Implicit Neural Mapping for a Data Closed-Loop Unmanned Aerial Vehicle Pose-Estimation Algorithm in a Vision-Only Landing System
Due to their low cost, interference resistance, and concealment of vision sensors, vision-based landing systems have received a lot of research attention. However, vision sensors are only used as auxiliary components in visual landing systems because of their limited accuracy. To solve the problem o...
Saved in:
| Published in | Drones (Basel) Vol. 7; no. 8; p. 529 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2504-446X 2504-446X |
| DOI | 10.3390/drones7080529 |
Cover
| Abstract | Due to their low cost, interference resistance, and concealment of vision sensors, vision-based landing systems have received a lot of research attention. However, vision sensors are only used as auxiliary components in visual landing systems because of their limited accuracy. To solve the problem of the inaccurate position estimation of vision-only sensors during landing, a novel data closed-loop pose-estimation algorithm with an implicit neural map is proposed. First, we propose a method with which to estimate the UAV pose based on the runway’s line features, using a flexible coarse-to-fine runway-line-detection method. Then, we propose a mapping and localization method based on the neural radiance field (NeRF), which provides continuous representation and can correct the initial estimated pose well. Finally, we develop a closed-loop data annotation system based on a high-fidelity implicit map, which can significantly improve annotation efficiency. The experimental results show that our proposed algorithm performs well in various scenarios and achieves state-of-the-art accuracy in pose estimation. |
|---|---|
| AbstractList | Due to their low cost, interference resistance, and concealment of vision sensors, vision-based landing systems have received a lot of research attention. However, vision sensors are only used as auxiliary components in visual landing systems because of their limited accuracy. To solve the problem of the inaccurate position estimation of vision-only sensors during landing, a novel data closed-loop pose-estimation algorithm with an implicit neural map is proposed. First, we propose a method with which to estimate the UAV pose based on the runway’s line features, using a flexible coarse-to-fine runway-line-detection method. Then, we propose a mapping and localization method based on the neural radiance field (NeRF), which provides continuous representation and can correct the initial estimated pose well. Finally, we develop a closed-loop data annotation system based on a high-fidelity implicit map, which can significantly improve annotation efficiency. The experimental results show that our proposed algorithm performs well in various scenarios and achieves state-of-the-art accuracy in pose estimation. |
| Audience | Academic |
| Author | Xu, Xinlong Qin, Bin Liu, Xiaoxiong Li, Changze Yang, Nan |
