From data to artificial intelligence: evaluating the readiness of gastrointestinal endoscopy datasets

The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Co...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Canadian Association of Gastroenterology Vol. 8; no. Supplement_2; pp. S81 - S86
Main Authors Elamin, Sami, Johri, Shreya, Rajpurkar, Pranav, Geisler, Enrik, Berzin, Tyler M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2025
Subjects
Online AccessGet full text
ISSN2515-2084
2515-2092
2515-2092
DOI10.1093/jcag/gwae041

Cover

Abstract The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy.
AbstractList The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy.
The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy.The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy.
Author Berzin, Tyler M
Elamin, Sami
Geisler, Enrik
Rajpurkar, Pranav
Johri, Shreya
Author_xml – sequence: 1
  givenname: Sami
  orcidid: 0009-0007-4835-6179
  surname: Elamin
  fullname: Elamin, Sami
– sequence: 2
  givenname: Shreya
  surname: Johri
  fullname: Johri, Shreya
– sequence: 3
  givenname: Pranav
  surname: Rajpurkar
  fullname: Rajpurkar, Pranav
– sequence: 4
  givenname: Enrik
  surname: Geisler
  fullname: Geisler, Enrik
– sequence: 5
  givenname: Tyler M
  surname: Berzin
  fullname: Berzin, Tyler M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39990508$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFvFSEQh4mpsbX25tlw9OC2sMu64MU0jbVNmvRSz2QWhi3NPngC2-b99_J8z2ovnpiEb34D37wlByEGJOQ9Z6ecqe7swcB0Nj0BMsFfkaO2533TMtUePNdSHJKTnB8YYy0XbOj6N-SwU0qxnskjgpcprqiFArRECql4542HmfpQcJ79hMHgF4qPMC9QfJhouUeaEKwPmDONjk6QS4pbPlegtmKwMZu43vzOzVjyO_LawZzxZH8ekx-X3-4urpqb2-_XF-c3jRFMlUZxh8KAk-3AzDCClHbsbf2nMmJgvbGyk6Ny7cjs6FQ_yE5YMTInOyt7aUV3TJpd7hLWsHmCedbr5FeQNpozvTWmt8b03ljlv-749TKu0BoMJcHfnghev7wJ_l5P8VFzLkUr1VATPu4TUvy5VAN65bOp5iBgXLLu-MDaz1JyVtEP_w57nvJnGRX4tANMijkndP9__C_uBKFQ
Cites_doi 10.3748/wjg.v27.i40.6794
10.1055/a-1468-3964
10.1007/s11548-020-02127-w
10.1136/gutjnl-2017-314547
10.1055/s-0029-1214949
10.1007/s10278-023-00844-7
10.1038/s41597-022-01726-3
10.1016/j.compmedimag.2015.02.007
10.1016/j.gie.2020.07.060
10.1007/s11633-022-1371-y
10.1145/3193165
10.1038/s41597-023-02460-0
10.1007/s11548-013-0926-3
10.21227/F8XG-WB80
10.1371/journal.pone.0255809
10.17632/7grhw5tv7n.6
10.1038/s41597-023-01981-y
10.1109/JBHI.2022.3217944
10.3390/app10238501
10.1016/j.giec.2020.12.009
10.1038/s41597-020-00622-y
10.1155/2017/4037190
10.1109/TMI.2015.2487997
10.1177/1756284820910659
10.1016/j.gastha.2022.02.025
10.1056/EVIDoa2200003
10.1109/TMI.2016.2547947
10.1002/deo2.258
10.1038/s41597-021-00920-z
10.1016/S2589-7500(24)00047-5
10.1007/978-3-030-37734-2_37
10.1136/gutjnl-2019-319347
10.1186/s12880-020-00482-3
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology.
The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology.
– notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. 2025
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/jcag/gwae041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2515-2092
EndPage S86
ExternalDocumentID 10.1093/jcag/gwae041
PMC11842897
39990508
10_1093_jcag_gwae041
Genre Journal Article
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AOIJS
BAYMD
BCNDV
CITATION
EMOBN
GROUPED_DOAJ
HYE
IAO
IHR
ITC
KSI
ML0
M~E
O9-
OK1
RPM
TOX
7X7
8FI
8FJ
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
HMCUK
NPM
PIMPY
UKHRP
7X8
5PM
ADTOC
PHGZM
PHGZT
UNPAY
ID FETCH-LOGICAL-c409t-91fe4caf8270c7ba88db5d0939c4705cd838b9f2b0dbf957834d4b0f83d858d43
IEDL.DBID UNPAY
ISSN 2515-2084
2515-2092
IngestDate Sun Oct 26 04:10:44 EDT 2025
Thu Aug 21 18:27:14 EDT 2025
Fri Jul 11 12:22:47 EDT 2025
Thu Apr 03 07:00:26 EDT 2025
Wed Oct 01 00:24:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_2
Keywords Datasets
Gastroenterology
Machine learning
computer vision
AI
Data
Endoscopy
Algorithm
Artificial intelligence
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-91fe4caf8270c7ba88db5d0939c4705cd838b9f2b0dbf957834d4b0f83d858d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-4835-6179
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/jcag/gwae041
PMID 39990508
PQID 3170268810
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_jcag_gwae041
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11842897
proquest_miscellaneous_3170268810
pubmed_primary_39990508
crossref_primary_10_1093_jcag_gwae041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Journal of the Canadian Association of Gastroenterology
PublicationTitleAlternate J Can Assoc Gastroenterol
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jha (2025022107390421200_CIT0036)
Misawa (2025022107390421200_CIT0025) 2021; 93
Wang (2025022107390421200_CIT0030) 2023
European Parliament: Directorate-General for Parliamentary Research Services (2025022107390421200_CIT0044) 2022
Ozawa (2025022107390421200_CIT0004) 2020; 13
Byrne (2025022107390421200_CIT0005) 2019; 68
Sánchez-Peralta (2025022107390421200_CIT0020) 2020; 10
Ma (2025022107390421200_CIT0024) 2021
Smedsrud (2025022107390421200_CIT0033) 2021; 8
Vázquez (2025022107390421200_CIT0016) 2017; 2017
Aabakken (2025022107390421200_CIT0043) 2009; 41
He (2025022107390421200_CIT0010) 2019
Li (2025022107390421200_CIT0023) 2021; 16
Borgli (2025022107390421200_CIT0022) 2020; 7
Wang (2025022107390421200_CIT0041) 2023; 10
Mesejo (2025022107390421200_CIT0014) 2016; 35
Yang (2025022107390421200_CIT0037) 2023; 27
Wang (2025022107390421200_CIT0019) 2020; 20
Dekker (2025022107390421200_CIT0031)
U.S. Food and Drug Administration (2025022107390421200_CIT0008)
Ali (2025022107390421200_CIT0021) 2020
Ji (2025022107390421200_CIT0026) 2022; 19
Bernal (2025022107390421200_CIT0013) 2015; 43
Daniel (2025022107390421200_CIT0001) 2022; 1
Cychnerski (2025022107390421200_CIT0027) 2022
Charoen (2025022107390421200_CIT0034) 2022; 9
de Maissin (2025022107390421200_CIT0038) 2021; 9
Pogorelov (2025022107390421200_CIT0042) 2017
Sullivan (2025022107390421200_CIT0007) 2021; 31
Yokote (2025022107390421200_CIT0040) 2024; 4
Guimarães (2025022107390421200_CIT0011) 2020; 69
Jha (2025022107390421200_CIT0018) 2020
Zhu (2025022107390421200_CIT0009) 2023; 36
Forootan (2025022107390421200_CIT0029) 2024; 6
Konstantin PogorelovSimula Research Laboratory (2025022107390421200_CIT0017)
Ali (2025022107390421200_CIT0028) 2023; 10
Barua (2025022107390421200_CIT0006) 2022; 1
García-Peraza-Herrera (2025022107390421200_CIT0035) 2020; 15
Silva (2025022107390421200_CIT0012) 2014; 9
Tajbakhsh (2025022107390421200_CIT0015) 2016; 35
Kröner (2025022107390421200_CIT0002) 2021; 27
Ionescu (2025022107390421200_CIT0032) 2023
Han (2025022107390421200_CIT0003) 2024; 6
Jha (2025022107390421200_CIT0039) 2021
References_xml – volume: 27
  start-page: 6794
  issue: 40
  year: 2021
  ident: 2025022107390421200_CIT0002
  article-title: Artificial intelligence in gastroenterology: a state-of-the-art review
  publication-title: World J Gastroenterol.
