tool using deep learning publication-title: J. Otolaryngol.-Head Neck Surg. doi: 10.1186/s40463-019-0389-9 – ident: ref_3 doi: 10.3390/jcm10153198 – volume: 73 start-page: 129 year: 2016 ident: ref_11 article-title: Objective Evaluation of Otoscopy Skills Among Family and Community Medicine, Pediatric, and Otolaryngology Residents publication-title: J. Surg. Educ. doi: 10.1016/j.jsurg.2015.07.011 – volume: 39 start-page: 34 year: 2018 ident: ref_19 article-title: Towards low cost automated smartphone- and cloud-based otitis media diagnosis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.015 – volume: 147 start-page: e2020049584 year: 2021 ident: ref_2 article-title: Can Machine Learning and AI Replace Otoscopy for Diagnosis of Otitis Media? publication-title: Pediatrics doi: 10.1542/peds.2020-049584 – volume: 11 start-page: e041139 year: 2021 ident: ref_17 article-title: Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: A prediction model development and validation study publication-title: BMJ Open doi: 10.1136/bmjopen-2020-041139 – volume: 72 start-page: 669 year: 2008 ident: ref_1 article-title: Recognition of paediatric otopathology by General Practitioners publication-title: Int. J. Pediatr. Otorhinolaryngol. doi: 10.1016/j.ijporl.2008.01.030 – volume: 147 start-page: e2020034546 year: 2021 ident: ref_16 article-title: Machine Learning for Accurate Intraoperative Pediatric Middle Ear Effusion Diagnosis publication-title: Pediatrics doi: 10.1542/peds.2020-034546 – volume: 3 start-page: 288 year: 2021 ident: ref_9 article-title: Code-free deep learning for multi-modality medical image classification publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00305-2 – volume: 11 start-page: 10839 year: 2021 ident: ref_6 article-title: Efficient and accurate identification of ear diseases using an ensemble deep learning model publication-title: Sci. Rep. doi: 10.1038/s41598-021-90345-w – volume: 7 start-page: e405 year: 2021 ident: ref_7 article-title: Otitis media detection using tympanic membrane images with a novel multi-class machine learning algorithm publication-title: PeerJ. Comput. Sci. doi: 10.7717/peerj-cs.405 – volume: 42 start-page: e1382 year: 2021 ident: ref_14 article-title: A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images publication-title: Otol. Neurotol. doi: 10.1097/MAO.0000000000003210 |
| SSID | ssj0000852260 |
| Score | 2.244287 |
| Snippet | A machine learning platform operated without coding knowledge (Teachable machine®) has been introduced. The aims of the present study were to assess the... A machine learning platform operated without coding knowledge (Teachable machine ) has been introduced. The aims of the present study were to assess the... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1855 |
| SubjectTerms | Artificial intelligence Classification Ear diseases Effusion Learning algorithms Machine learning Otitis media Precision medicine Thermometers Tympanic membrane |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFdQX8dtolRXqixB6uc1-PYhobSnCHSIt9C1sdvdq9ZqcNofcf-9Mskl7VPq8A1kyszO_mZ39DcAuIiFnx0GnpUQLzuXcox_UJlV-LLxTYztvh8FMZ_LoJP96Kk63YNa_haG2yt4nto7a145q5HtEw4KxW2r-cfk7palRdLvaj9CwcbSC_9BSjN2B7QkxY41g-_PB7Nv3oeqCAAPxxrh7qMcx39_7ubwgljMMW2IzNN3AmzfbJu-tqqVd_7WLxbWYdPgQHkQwyT512n8EW6F6DHen8br8CfxCgBfbX9esnjMEe2zadk8GFolVz9isawRnTc2-dH13gR2vyUucOzYNF5hOt-JUVrtkVLetVw3brynosSum5KdwcnhwvH-UxukKqcOcrkkNdxSK-MR4rcqsJOKWTEvn0O-Uee4N8VYrJ3AlF8pLH4RyjvOMEJOzOX8Go6quwgtgUnohtNHBCZ57XdpMWWF14MrOdZB5Au_7H1u4SD1OEzAWBaYgpIXimhYS2B2Elx3jxv_FdnoNFfHYXRZXRpLA22EZDwzdguDPqlckIwyiQKGzBJ53Ch2-w6VQBiFZAmpD1YMAkXFvrlTnP1pSbiMNVYQSeDcYxW3bf3n79l_B_Qm9s6D6tdqBUfNnFV4j-mnKN9Gk_wF7JgXq priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgJexjcEBjLSeEHK2tTxR57QNJgmpFY8rNJ4ihzbGWVdUm0JqPz13CVpaBlCSDz7Ejvx-e539vl3APuIhKwZeR1mEjU4lrlDO6iTULmRcFaNTN4Ug5lM5cks_ngmzjZu8VNaJYbi88ZIj9GfhTH6kGE0HkbREH2LGC5d_u5bt5cUSUmc_M118h0pEI0PYGc2_XT4mWrKrZ9ur-VxjO6HX5eXxGlGL9p2RDfQ5c0kyTt1sTSr72ax2PBAx_fArMfeJp5cHNRVdmB__Ebr-D8fdx92O3jKDlt9egC3fPEQbk-6A_hHcIGQsUuoXbEyZwgf2aTJx_Sso2o9Z9M2tZxVJXvfZvJ5droiuzO3bOIvMUBvxKn_a0Y7wWVdsaOS3Cj7xb38GGbHH06PTsKuXkNoMUqswoRbcm58nDitsigjKphIS2vRkmVx7BJiwlZWYEsslJPOC2Ut5xFhMGti_gQGRVn4Z8CkdELoRHsreOx0ZiJlhNGeK5NrL-MA3q4nL7UdmTnV1FikGNTQTKcbMx3Afi-8bDk8_iy2t9aCtFvI1ymx_yBklJoH8LpvxiVI5yr4s8qaZESCuFLoKICnrdL0_XApVIIgLwC1pU69ANF7b7cU8y8NzXciE9pjCuBNr3h_G_7zf5R7AXfHdIWDtsbVHgyqq9q_RGBVZa-6tfMTIQoduA priority: 102 providerName: Unpaywall |
| Title | Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36579584 https://www.proquest.com/docview/2734644683 https://www.proquest.com/docview/2759264581 https://pubmed.ncbi.nlm.nih.gov/PMC9697619 https://www.mdpi.com/2075-4426/12/11/1855/pdf?version=1667805007 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4426 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M48 dateStart: 20110301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQwJeEN8ERmWkwQNSWFPHXw8IjbExIaWa0CqVpyixXdjokm5LBf3vuUvSsLIJ8Rqfksh39v3ufP4dwDYiIZv1vQ5ziRYcy4nDfVCbULm-cFb1s0ndDCYZysNR_HksxmuwvELQTuDljaEd9ZMaXUzf_jpfvMcF_44iTgzZd05nZ0RUhp5HvJ6dh9RRik5e2_Ya67CJXstQW4ekhf6nTX0WIg9KwQzQa4Yxeqrm-t7fr1x1WNdQ6PViytvzYpYtfmbT6RVPdXAP7rYQk-02NnEf1nzxAG4l7SH6Q_iBsK8til2wcsIQArKkrqn0rKVb_caGTXk4q0r2sanG8-x4QXvHiWWJP8MguxanZNslo2xuOa_YXkmukP3hT34Eo4P9473DsO25EFqcpCo03JKD4gPjtMqjnOhcIi2txd0oj2NniM1aWYEjsVBOOi-UtZxHhKNsFvPHsFGUhX8KTEonhDbaW8Fjp_MsUpnItOcqm2gv4wDeLCc2tS0hOfXFmKYYmJAW0itaCGC7E541PBw3i20tNZQubSklBh-EfVLzAF52w7iM6GwEJ6uck4wwiA2FjgJ40ii0-w6XQhkEagGoFVV3AkTRvTpSnHyvqbqNNJQnCuBVZxT_-v1n__F_z-HOgK5gUGpbbcFGdTH3LxAYVXkPNj_sD4--9GD90zjq1faOz0bDo92vvwHaAxFC |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLZKK1EuiGdZKDBI7QVp1U1m53WoEPShlHYjhFKpt2V3ZgKFNBtIoip_jt-Gva82Kuqt57GS1dhjf_Z4PgNsIRKyWeR1mEu04FgOHfpBbULlIuGsirJhOQwm6cveafz5TJytwN_mLQy1VTY-sXTUrrBUI98hGhaM3VLzD5PfIU2NotvVZoRGVo9WcLslxVj9sOPYLy4xhZvuHu2jvre73cODwV4vrKcMhBZzm1louCWXzLvGaZV3ciIw6WhpLZ6_PI6dIf5mZQWuxEI56bxQ1nLeIeRgs5jj796DtZjHBpO_tU8H_S9f2yoPAhrEN1H1MJBzE-38nFwQqxqGSbEcCm_g25ttmuvz8SRbXGaj0bUYePgIHtbglX2srO0xrPjxE7if1NfzT-EXAsq63XbBiiFDcMmSslvTs5rI9TvrV43nbFaw_arPz7PBgrzSuWWJv8D0vRSnMt6UUZ24mM_YXkFBll0xMz-D0zvZ5-ewOi7G_gUwKZ0Q2mhvBY-dzrOOykSmPVfZUHsZB_C-2djU1lTnNHFjlGLKQ1pIr2khgK1WeFIxfPxfbLPRUFof82l6ZZQBvGuX8YDSrQtuVjEnGWEQdQrdCWCjUmj7P1wKZRACBqCWVN0KEPn38sr4_EdJAm6koQpUANutUdz2-S9v__y3sN4bJCfpyVH_-BU86NIbD6qdq01Ynf2Z-9eIvGb5m9q8GXy76xP1Dx1cQBw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkGgvqE9qStutBJdKVh7rffiAqpYQQWkiVIHEzbV31y1tiNPGEcpf7K_qjL0xRFTcOO8osXZe387OfgOwg0jIpG2nw0yiBUcytxgHdRwq2xbWqHaaV8NgBkN5eBZ9PhfnK_B38RaG2ioXMbEK1LYwVCNvEQ0L5m6peSv3bREnvf6Hye-QJkjRTetinEbqxyzYvYpuzD_yOHbzKzzOTfeOeqj73W63f3C6fxj6iQOhwXNOGcbcUHjm3dhqlXUyIjPpaGkM-mIWRTYmLmdlBK5EQllpnVDGcN4hFGHSiOPvPoA1uvzCILH26WB48rWp-CC4QazTrh8Jch63Wz8nl8SwhilTLKfFW1j3dsvmw9l4ks6v0tHoRj7sP4YND2TZx9rynsCKGz-F9YG_qn8GvxBc-tbbOStyhkCTDarOTcc8qet3Nqyb0FlZsF7d8-fY6Zwi1IVhA3eJR_lKnEp6U0Y142JWsv2CEi67Zml-Dmf3ss8vYHVcjN1LYFJaIXSsnRE8sjpLOyoVqXZcpbl2Mgrg_WJjE-Npz2n6xijB4w9pIbmhhQB2GuFJzfbxf7HthYYS7_LT5NpAA3jXLKOz0g0MblYxIxkRIwIVuhPAZq3Q5n-4FCpGOBiAWlJ1I0BE4Msr44sfFSF4LGOqRgWw2xjFXZ-_dffnv4V19Kzky9Hw-BU86tJzDyqjq21YLf_M3GsEYWX2xls3g2_37VD_AOsaREs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgJexjcEBjLSeEHK2tTxR57QNJgmpFY8rNJ4ihzbGWVdUm0JqPz13CVpaBlCSDz7Ejvx-e539vl3APuIhKwZeR1mEjU4lrlDO6iTULmRcFaNTN4Ug5lM5cks_ngmzjZu8VNaJYbi88ZIj9GfhTH6kGE0HkbREH2LGC5d_u5bt5cUSUmc_M118h0pEI0PYGc2_XT4mWrKrZ9ur-VxjO6HX5eXxGlGL9p2RDfQ5c0kyTt1sTSr72ax2PBAx_fArMfeJp5cHNRVdmB__Ebr-D8fdx92O3jKDlt9egC3fPEQbk-6A_hHcIGQsUuoXbEyZwgf2aTJx_Sso2o9Z9M2tZxVJXvfZvJ5droiuzO3bOIvMUBvxKn_a0Y7wWVdsaOS3Cj7xb38GGbHH06PTsKuXkNoMUqswoRbcm58nDitsigjKphIS2vRkmVx7BJiwlZWYEsslJPOC2Ut5xFhMGti_gQGRVn4Z8CkdELoRHsreOx0ZiJlhNGeK5NrL-MA3q4nL7UdmTnV1FikGNTQTKcbMx3Afi-8bDk8_iy2t9aCtFvI1ymx_yBklJoH8LpvxiVI5yr4s8qaZESCuFLoKICnrdL0_XApVIIgLwC1pU69ANF7b7cU8y8NzXciE9pjCuBNr3h_G_7zf5R7AXfHdIWDtsbVHgyqq9q_RGBVZa-6tfMTIQoduA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+the+Machine+Learning+Network+to+Diagnose+Tympanic+Membrane+Lesions+without+Coding+Experience&rft.jtitle=Journal+of+personalized+medicine&rft.au=Byun%2C+Hayoung&rft.au=Lee%2C+Seung+Hwan&rft.au=Kim%2C+Tae+Hyun&rft.au=Oh%2C+Jaehoon&rft.date=2022-11-07&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fjpm12111855&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |