From data to artificial intelligence: evaluating the readiness of gastrointestinal endoscopy datasets
The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Co...
Saved in:
| Published in | Journal of the Canadian Association of Gastroenterology Vol. 8; no. Supplement_2; pp. S81 - S86 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2515-2084 2515-2092 2515-2092 |
| DOI | 10.1093/jcag/gwae041 |
Cover
| Abstract | The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy. |
|---|---|
| AbstractList | The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy. The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy.The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40 published randomized controlled trials and numerous ongoing clinical trials, gastroenterology leads other medical disciplines in AI research. Computer-aided detection algorithms for identifying colorectal polyps have achieved regulatory approval and are in routine clinical use, while other AI applications for GI endoscopy are in advanced development stages. Near-term opportunities include the potential for computer-aided diagnosis to replace conventional histopathology for diagnosing small colon polyps and increased AI automation in capsule endoscopy. Despite significant development in research settings, the generalizability and robustness of AI models in real clinical practice remain inconsistent. The GI field lags behind other medical disciplines in the breadth of novel AI algorithms, with only 13 out of 882 Food and Drug Administration (FDA)-approved AI models focussed on GI endoscopy as of June 2024. Additionally, existing GI endoscopy image databases are disproportionately focussed on colon polyps, lacking representation of the diversity of other endoscopic findings. High-quality datasets, encompassing a wide range of patient demographics, endoscopic equipment types, and disease states, are crucial for developing effective AI models for GI endoscopy. This article reviews the current state of GI endoscopy datasets, barriers to progress, including dataset size, data diversity, annotation quality, and ethical issues in data collection and usage, and future needs for advancing AI in GI endoscopy. |
| Author | Berzin, Tyler M Elamin, Sami Geisler, Enrik Rajpurkar, Pranav Johri, Shreya |
| Author_xml | – sequence: 1 givenname: Sami orcidid: 0009-0007-4835-6179 surname: Elamin fullname: Elamin, Sami – sequence: 2 givenname: Shreya surname: Johri fullname: Johri, Shreya – sequence: 3 givenname: Pranav surname: Rajpurkar fullname: Rajpurkar, Pranav – sequence: 4 givenname: Enrik surname: Geisler fullname: Geisler, Enrik – sequence: 5 givenname: Tyler M surname: Berzin fullname: Berzin, Tyler M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39990508$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFvFSEQh4mpsbX25tlw9OC2sMu64MU0jbVNmvRSz2QWhi3NPngC2-b99_J8z2ovnpiEb34D37wlByEGJOQ9Z6ecqe7swcB0Nj0BMsFfkaO2533TMtUePNdSHJKTnB8YYy0XbOj6N-SwU0qxnskjgpcprqiFArRECql4542HmfpQcJ79hMHgF4qPMC9QfJhouUeaEKwPmDONjk6QS4pbPlegtmKwMZu43vzOzVjyO_LawZzxZH8ekx-X3-4urpqb2-_XF-c3jRFMlUZxh8KAk-3AzDCClHbsbf2nMmJgvbGyk6Ny7cjs6FQ_yE5YMTInOyt7aUV3TJpd7hLWsHmCedbr5FeQNpozvTWmt8b03ljlv-749TKu0BoMJcHfnghev7wJ_l5P8VFzLkUr1VATPu4TUvy5VAN65bOp5iBgXLLu-MDaz1JyVtEP_w57nvJnGRX4tANMijkndP9__C_uBKFQ |