| Author_xml | – sequence: 1 givenname: Xiaoxiong orcidid: 0000-0002-8061-5974 surname: Liu fullname: Liu, Xiaoxiong – sequence: 2 givenname: Changze orcidid: 0009-0009-5708-0287 surname: Li fullname: Li, Changze – sequence: 3 givenname: Xinlong surname: Xu fullname: Xu, Xinlong – sequence: 4 givenname: Nan surname: Yang fullname: Yang, Nan – sequence: 5 givenname: Bin surname: Qin fullname: Qin, Bin |
| BookMark | eNp9kUtvEzEUhUeoSJTSJXtLrKf4NZ7xMgoFIgWKBK3YWTd-pI489mBPhLLjp-M0iJcE8sL2tc_nc3yfNmcxRds0zwm-YkzilybXfenxgDsqHzXntMO85Vx8Pvtt_aS5LGWHMaaUd0KS8-bbapyC135G7-0-Q0DvYJp83CKXMgL0CmZAy5CKNe06pQndxhFitAYtbPb1-p299zpY9KFeaa_L7EeYfYpoEbYp-_l-RD5Wzp0vtdrexHBAa4jm-MLHQ5nt-Kx57CAUe_ljvmhuX19_Wr5t1zdvVsvFutUcy7mVRGyE4_0GCBPSWEE46V2N21EwmtreSSx7EIx0QLvB1UPLmbVDr0XHoGMXzerENQl2asrVaD6oBF49FFLeKsjzMYsSVII2g2WOWY4Hs-GaEYcZFlzaQcrKujqx9nGCw1cI4SeQYHVsh_qjHVXw4iSYcvqyt2VWu7TPseZVdOh6TAYm-S_sFqoLH12aM-g6jB29rjzna33RC8p7MYhjJnYS6JxKydap2siH_69CH_5ppv1L9X_z3wHeDb0I |
| CitedBy_id | crossref_primary_10_3390_drones8060257 |
| Cites_doi | 10.1109/DASC52595.2021.9594400 10.1007/978-3-030-58586-0_17 10.1145/3503250 10.1109/CVPR52688.2022.01254 10.2514/6.2019-1641 10.1109/CVPR52688.2022.00540 10.1109/CVPR52688.2022.01259 10.3390/rs14236094 10.1109/CVPR46437.2021.00713 10.1109/MFI.2014.6997750 10.12783/dtetr/ecae2018/27713 10.1109/ICCV48922.2021.00580 10.1109/IROS51168.2021.9636708 10.1109/ICUAS.2015.7152407 10.1109/CIS.2015.44 10.1109/2945.468400 10.1109/DICTA47822.2019.8945889 10.1109/CVPR52688.2022.00539 10.1109/CVPR52688.2022.00542 10.1109/ICCV48922.2021.00351 10.1109/CVPR52729.2023.00404 10.1109/CVPR.2016.445 10.3390/rs14215491 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/drones7080529 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_629acd8e3f3e408db4c31f030649e899 10.3390/drones7080529 A762476865 10_3390_drones7080529 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-916b6f47ba1369de61417f70852adc2e7f9097a6315a258f17fe43ee87c653a53 |
| IEDL.DBID | DOA |
| ISSN | 2504-446X |
| IngestDate | Fri Oct 03 12:52:16 EDT 2025 Tue Aug 19 21:16:45 EDT 2025 Sun Sep 07 03:31:35 EDT 2025 Mon Oct 20 17:17:03 EDT 2025 Thu Oct 16 04:46:02 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-916b6f47ba1369de61417f70852adc2e7f9097a6315a258f17fe43ee87c653a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8061-5974 0009-0009-5708-0287 |
| OpenAccessLink | https://doaj.org/article/629acd8e3f3e408db4c31f030649e899 |
| PQID | 2857018394 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_629acd8e3f3e408db4c31f030649e899 unpaywall_primary_10_3390_drones7080529 proquest_journals_2857018394 gale_infotracacademiconefile_A762476865 crossref_citationtrail_10_3390_drones7080529 crossref_primary_10_3390_drones7080529 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Wang (ref_14) 2021; 8 ref_19 ref_18 ref_17 ref_16 ref_15 ref_37 Evans (ref_6) 2022; 41 Liu (ref_25) 2018; 5 Max (ref_29) 1995; 1 Zhou (ref_27) 2016; 9 ref_24 ref_23 ref_22 Tang (ref_7) 1995; Volume 2421 ref_21 ref_20 ref_1 ref_3 ref_2 ref_28 ref_26 ref_9 ref_8 Mildenhall (ref_5) 2021; 65 ref_4 |