  doi: 10.3748/wjg.v27.i40.6794
– volume: 9
  start-page: E1136
  issue: 7
  year: 2021
  ident: 2025022107390421200_CIT0038
  article-title: Multi-expert annotation of Crohn’s disease images of the small bowel for automatic detection using a convolutional recurrent attention neural network
  publication-title: Endosc Int Open
  doi: 10.1055/a-1468-3964
– volume: 15
  start-page: 651
  issue: 4
  year: 2020
  ident: 2025022107390421200_CIT0035
  article-title: Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02127-w
– year: 2022
  ident: 2025022107390421200_CIT0044
  publication-title: Artificial intelligence in healthcare – Applications, risks, and ethical and societal impacts
– volume: 68
  start-page: 94
  issue: 1
  year: 2019
  ident: 2025022107390421200_CIT0005
  article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
  publication-title: Gut.
  doi: 10.1136/gutjnl-2017-314547
– volume: 41
  start-page: 727
  issue: 8
  year: 2009
  ident: 2025022107390421200_CIT0043
  article-title: Minimal standard terminology for gastrointestinal endoscopy - MST 3.0
  publication-title: Endoscopy.
  doi: 10.1055/s-0029-1214949
– start-page: 370
  volume-title: Overview of the ImageCLEF 2023: Multimedia Retrieval in Medical, Social Media and Internet Applications
  year: 2023
  ident: 2025022107390421200_CIT0032
– volume: 36
  start-page: 2578
  issue: 6
  year: 2023
  ident: 2025022107390421200_CIT0009
  article-title: Public imaging datasets of gastrointestinal endoscopy for artificial intelligence: a review
  publication-title: J Digit Imaging.
  doi: 10.1007/s10278-023-00844-7
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: 2025022107390421200_CIT0034
  article-title: Rhode Island gastroenterology video capsule endoscopy data set
  publication-title: Sci Data.
  doi: 10.1038/s41597-022-01726-3
– volume: 43
  start-page: 99
  issue: July 2015
  year: 2015
  ident: 2025022107390421200_CIT0013
  article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians
  publication-title: Comput Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2015.02.007
– ident: 2025022107390421200_CIT0031
  publication-title: ClinicalTrials.gov. Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA) NCT03822390
– volume: 93
  start-page: 960
  issue: 4
  year: 2021
  ident: 2025022107390421200_CIT0025
  article-title: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video)
  publication-title: Gastrointest Endosc.
  doi: 10.1016/j.gie.2020.07.060
– volume: 19
  start-page: 531
  issue: 6
  year: 2022
  ident: 2025022107390421200_CIT0026
  article-title: Video polyp segmentation: a deep learning perspective
  publication-title: Mach Intell Res
  doi: 10.1007/s11633-022-1371-y
– volume-title: Nerthus: A Bowel Preparation Quality Video Dataset
  year: 2017
  ident: 2025022107390421200_CIT0042
  doi: 10.1145/3193165
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 2025022107390421200_CIT0041
  article-title: A real-world dataset and benchmark for foundation model adaptation in medical image classification
  publication-title: Sci Data.
  doi: 10.1038/s41597-023-02460-0
– volume: 9
  start-page: 283
  issue: 2
  year: 2014
  ident: 2025022107390421200_CIT0012
  article-title: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0926-3
– volume-title: Endoscopy Disease Detection and Segmentation (EDD2020)
  year: 2020
  ident: 2025022107390421200_CIT0021
  doi: 10.21227/F8XG-WB80
– volume: 16
  start-page: e0255809
  issue: 8
  year: 2021
  ident: 2025022107390421200_CIT0023
  article-title: Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0255809
– year: 2022
  ident: 2025022107390421200_CIT0027
  article-title: ERS: a novel comprehensive endoscopy image dataset for machine learning, compliant with the MST 3.0 specification
– volume: 6
  year: 2024
  ident: 2025022107390421200_CIT0029
  article-title: ERCPMP-v5: An Endoscopic Image and Video Dataset for Recognition of Colorectal Polyps Morphology and Pathology
  publication-title: Mendeley Data
  doi: 10.17632/7grhw5tv7n.6
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 2025022107390421200_CIT0028
  article-title: A multi-centre polyp detection and segmentation dataset for generalisability assessment
  publication-title: Sci Data.