| Cites_doi | 10.3748/wjg.v27.i40.6794 10.1055/a-1468-3964 10.1007/s11548-020-02127-w 10.1136/gutjnl-2017-314547 10.1055/s-0029-1214949 10.1007/s10278-023-00844-7 10.1038/s41597-022-01726-3 10.1016/j.compmedimag.2015.02.007 10.1016/j.gie.2020.07.060 10.1007/s11633-022-1371-y 10.1145/3193165 10.1038/s41597-023-02460-0 10.1007/s11548-013-0926-3 10.21227/F8XG-WB80 10.1371/journal.pone.0255809 10.17632/7grhw5tv7n.6 10.1038/s41597-023-01981-y 10.1109/JBHI.2022.3217944 10.3390/app10238501 10.1016/j.giec.2020.12.009 10.1038/s41597-020-00622-y 10.1155/2017/4037190 10.1109/TMI.2015.2487997 10.1177/1756284820910659 10.1016/j.gastha.2022.02.025 10.1056/EVIDoa2200003 10.1109/TMI.2016.2547947 10.1002/deo2.258 10.1038/s41597-021-00920-z 10.1016/S2589-7500(24)00047-5 10.1007/978-3-030-37734-2_37 10.1136/gutjnl-2019-319347 10.1186/s12880-020-00482-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. 2025 |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. 2025 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/jcag/gwae041 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2515-2092 |
| EndPage | S86 |
| ExternalDocumentID | 10.1093/jcag/gwae041 PMC11842897 39990508 10_1093_jcag_gwae041 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABXVV ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS BAYMD BCNDV CITATION EMOBN GROUPED_DOAJ HYE IAO IHR ITC KSI ML0 M~E O9- OK1 RPM TOX 7X7 8FI 8FJ ABUWG AFKRA BENPR CCPQU FYUFA HMCUK NPM PIMPY UKHRP 7X8 5PM ADTOC PHGZM PHGZT UNPAY |
| ID | FETCH-LOGICAL-c409t-91fe4caf8270c7ba88db5d0939c4705cd838b9f2b0dbf957834d4b0f83d858d43 |
| IEDL.DBID | UNPAY |
| ISSN | 2515-2084 2515-2092 |
| IngestDate | Sun Oct 26 04:10:44 EDT 2025 Thu Aug 21 18:27:14 EDT 2025 Fri Jul 11 12:22:47 EDT 2025 Thu Apr 03 07:00:26 EDT 2025 Wed Oct 01 00:24:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Supplement_2 |
| Keywords | Datasets Gastroenterology Machine learning computer vision AI Data Endoscopy Algorithm Artificial intelligence |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 The Author(s) 2025. Published by Oxford University Press on behalf of the Canadian Association of Gastroenterology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-91fe4caf8270c7ba88db5d0939c4705cd838b9f2b0dbf957834d4b0f83d858d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0007-4835-6179 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/jcag/gwae041 |
| PMID | 39990508 |
| PQID | 3170268810 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1093_jcag_gwae041 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11842897 proquest_miscellaneous_3170268810 pubmed_primary_39990508 crossref_primary_10_1093_jcag_gwae041 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: US |
| PublicationTitle | Journal of the Canadian Association of Gastroenterology |
| PublicationTitleAlternate | J Can Assoc Gastroenterol |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Jha (2025022107390421200_CIT0036) Misawa (2025022107390421200_CIT0025) 2021; 93 Wang (2025022107390421200_CIT0030) 2023 European Parliament: Directorate-General for Parliamentary Research Services (2025022107390421200_CIT0044) 2022 Ozawa (2025022107390421200_CIT0004) 2020; 13 Byrne (2025022107390421200_CIT0005) 2019; 68 Sánchez-Peralta (2025022107390421200_CIT0020) 2020; 10 Ma (2025022107390421200_CIT0024) 2021 Smedsrud (2025022107390421200_CIT0033) 2021; 8 Vázquez (2025022107390421200_CIT0016) 2017; 2017 Aabakken (2025022107390421200_CIT0043) 2009; 41 He (2025022107390421200_CIT0010) 2019 Li (2025022107390421200_CIT0023) 2021; 16 Borgli (2025022107390421200_CIT0022) 2020; 7 Wang (2025022107390421200_CIT0041) 2023; 10 Mesejo (2025022107390421200_CIT0014) 2016; 35 Yang (2025022107390421200_CIT0037) 2023; 27 Wang (2025022107390421200_CIT0019) 2020; 20 Dekker (2025022107390421200_CIT0031) U.S. Food and Drug Administration (2025022107390421200_CIT0008) Ali (2025022107390421200_CIT0021) 2020 Ji (2025022107390421200_CIT0026) 2022; 19 Bernal (2025022107390421200_CIT0013) 2015; 43 Daniel (2025022107390421200_CIT0001) 2022; 1 Cychnerski (2025022107390421200_CIT0027) 2022 Charoen (2025022107390421200_CIT0034) 2022; 9 de Maissin (2025022107390421200_CIT0038) 2021; 9 Pogorelov (2025022107390421200_CIT0042) 2017 Sullivan (2025022107390421200_CIT0007) 2021; 31 Yokote (2025022107390421200_CIT0040) 2024; 4 Guimarães (2025022107390421200_CIT0011) 2020; 69 Jha (2025022107390421200_CIT0018) 2020 Zhu (2025022107390421200_CIT0009) 2023; 36 Forootan (2025022107390421200_CIT0029) 2024; 6 Konstantin PogorelovSimula Research Laboratory (2025022107390421200_CIT0017) Ali (2025022107390421200_CIT0028) 2023; 10 Barua (2025022107390421200_CIT0006) 2022; 1 García-Peraza-Herrera (2025022107390421200_CIT0035) 2020; 15 Silva (2025022107390421200_CIT0012) 2014; 9 Tajbakhsh (2025022107390421200_CIT0015) 2016; 35 Kröner (2025022107390421200_CIT0002) 2021; 27 Ionescu (2025022107390421200_CIT0032) 2023 Han (2025022107390421200_CIT0003) 2024; 6 Jha (2025022107390421200_CIT0039) 2021 |
| References_xml | – volume: 27 start-page: 6794 issue: 40 year: 2021 ident: 2025022107390421200_CIT0002 article-title: Artificial intelligence in gastroenterology: a state-of-the-art review publication-title: World J Gastroenterol. doi: 10.3748/wjg.v27.i40.6794 – volume: 9 start-page: E1136 issue: 7 year: 2021 ident: 2025022107390421200_CIT0038 article-title: Multi-expert annotation of Crohn’s disease images of the small bowel for automatic detection using a convolutional recurrent attention neural network publication-title: Endosc Int Open doi: 10.1055/a-1468-3964 – volume: 15 start-page: 651 issue: 4 year: 2020 ident: 2025022107390421200_CIT0035 article-title: Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02127-w – year: 2022 ident: 2025022107390421200_CIT0044 publication-title: Artificial intelligence in healthcare – Applications, risks, and ethical and societal impacts – volume: 68 start-page: 94 issue: 1 year: 2019 ident: 2025022107390421200_CIT0005 article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model publication-title: Gut. doi: 10.1136/gutjnl-2017-314547 – volume: 41 start-page: 727 issue: 8 year: 2009 ident: 2025022107390421200_CIT0043 article-title: Minimal standard terminology for gastrointestinal endoscopy - MST 3.0 publication-title: Endoscopy. doi: 10.1055/s-0029-1214949 – start-page: 370 volume-title: Overview of the ImageCLEF 2023: Multimedia Retrieval in Medical, Social Media and Internet Applications year: 2023 ident: 2025022107390421200_CIT0032 – volume: 36 start-page: 2578 issue: 6 year: 2023 ident: 2025022107390421200_CIT0009 article-title: Public imaging datasets of gastrointestinal endoscopy for artificial intelligence: a review publication-title: J Digit Imaging. doi: 10.1007/s10278-023-00844-7 – volume: 9 start-page: 1 issue: 1 year: 2022 ident: 2025022107390421200_CIT0034 article-title: Rhode Island gastroenterology video capsule endoscopy data set publication-title: Sci Data. doi: 10.1038/s41597-022-01726-3 – volume: 43 start-page: 99 issue: July 2015 year: 2015 ident: 2025022107390421200_CIT0013 article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians publication-title: Comput Med Imaging Graph. doi: 10.1016/j.compmedimag.2015.02.007 – ident: 2025022107390421200_CIT0031 publication-title: ClinicalTrials.gov. Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA) NCT03822390 – volume: 93 start-page: 960 issue: 4 year: 2021 ident: 2025022107390421200_CIT0025 article-title: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video) publication-title: Gastrointest Endosc. doi: 10.1016/j.gie.2020.07.060 – volume: 19 start-page: 531 issue: 6 year: 2022 ident: 2025022107390421200_CIT0026 article-title: Video polyp segmentation: a deep learning perspective publication-title: Mach Intell Res doi: 10.1007/s11633-022-1371-y – volume-title: Nerthus: A Bowel Preparation Quality Video Dataset year: 2017 ident: 2025022107390421200_CIT0042 doi: 10.1145/3193165 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 2025022107390421200_CIT0041 article-title: A real-world dataset and benchmark for foundation model adaptation in medical image classification publication-title: Sci Data. doi: 10.1038/s41597-023-02460-0 – volume: 9 start-page: 283 issue: 2 year: 2014 ident: 2025022107390421200_CIT0012 article-title: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0926-3 – volume-title: Endoscopy Disease Detection and Segmentation (EDD2020) year: 2020 ident: 2025022107390421200_CIT0021 doi: 10.21227/F8XG-WB80 – volume: 16 start-page: e0255809 issue: 8 year: 2021 ident: 2025022107390421200_CIT0023 article-title: Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations publication-title: PLoS One. doi: 10.1371/journal.pone.0255809 – year: 2022 ident: 2025022107390421200_CIT0027 article-title: ERS: a novel comprehensive endoscopy image dataset for machine learning, compliant with the MST 3.0 specification – volume: 6 year: 2024 ident: 2025022107390421200_CIT0029 article-title: ERCPMP-v5: An Endoscopic Image and Video Dataset for Recognition of Colorectal Polyps Morphology and Pathology publication-title: Mendeley Data doi: 10.17632/7grhw5tv7n.6 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 2025022107390421200_CIT0028 article-title: A multi-centre polyp detection and segmentation dataset for generalisability assessment publication-title: Sci Data. doi: 10.1038/s41597-023-01981-y – start-page: 37 year: 2021 ident: 2025022107390421200_CIT0039 article-title: ‘Nanonet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and Colonoscopy’ publication-title: Proceedings of the IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS) – volume: 27 start-page: 7 issue: 1 year: 2023 ident: 2025022107390421200_CIT0037 article-title: A benchmark dataset of endoscopic images and novel deep learning method to detect intestinal metaplasia and gastritis atrophy publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3217944 – volume: 10 start-page: 8501 issue: 23 year: 2020 ident: 2025022107390421200_CIT0020 article-title: PICCOLO white-light and narrow-band imaging colonoscopic dataset: a performance comparative of models and datasets publication-title: Appl Sci doi: 10.3390/app10238501 – start-page: 387 volume-title: LDPolypVideo Benchmark: A Large-Scale Colonoscopy Video Dataset of Diverse Polyps year: 2021 ident: 2025022107390421200_CIT0024 – volume-title: Association for Computing Machinery Digital Library ident: 2025022107390421200_CIT0017 article-title: KVASIR. A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection – volume: 31 start-page: 387 issue: 2 year: 2021 ident: 2025022107390421200_CIT0007 article-title: Artificial intelligence research and development for application in video capsule endoscopy publication-title: Gastrointest Endosc Clin N Am. doi: 10.1016/j.giec.2020.12.009 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 2025022107390421200_CIT0022 article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy publication-title: Sci Data. doi: 10.1038/s41597-020-00622-y – ident: 2025022107390421200_CIT0008 – volume: 2017 start-page: 4037190 year: 2017 ident: 2025022107390421200_CIT0016 article-title: A benchmark for endoluminal scene segmentation of colonoscopy images publication-title: J Healthc Eng doi: 10.1155/2017/4037190 – year: 2019 ident: 2025022107390421200_CIT0010 – volume: 35 start-page: 630 issue: 2 year: 2016 ident: 2025022107390421200_CIT0015 article-title: Automated polyp detection in colonoscopy videos using shape and context information publication-title: IEEE Trans Med Imaging. doi: 10.1109/TMI.2015.2487997 – volume: 13 start-page: 1756284820910659 issue: 13 year: 2020 ident: 2025022107390421200_CIT0004 article-title: Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284820910659 – volume: 1 start-page: 581 issue: 4 year: 2022 ident: 2025022107390421200_CIT0001 article-title: Simonetto. Artificial intelligence and the future of gastroenterology and hepatology publication-title: Gastro Hep Adv doi: 10.1016/j.gastha.2022.02.025 – volume: 1 start-page: EVIDoa2200003 issue: 6 year: 2022 ident: 2025022107390421200_CIT0006 article-title: Real-time artificial intelligence-based optical diagnosis of neoplastic polyps during colonoscopy publication-title: NEJM Evid. doi: 10.1056/EVIDoa2200003 – volume: 35 start-page: 2051 issue: 9 year: 2016 ident: 2025022107390421200_CIT0014 article-title: Computer-aided classification of gastrointestinal lesions in regular colonoscopy publication-title: IEEE Trans Med Imaging. doi: 10.1109/TMI.2016.2547947 – start-page: 101 volume-title: Foundation Model for Endoscopy Video Analysis via Large-Scale Self-supervised Pre-train year: 2023 ident: 2025022107390421200_CIT0030 – ident: 2025022107390421200_CIT0036 article-title: GastroVision: A multi-class endoscopy image dataset for computer aided gastrointestinal disease detection. ICML Workshop on Machine Learning for Multimodal Healthcare Data (ML4MHD 2023) – volume: 4 start-page: e258 issue: 1 year: 2024 ident: 2025022107390421200_CIT0040 article-title: Small bowel capsule endoscopy examination and open access database with artificial intelligence: the SEE-artificial intelligence project publication-title: DEN Open doi: 10.1002/deo2.258 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 2025022107390421200_CIT0033 article-title: Kvasir-Capsule, a video capsule endoscopy dataset publication-title: Sci Data. doi: 10.1038/s41597-021-00920-z – volume: 6 start-page: e367 issue: 5 year: 2024 ident: 2025022107390421200_CIT0003 article-title: Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review publication-title: Lancet Digit Health. doi: 10.1016/S2589-7500(24)00047-5 – start-page: 451 year: 2020 ident: 2025022107390421200_CIT0018 article-title: ‘Kvasir-Seg: A Segmented Polyp Dataset’ publication-title: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26 doi: 10.1007/978-3-030-37734-2_37 – volume: 69 start-page: 4 issue: 1 year: 2020 ident: 2025022107390421200_CIT0011 article-title: Deep-learning based detection of gastric precancerous conditions publication-title: Gut. doi: 10.1136/gutjnl-2019-319347 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 2025022107390421200_CIT0019 article-title: An improved deep learning approach and its applications on colonic polyp images detection publication-title: BMC Med Imaging. doi: 10.1186/s12880-020-00482-3 |