| References_xml | – volume: 8 start-page: 97 year: 2021 ident: ref_14 article-title: An airport runway detection algorithm based on Semantic segmentation publication-title: Navig. Position. Timing CSTPCD – ident: ref_32 doi: 10.1109/DASC52595.2021.9594400 – ident: ref_21 doi: 10.1007/978-3-030-58586-0_17 – ident: ref_24 – volume: 65 start-page: 99 year: 2021 ident: ref_5 article-title: Nerf: Representing scenes as neural radiance fields for view synthesis publication-title: Commun. ACM doi: 10.1145/3503250 – ident: ref_34 – ident: ref_18 doi: 10.1109/CVPR52688.2022.01254 – ident: ref_2 doi: 10.2514/6.2019-1641 – ident: ref_17 doi: 10.1109/CVPR52688.2022.00540 – ident: ref_19 doi: 10.1109/CVPR52688.2022.01259 – ident: ref_37 – volume: 41 start-page: 1 year: 2022 ident: ref_6 article-title: Instant neural graphics primitives with a multiresolution hash encoding publication-title: ACM Trans. Graph. – ident: ref_23 – volume: Volume 2421 start-page: 181 year: 1995 ident: ref_7 article-title: Runway detection in an image sequence publication-title: Image and Video Processing III – ident: ref_26 doi: 10.3390/rs14236094 – ident: ref_31 doi: 10.1109/CVPR46437.2021.00713 – ident: ref_1 doi: 10.1109/MFI.2014.6997750 – volume: 5 start-page: 58 year: 2018 ident: ref_25 article-title: A P3P problem solving algorithm for landing vision navigation publication-title: Navig. Position. Timing – ident: ref_12 doi: 10.12783/dtetr/ecae2018/27713 – ident: ref_8 – ident: ref_20 doi: 10.1109/ICCV48922.2021.00580 – ident: ref_4 doi: 10.1109/IROS51168.2021.9636708 – ident: ref_35 doi: 10.1109/ICUAS.2015.7152407 – ident: ref_10 – ident: ref_9 doi: 10.1109/CIS.2015.44 – volume: 1 start-page: 99 year: 1995 ident: ref_29 article-title: Optical models for direct volume rendering publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/2945.468400 – ident: ref_11 doi: 10.1109/DICTA47822.2019.8945889 – ident: ref_30 doi: 10.1109/CVPR52688.2022.00539 – ident: ref_15 doi: 10.1109/CVPR52688.2022.00542 – ident: ref_33 doi: 10.1109/ICCV48922.2021.00351 – ident: ref_13 – ident: ref_36 – ident: ref_16 doi: 10.1109/CVPR52729.2023.00404 – ident: ref_22 – ident: ref_28 doi: 10.1109/CVPR.2016.445 – ident: ref_3 doi: 10.3390/rs14215491 – volume: 9 start-page: 38 year: 2016 ident: ref_27 article-title: Vision-based landing method using structured line features of runway surface for fixed-wing unmanned aerial vehicles publication-title: J. Natl. Univ. Def. Technol. |
| SSID | ssj0002245691 |
| Score | 2.2576656 |
| Snippet | Due to their low cost, interference resistance, and concealment of vision sensors, vision-based landing systems have received a lot of research attention.... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 529 |