  doi: 10.1038/s41597-023-01981-y
– start-page: 37
  year: 2021
  ident: 2025022107390421200_CIT0039
  article-title: ‘Nanonet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and Colonoscopy’
  publication-title: Proceedings of the IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS)
– volume: 27
  start-page: 7
  issue: 1
  year: 2023
  ident: 2025022107390421200_CIT0037
  article-title: A benchmark dataset of endoscopic images and novel deep learning method to detect intestinal metaplasia and gastritis atrophy
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3217944
– volume: 10
  start-page: 8501
  issue: 23
  year: 2020
  ident: 2025022107390421200_CIT0020
  article-title: PICCOLO white-light and narrow-band imaging colonoscopic dataset: a performance comparative of models and datasets
  publication-title: Appl Sci
  doi: 10.3390/app10238501
– start-page: 387
  volume-title: LDPolypVideo Benchmark: A Large-Scale Colonoscopy Video Dataset of Diverse Polyps
  year: 2021
  ident: 2025022107390421200_CIT0024
– volume-title: Association for Computing Machinery Digital Library
  ident: 2025022107390421200_CIT0017
  article-title: KVASIR. A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection
– volume: 31
  start-page: 387
  issue: 2
  year: 2021
  ident: 2025022107390421200_CIT0007
  article-title: Artificial intelligence research and development for application in video capsule endoscopy
  publication-title: Gastrointest Endosc Clin N Am.
  doi: 10.1016/j.giec.2020.12.009
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 2025022107390421200_CIT0022
  article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
  publication-title: Sci Data.
  doi: 10.1038/s41597-020-00622-y
– ident: 2025022107390421200_CIT0008
– volume: 2017
  start-page: 4037190
  year: 2017
  ident: 2025022107390421200_CIT0016
  article-title: A benchmark for endoluminal scene segmentation of colonoscopy images
  publication-title: J Healthc Eng
  doi: 10.1155/2017/4037190
– year: 2019
  ident: 2025022107390421200_CIT0010
– volume: 35
  start-page: 630
  issue: 2
  year: 2016
  ident: 2025022107390421200_CIT0015
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2015.2487997
– volume: 13
  start-page: 1756284820910659
  issue: 13
  year: 2020
  ident: 2025022107390421200_CIT0004
  article-title: Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks
  publication-title: Therap Adv Gastroenterol
  doi: 10.1177/1756284820910659
– volume: 1
  start-page: 581
  issue: 4
  year: 2022
  ident: 2025022107390421200_CIT0001
  article-title: Simonetto. Artificial intelligence and the future of gastroenterology and hepatology
  publication-title: Gastro Hep Adv
  doi: 10.1016/j.gastha.2022.02.025
– volume: 1
  start-page: EVIDoa2200003
  issue: 6
  year: 2022
  ident: 2025022107390421200_CIT0006
  article-title: Real-time artificial intelligence-based optical diagnosis of neoplastic polyps during colonoscopy
  publication-title: NEJM Evid.
  doi: 10.1056/EVIDoa2200003
– volume: 35
  start-page: 2051
  issue: 9
  year: 2016
  ident: 2025022107390421200_CIT0014
  article-title: Computer-aided classification of gastrointestinal lesions in regular colonoscopy
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2016.2547947
– start-page: 101
  volume-title: Foundation Model for Endoscopy Video Analysis via Large-Scale Self-supervised Pre-train
  year: 2023
  ident: 2025022107390421200_CIT0030
– ident: 2025022107390421200_CIT0036
  article-title: GastroVision: A multi-class endoscopy image dataset for computer aided gastrointestinal disease detection. ICML Workshop on Machine Learning for Multimodal Healthcare Data (ML4MHD 2023)
– volume: 4
  start-page: e258
  issue: 1
  year: 2024
  ident: 2025022107390421200_CIT0040
  article-title: Small bowel capsule endoscopy examination and open access database with artificial intelligence: the SEE-artificial intelligence project
  publication-title: DEN Open
  doi: 10.1002/deo2.258
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 2025022107390421200_CIT0033
  article-title: Kvasir-Capsule, a video capsule endoscopy dataset
  publication-title: Sci Data.
  doi: 10.1038/s41597-021-00920-z
– volume: 6
  start-page: e367
  issue: 5
  year: 2024
  ident: 2025022107390421200_CIT0003
  article-title: Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review
  publication-title: Lancet Digit Health.
  doi: 10.1016/S2589-7500(24)00047-5
– start-page: 451
  year: 2020
  ident: 2025022107390421200_CIT0018
  article-title: ‘Kvasir-Seg: A Segmented Polyp Dataset’
  publication-title: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26
  doi: 10.1007/978-3-030-37734-2_37
– volume: 69
  start-page: 4
  issue: 1
  year: 2020
  ident: 2025022107390421200_CIT0011
  article-title: Deep-learning based detection of gastric precancerous conditions
  publication-title: Gut.
  doi: 10.1136/gutjnl-2019-319347
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 2025022107390421200_CIT0019
  article-title: An improved deep learning approach and its applications on colonic polyp images detection
  publication-title: BMC Med Imaging.
  doi: 10.1186/s12880-020-00482-3
SSID ssj0002140735
Score 2.293847
Snippet The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage S81
SubjectTerms Supplement
Title From data to artificial intelligence: evaluating the readiness of gastrointestinal endoscopy datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/39990508
https://www.proquest.com/docview/3170268810
https://pubmed.ncbi.nlm.nih.gov/PMC11842897
https://doi.org/10.1093/jcag/gwae041
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-2092
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140735
  issn: 2515-2092
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-2092
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140735
  issn: 2515-2092
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2515-2092
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140735
  issn: 2515-2092
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2515-2092
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140735
  issn: 2515-2092
  databaseCode: TOX
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5kfdAXD7zqRQT1rdrtmfgm4iKCx4ML61PJua5HK7tdRH-9kx6Lq6C-lELTNM0MmW-SmW8A9uO2bMeMCVcnyndDNIAu92PqBhyNf9IOE8_Y5OSr6_iiG172ot4M7De5MFPn9yw4fpS8f9x_49qz2emzcYSIuwWz3evb03tbNw7NMQq6LCxc3zO_jm___vq05fkBJ39GRc6Ns1f-_safn7-YnM4inDeDrSJNno7GhTiSH994HP_6myVYqDEnOa2UZBlmdLYCujPMX4gNECVFTqwCVVwSZPCFpPOENGzgWZ8gVCTDMuYeV0eSG9Lno2KY2_a4Ttgv6EzlNs3lvex3pIvRKnQ753dnF25dc8GV6OkVuPYZHUpuqJ94MhGcUiUihWNnEuVmmQQCKpjxhaeEYZEt06FC4RkaKBpRFQZr0MryTG8AEUJIoWJDLQVNyBSTVCUaHTIujdZB5MBBI4_0taLWSKsj8SC1E5XWE-XAXiOsFHXfHmjwTOfjUYrYB11IStueA-uV8CY9IfBiHqJPB-iUWCcNLK_29JNs8FDya6PPhU4ZSxw4nGjAryPc_G_DLZj3bf3gMoZtG1rFcKx3ENQUYrfcDMDr3U1vt9bvT6Za_HA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB6kfdAXD7zixQrqWzTNueubiEUExQcL-hT2rEdNpE2R-uudzVGsgvoWyGazuzPsfMPMfANwEHdkJ2ZMuDpRvhuiAXS5H1M34Gj8k06YeMYWJ1_fxJe98Oo-up-Dg6YWZiZ-z4KTZ8n7J_13rj1bnd6OI0TcLWj3bm7PHmzfODTHKOiysXD9zPw6v_3757OW5wec_JkVOT_O3vjknQ8GX0xOdwkumsVWmSYvx-NCHMuPbzyOf-1mGRZrzEnOKiVZgTmdrYLuDvNXYhNESZETq0AVlwR5-kLSeUoaNvCsTxAqkmGZc4-3I8kN6fNRMczteLwn7B90pnJb5jIp5x3pYrQGve7F3fmlW_dccCV6egXefUaHkhvqJ55MBKdUiUjh2plEuVkmgYAKZnzhKWFYZNt0qFB4hgaKRlSFwTq0sjzTm0CEEFKo2FBLQRMyxSRViUaHjEujdRA5cNjII32rqDXSKiQepPag0vqgHNhvhJWi7tuABs90Ph6liH3QhaS04zmwUQlvOhMCL-Yh-nSAzoh1OsDyas--yZ4eS35t9LnQKWOJA0dTDfh1hVv_HbgNC77tH1zmsO1AqxiO9S6CmkLs1Tr9CeIP-l8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+data+to+artificial+intelligence%3A+evaluating+the+readiness+of+gastrointestinal+endoscopy+datasets&rft.jtitle=Journal+of+the+Canadian+Association+of+Gastroenterology&rft.au=Elamin%2C+Sami&rft.au=Johri%2C+Shreya&rft.au=Rajpurkar%2C+Pranav&rft.au=Geisler%2C+Enrik&rft.date=2025-03-01&rft.issn=2515-2092&rft.eissn=2515-2092&rft.volume=8&rft.issue=Suppl+2&rft.spage=S81&rft_id=info:doi/10.1093%2Fjcag%2Fgwae041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2084&client=summon