| SSID | ssj0002140735 |
| Score | 2.293847 |
| Snippet | The incorporation of artificial intelligence (AI) into gastrointestinal (GI) endoscopy represents a promising advancement in gastroenterology. With over 40... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | S81 |
| SubjectTerms | Supplement |
| Title | From data to artificial intelligence: evaluating the readiness of gastrointestinal endoscopy datasets |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39990508 https://www.proquest.com/docview/3170268810 https://pubmed.ncbi.nlm.nih.gov/PMC11842897 https://doi.org/10.1093/jcag/gwae041 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2515-2092 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140735 issn: 2515-2092 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2515-2092 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140735 issn: 2515-2092 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2515-2092 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140735 issn: 2515-2092 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2515-2092 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140735 issn: 2515-2092 databaseCode: TOX dateStart: 20180101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5kfdAXD7zqRQT1rdrtmfgm4iKCx4ML61PJua5HK7tdRH-9kx6Lq6C-lELTNM0MmW-SmW8A9uO2bMeMCVcnyndDNIAu92PqBhyNf9IOE8_Y5OSr6_iiG172ot4M7De5MFPn9yw4fpS8f9x_49qz2emzcYSIuwWz3evb03tbNw7NMQq6LCxc3zO_jm___vq05fkBJ39GRc6Ns1f-_safn7-YnM4inDeDrSJNno7GhTiSH994HP_6myVYqDEnOa2UZBlmdLYCujPMX4gNECVFTqwCVVwSZPCFpPOENGzgWZ8gVCTDMuYeV0eSG9Lno2KY2_a4Ttgv6EzlNs3lvex3pIvRKnQ753dnF25dc8GV6OkVuPYZHUpuqJ94MhGcUiUihWNnEuVmmQQCKpjxhaeEYZEt06FC4RkaKBpRFQZr0MryTG8AEUJIoWJDLQVNyBSTVCUaHTIujdZB5MBBI4_0taLWSKsj8SC1E5XWE-XAXiOsFHXfHmjwTOfjUYrYB11IStueA-uV8CY9IfBiHqJPB-iUWCcNLK_29JNs8FDya6PPhU4ZSxw4nGjAryPc_G_DLZj3bf3gMoZtG1rFcKx3ENQUYrfcDMDr3U1vt9bvT6Za_HA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB6kfdAXD7zixQrqWzTNueubiEUExQcL-hT2rEdNpE2R-uudzVGsgvoWyGazuzPsfMPMfANwEHdkJ2ZMuDpRvhuiAXS5H1M34Gj8k06YeMYWJ1_fxJe98Oo-up-Dg6YWZiZ-z4KTZ8n7J_13rj1bnd6OI0TcLWj3bm7PHmzfODTHKOiysXD9zPw6v_3757OW5wec_JkVOT_O3vjknQ8GX0xOdwkumsVWmSYvx-NCHMuPbzyOf-1mGRZrzEnOKiVZgTmdrYLuDvNXYhNESZETq0AVlwR5-kLSeUoaNvCsTxAqkmGZc4-3I8kN6fNRMczteLwn7B90pnJb5jIp5x3pYrQGve7F3fmlW_dccCV6egXefUaHkhvqJ55MBKdUiUjh2plEuVkmgYAKZnzhKWFYZNt0qFB4hgaKRlSFwTq0sjzTm0CEEFKo2FBLQRMyxSRViUaHjEujdRA5cNjII32rqDXSKiQepPag0vqgHNhvhJWi7tuABs90Ph6liH3QhaS04zmwUQlvOhMCL-Yh-nSAzoh1OsDyas--yZ4eS35t9LnQKWOJA0dTDfh1hVv_HbgNC77tH1zmsO1AqxiO9S6CmkLs1Tr9CeIP-l8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+data+to+artificial+intelligence%3A+evaluating+the+readiness+of+gastrointestinal+endoscopy+datasets&rft.jtitle=Journal+of+the+Canadian+Association+of+Gastroenterology&rft.au=Elamin%2C+Sami&rft.au=Johri%2C+Shreya&rft.au=Rajpurkar%2C+Pranav&rft.au=Geisler%2C+Enrik&rft.date=2025-03-01&rft.issn=2515-2092&rft.eissn=2515-2092&rft.volume=8&rft.issue=Suppl+2&rft.spage=S81&rft_id=info:doi/10.1093%2Fjcag%2Fgwae041&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2084&client=summon |