| SubjectTerms | Accuracy Aircraft Algorithms Annotations Cameras Closed loops data closed-loop Drone aircraft Efficiency Estimation theory Geometry implicit neural mapping Landing aids Localization method Optimization Pose estimation runway-line detection Runways Sensors Unmanned aerial vehicles Vision vision-only landing system |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9RAFJ_gclAPBqPGBSRzMHqxYdv5aOdAzAJL0MBKjEu4TearC0lp16XEcPNP971-LBIj18502rzvNzPv9wh57xj21JY2yjhXEfcC7aBzEMilFrJneKeBazqdyuMZ_3ohLtbItK-FwWuVvU1sDLWvHO6R7yaIxI7unH9e_IywaxServYtNEzXWsHvNRBjT8h6gshYA7K-P5mefV_tuiR4zqfiFmyTQb6_65eIiZ-OENpfPXBODYb_v5b6OXl6Wy7M3S9TFH-5oqMN8qKLIem4ZfpLshbKV-T3l-Zu-FVNEW8Dhk8NQi_MKUSl1NBDUxt6UFQ3wUcnVbWgs_LaoI2l40YG6Xm4xNXoGUyJJqD4bU0jHRdzIEN9eU2vSljnvKlFj76VxR09aUtiaIt6_prMjiY_Do6jrr1C5CCpq8HMSStznloTM6l8AEcdpzlQQiTGuySkuRqp1EgWC5OILIfBwFkIWeqkYEawN2RQAvHeEmothJmII6NiBw5OZolPrHUhNo4JG-dD8qmnq3Yd9ji2wCg05CDIBv2ADUPyYTV90YJu_G_iPjJpNQmxspsH1XKuO9XTMlHG-SywnAU-yrzlIKA55kpcBUg3h-QjslijRsNPOdMVJsB3EBtLj8FfcMjKpBiS7V4KdKfqN_peMGGhlWQ8_t-bjy-0RZ5hV_v2nuE2GdTL2_AOYp_a7nQC_QfvBwRb priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOBQSIpQX5gOBCmk38SHxCobQqqC09sNVyimzH2a5Ik9VuFlRO_HRmEu-KgkCIazx2Hh7PzBfNfEPIc8uwp7Y0Qcq5Cngh0A5aC4FcYgA9w5yOrunkVB6N-fuJmPjcnKVPqwQoPuuMNNJrBYBXJmESpqGIVTgvytdf_I-kSCrMrAIHd5NsSQGh-IBsjU_Psk_YUG49tefVZADtw2KB9PfJCFn81TU_1NH1_26U75Bbq3qur77qqvrJ6xze7VurLjuyQkw2-by3as2e_fYLleN_v9A9su3jUZr1CnSf3HD1A_L9XZdnPmspcnfA8IlGGocphQiXavpWt5ruV83SFcFx08zpuL7UaK9p1ukzPXcXuBo9A5HgAIxIXx9Js2raLGbtxSWd1bDOeVfXHnyoqyt63JfX0J5B_SEZHx583D8KfKuGwAJAbMFkSiNLnhgdMakKB04_Skr41CLWhY1dUqqRSrRkkdCxSEsYdJw5lyZWCqYFe0QGNezOY0KNgZAVOWlUZMFZyjQuYmOsi7RlwkTlkLxab1xuPY85ttOocsAzuM_5tX0ekhcb8XlP4PEnwTeoBRsh5N3uLjSLae6PcS5jpW2ROlYyx0dpYTgoe4m4iysH0HVIXqIO5Wgd4KGs9kUOcB_k2coz8D0cEJ4UQ7K7VrPcm41lHmO7AYxZOSy0Ub2_P_eTf5bcIbdjCNH69MVdMmgXK_cUQqrWPPMH5wejGRx3 priority: 102 providerName: Unpaywall |
| Title | Implicit Neural Mapping for a Data Closed-Loop Unmanned Aerial Vehicle Pose-Estimation Algorithm in a Vision-Only Landing System |
| URI | https://www.proquest.com/docview/2857018394 https://www.mdpi.com/2504-446X/7/8/529/pdf?version=1692003222 https://doaj.org/article/629acd8e3f3e408db4c31f030649e899 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPMAe0BAgOkblBwQvRGviH4kfs61loK1UiE7jybIdZ-uUpVWXadrb_nTu4qzqhIAXHhNfHOvufPedZH9HyHvHsKe2tFHGuYp4ITAOOgdALrVQPcM3LV3T8VgeTvnXU3G61uoLz4QFeuCguF2ZKOOKzLOSeT7ICsth-hKRLlceigWMvoNMrRVTFy2pCwADFQdSTQZ1_W6xRO77dIAU_upBEmq5-n-PyJvk6XW9MLc3pqrWUs5oizzvsCLNwxpfkEe-fknuvrRnwGcNRV4NGD42SLFwRgF9UkMPTGPofjW_8kV0NJ8v6LS-NBhLad76Gj3x5zgbnYBINIQNHu4u0rw6my9nzfklndUwz0l75zz6Vle39ChcfaGB3fwVmY6GP_YPo66NQuSgeGsgnEkrS55aEzOpCg8JOU5L0IRITOESn5ZqoFIjWSxMIrISBj1n3mepk4IZwV6TjRqU94ZQawFOIl-Mih0kMpklRWKt87FxTNi47JFP93rVruMYx1YXlYZaA82gH5ihRz6sxBeBXONPgntopJUQcmK3L8BTdOcp-l-e0iMf0cQady4sypnuAgL8BzmwdA55gUP1JUWP7Nx7ge629JVOsBUA4kkOE6084-_r3v4f635LnmGP-3DqcIdsNMtr_w6QUGP75HE2-twnT_aG48n3frsF4Gk6nuQ_fwHpywpS |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7TA4IBAgCgN84ONCtMZ2nOQwoW7r1LK2TGiddjO243STsqS0mabe-Mv423gvH4UJsduusfMS-X3bfr9HyDvLsae2NF4kROyJJEA7aC0EcqGB7BneqeCaxhM5mIov58H5BvnV1sLgtcrWJlaGOiks7pHvMkRiR3cuPs9_eNg1Ck9X2xYaummtkOxVEGNNYcexW91ACrfcGx4Cv98zdtQ_PRh4TZcBz0JuU4K2SyNTERrtcxknDvyVH6YhhCJMJ5a5MI27cagl9wPNgiiFQSe4c1FoZcA1do0AF7AluIgh-dva709Ovq13eRieK8Z-De7JedzdTRaIwQ_k8YjtljOsegb86xkeku3rfK5XNzrL_nJ9R4_JoyZmpb1ayJ6QDZc_JT-H1V30y5IivgcMjzVCPcwoRMFU00NdanqQFUuXeKOimNNpfqXRptNeJfP0zF0gNXoCU7w-GJq6hpL2shkse3lxRS9zoHNW1b57X_NsRUd1CQ6tUdafkem9LPRzspnD4r0g1BgIaxG3JvYtOFQZsYQZY52vLQ-Mn3bIp3ZdlW2wzrHlRqYg50E2qFts6JAP6-nzGuTjfxP3kUnrSYjNXT0oFjPVqLqSLNY2iRxPuRPdKDECFCLF3EzEDtLbDvmILFZoQeCnrG4KIeA7iMWleuCfBGSBMuiQnVYKVGNaluqPIgChtWTc_d8v7yb0lmwPTscjNRpOjl-RBwziuPqO4w7ZLBfX7jXEXaV50wg3Jd_vW59-A1SKQCk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTeLjMA0BojCGD3xciNrYjpMcJlTWlZV1Ywc67WZsx-kmZUnXZpp64-_ir-O9fBQmxG67xs5L5Pdt-_0eIW8tx57a0niRELEnkgDtoLUQyIUGsmd4p4JrOjqWBxPx9Sw4WyO_2loYvFbZ2sTKUCeFxT3yLkMkdnTnops21yJOBsNPsysPO0jhSWvbTqMWkUO3vIH0bbE7GgCv3zE23P--d-A1HQY8C3lNCZoujUxFaLTPZZw48FV-mIYQhjCdWObCNO7FoZbcDzQLohQGneDORaGVAdfYMQLM_0aIKO5YpT78strfYXiiGPs1rCfnca-bzBF9H4jj4dotN1h1C_jXJzwmD6_zmV7e6Cz7y-kNt8hmE63Sfi1eT8iay5-Sn6PqFvpFSRHZA4aPNII8TCnEv1TTgS413cuKhUu8cVHM6CS_1GjNab-SdnrqzpEaPYEp3j6YmLp6kvazKSxyeX5JL3Kgc1pVvXvf8mxJx3XxDa3x1Z-Ryb0s83OynsPivSDUGAhoEbEm9i24UhmxhBljna8tD4yfdsjHdl2VbVDOsdlGpiDbQTaoW2zokPer6bMa3uN_Ez8jk1aTEJW7elDMp6pRciVZrG0SOZ5yJ3pRYgSoQopZmYgdJLYd8gFZrNB2wE9Z3ZRAwHcQhUv1wTMJyP9k0CHbrRSoxqgs1B8VAEIrybj7v1_eTegNeQBapMaj48NX5BGDAK6-3LhN1sv5tXsNAVdpdirJpuTHfavSb5b8PcM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOBQSIpQX5gOBCmk38SHxCobQqqC09sNVyimzH2a5Ik9VuFlRO_HRmEu-KgkCIazx2Hh7PzBfNfEPIc8uwp7Y0Qcq5Cngh0A5aC4FcYgA9w5yOrunkVB6N-fuJmPjcnKVPqwQoPuuMNNJrBYBXJmESpqGIVTgvytdf_I-kSCrMrAIHd5NsSQGh-IBsjU_Psk_YUG49tefVZADtw2KB9PfJCFn81TU_1NH1_26U75Bbq3qur77qqvrJ6xze7VurLjuyQkw2-by3as2e_fYLleN_v9A9su3jUZr1CnSf3HD1A_L9XZdnPmspcnfA8IlGGocphQiXavpWt5ruV83SFcFx08zpuL7UaK9p1ukzPXcXuBo9A5HgAIxIXx9Js2raLGbtxSWd1bDOeVfXHnyoqyt63JfX0J5B_SEZHx583D8KfKuGwAJAbMFkSiNLnhgdMakKB04_Skr41CLWhY1dUqqRSrRkkdCxSEsYdJw5lyZWCqYFe0QGNezOY0KNgZAVOWlUZMFZyjQuYmOsi7RlwkTlkLxab1xuPY85ttOocsAzuM_5tX0ekhcb8XlP4PEnwTeoBRsh5N3uLjSLae6PcS5jpW2ROlYyx0dpYTgoe4m4iysH0HVIXqIO5Wgd4KGs9kUOcB_k2coz8D0cEJ4UQ7K7VrPcm41lHmO7AYxZOSy0Ub2_P_eTf5bcIbdjCNH69MVdMmgXK_cUQqrWPPMH5wejGRx3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicit+Neural+Mapping+for+a+Data+Closed-Loop+Unmanned+Aerial+Vehicle+Pose-Estimation+Algorithm+in+a+Vision-Only+Landing+System&rft.jtitle=Drones+%28Basel%29&rft.au=Xiaoxiong+Liu&rft.au=Changze+Li&rft.au=Xinlong+Xu&rft.au=Nan+Yang&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=7&rft.issue=8&rft.spage=529&rft_id=info:doi/10.3390%2Fdrones7080529&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_629acd8e3f3e408db4c31f030649e899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |