Design and Simulation of an Edge Compute Architecture for IoT-based Clinical Decision Support System

Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospita...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Kumar, Rachuri Harish, Rajaram, Bharghava
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3380906

Cover

Abstract Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospital scenario, a patient's vital signs like heart rate, blood pressure, respiration rate, ECG, EEG etc. are monitored with the use of embedded sensor devices, also called smart medical devices. These devices collect real-time data which is relayed to a compute device where several algorithms are employed to perform computations on said data to arrive at a prognosis e.g. real-time onset of hypotension can be detected by running predictive algorithms on real-time blood pressure data. The computation in IoT-based CDSS is done predominantly on the cloud, wherein the real-time data collected is relayed to a centralized cloud server. However, latency is a major drawback in a cloud-based monitoring system. Increased latency is of greater concern in healthcare applications as the decision-making process is time-sensitive. Edge computing can potentially overcome this drawback, wherein computation is done on edge-network devices rather than the cloud. While edge computing for IoT-based CDSS has been explored in literature, there are gaps in their implementations. A majority of literature dealing with edge computing for IoT-based healthcare only demonstrates a single application and does not address the varying data acquisition rates for different vital signs. Each prognosis or diagnosis requires different subsets of vital signs, and the underlying algorithm uses different sizes of data e.g. detecting arrhythmia requires processing of ECG data which is a time series data, and detecting cardiovascular disease requires blood pressure, cholesterol and certain habits of the patient which are mostly single points of data. This paper explores the use of edge computing in CDSS, quantifies its performance with respect to number of devices, sense time interval or intertransmission rate, and the size of data, and proposes a unified IoT edge gateway architecture to combine multiple patterns of data and computation algorithms to achieve reduced latency and network utilization. Simulation results show that edge computing reduces the latency of decision by approximately 87 times, and the network utilization by 1.5 times. The results show the efficacy of edge computing for implementing IoT-based CDSS and also demonstrate scalability with regard to the number of devices and the size and intertransmission rate of data.
AbstractList Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospital scenario, a patient's vital signs like heart rate, blood pressure, respiration rate, ECG, EEG etc. are monitored with the use of embedded sensor devices, also called smart medical devices. These devices collect real-time data which is relayed to a compute device where several algorithms are employed to perform computations on said data to arrive at a prognosis e.g. real-time onset of hypotension can be detected by running predictive algorithms on real-time blood pressure data. The computation in IoT-based CDSS is done predominantly on the cloud, wherein the real-time data collected is relayed to a centralized cloud server. However, latency is a major drawback in a cloud-based monitoring system. Increased latency is of greater concern in healthcare applications as the decision-making process is time-sensitive. Edge computing can potentially overcome this drawback, wherein computation is done on edge-network devices rather than the cloud. While edge computing for IoT-based CDSS has been explored in literature, there are gaps in their implementations. A majority of literature dealing with edge computing for IoT-based healthcare only demonstrates a single application and does not address the varying data acquisition rates for different vital signs. Each prognosis or diagnosis requires different subsets of vital signs, and the underlying algorithm uses different sizes of data e.g. detecting arrhythmia requires processing of ECG data which is a time series data, and detecting cardiovascular disease requires blood pressure, cholesterol and certain habits of the patient which are mostly single points of data. This paper explores the use of edge computing in CDSS, quantifies its performance with respect to number of devices, sense time interval or intertransmission rate, and the size of data, and proposes a unified IoT edge gateway architecture to combine multiple patterns of data and computation algorithms to achieve reduced latency and network utilization. Simulation results show that edge computing reduces the latency of decision by approximately 87 times, and the network utilization by 1.5 times. The results show the efficacy of edge computing for implementing IoT-based CDSS and also demonstrate scalability with regard to the number of devices and the size and intertransmission rate of data.
Author Rajaram, Bharghava
Kumar, Rachuri Harish
Author_xml – sequence: 1
  givenname: Rachuri Harish
  orcidid: 0000-0003-2860-8379
  surname: Kumar
  fullname: Kumar, Rachuri Harish
  organization: Department of Electrical and Computer Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India
– sequence: 2
  givenname: Bharghava
  surname: Rajaram
  fullname: Rajaram, Bharghava
  organization: Department of Electrical and Computer Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India
BookMark eNqFkcFu3CAQhlGVSk3TPEF7QOrZWzDYhuPK2bYrRerB6RlhGLasvMYFrGrfPt44qqL0UC6g0XzfiH_eo6sxjIDQR0o2lBL5Zdu2u67blKTkG8YEkaR-g65LWsuCVay-evF-h25TOpLliKVUNdfI3kHyhxHr0eLOn-ZBZx9GHNxSwTt7ANyG0zRnwNtofvkMJs8RsAsR78ND0esEFreDH73RA74D49OF7-ZpCjHj7pwynD6gt04PCW6f7xv08-vuof1e3P_4tm-394XhROZCGEcsbYTktrc9AdpLzUwJnArKeC2MJVD1pW2aypK-h8YRIwQAcaWwvbPsBu1Xrw36qKboTzqeVdBePRVCPCgdszcDKFaX1FjhDOOak5rKitTOLRGaxuiaV4uLr655nPT5jx6Gv0JK1CV4pY2BlNQlePUc_IJ9XrEpht8zpKyOYY7j8mvFCK1IJSWVSxdbu0wMKUVw_7jXpb52y1eU8flpXzlqP_yH_bSyHgBeTONNIyVhj1zhsGQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1142_S0218126625501063
crossref_primary_10_3390_fi16090329
crossref_primary_10_1007_s13369_024_09898_3
Cites_doi 10.1109/JIOT.2018.2822818
10.1109/JIOT.2022.3176400
10.1007/978-3-319-70688-7_11
10.1007/s10916-018-1075-6
10.3390/s20051454
10.4018/978-1-7998-6527-8.ch013
10.1016/j.future.2018.10.029
10.1093/pcmedi/pbz020
10.3390/fi11110235
10.1109/WiSPNET54241.2022.9767142
10.1109/NAS.2017.8026861
10.1002/spe.2509
10.1016/j.asoc.2020.106612
10.1109/GLOBECOM42002.2020.9347951
10.1109/JIOT.2017.2767608
10.1007/s00521-016-2604-1
10.1109/MCOM.2018.1701231
10.1007/s00607-022-01104-2
10.1109/MNET.011.1900636
10.1109/PuneCon50868.2020.9362367
10.1109/ACCESS.2020.3011503
10.1016/j.aucc.2007.12.061
10.1109/TBME.2018.2871638
10.1093/eurpub/ckv122
10.3390/s20226441
10.1197/jamia.M1700
10.1109/ACCESS.2021.3110604
10.1109/ICICCS48265.2020.9121169
10.1155/2017/9324035
10.1109/JIOT.2021.3062630
10.1109/JIOT.2018.2849014
10.1109/ACCESS.2017.2702013
10.3390/su15086337
10.1017/ice.2018.265
10.3390/fi15020054
10.1016/j.cmi.2019.09.009
10.1109/ACCESS.2019.2950950
10.5772/61821
10.1016/j.jpdc.2018.08.010
10.1109/MCOM.2018.1700822
10.1186/s12911-021-01488-9
10.1007/978-3-319-61949-1_2
10.1007/978-3-319-63645-0_44
10.1201/9781003230946
10.3390/s20144047
10.1093/cid/cix731
10.1109/WF-IoT.2015.7389122
10.1109/MNET.2019.1800083
10.1016/j.jamda.2010.04.009
10.1080/09720502.2018.1493040
10.3390/s18082414
10.1016/j.comcom.2021.09.003
10.1109/JIOT.2016.2579198
10.1007/s10586-022-03717-w
10.1007/978-3-319-99713-1_11
10.1016/j.future.2018.07.049
10.1002/9781119525080
10.1136/bmj.320.7236.686
10.12968/bjon.2012.21.10.621
10.1109/COMST.2020.3009103
10.5121/csit.2014.4519
10.1016/j.procs.2020.03.424
10.1109/ACCESS.2020.3010511
10.1038/s41746-020-0221-y
10.3390/s22176625
10.1007/s42452-019-1925-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3380906
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645
10.1109/access.2024.3380906
10_1109_ACCESS_2024_3380906
10477990
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-8cf0d17894dbdb0e1b9a3c2e41813468cd0e5b2d775d0bbe7f0c88ee0f28dbfd3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:41 EDT 2025
Tue Aug 19 22:37:12 EDT 2025
Mon Jun 30 07:02:59 EDT 2025
Wed Oct 01 04:52:24 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Wed Aug 27 02:17:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8cf0d17894dbdb0e1b9a3c2e41813468cd0e5b2d775d0bbe7f0c88ee0f28dbfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2860-8379
OpenAccessLink https://doaj.org/article/3621cd8fc34a40619506ff024c7ca645
PQID 3015059919
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3380906
proquest_journals_3015059919
ieee_primary_10477990
doaj_primary_oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645
crossref_citationtrail_10_1109_ACCESS_2024_3380906
unpaywall_primary_10_1109_access_2024_3380906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ulianova (ref67)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Arjunan (ref70) 2016; 2
ref9
Sharma (ref64) 2024
ref4
ref3
ref6
ref5
DeMers (ref65) 2024
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref63
ref22
ref66
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref29
  doi: 10.1109/JIOT.2018.2822818
– ident: ref40
  doi: 10.1109/JIOT.2022.3176400
– ident: ref21
  doi: 10.1007/978-3-319-70688-7_11
– ident: ref17
  doi: 10.1007/s10916-018-1075-6
– ident: ref28
  doi: 10.3390/s20051454
– ident: ref5
  doi: 10.4018/978-1-7998-6527-8.ch013
– ident: ref38
  doi: 10.1016/j.future.2018.10.029
– ident: ref8
  doi: 10.1093/pcmedi/pbz020
– ident: ref60
  doi: 10.3390/fi11110235
– ident: ref51
  doi: 10.1109/WiSPNET54241.2022.9767142
– ident: ref56
  doi: 10.1109/NAS.2017.8026861
– ident: ref6
  doi: 10.1002/spe.2509
– ident: ref32
  doi: 10.1016/j.asoc.2020.106612
– ident: ref49
  doi: 10.1109/GLOBECOM42002.2020.9347951
– ident: ref39
  doi: 10.1109/JIOT.2017.2767608
– ident: ref68
  doi: 10.1007/s00521-016-2604-1
– ident: ref41
  doi: 10.1109/MCOM.2018.1701231
– ident: ref42
  doi: 10.1007/s00607-022-01104-2
– ident: ref55
  doi: 10.1109/MNET.011.1900636
– ident: ref3
  doi: 10.1109/PuneCon50868.2020.9362367
– ident: ref52
  doi: 10.1109/ACCESS.2020.3011503
– ident: ref26
  doi: 10.1016/j.aucc.2007.12.061
– ident: ref2
  doi: 10.1109/TBME.2018.2871638
– ident: ref18
  doi: 10.1093/eurpub/ckv122
– ident: ref48
  doi: 10.3390/s20226441
– ident: ref19
  doi: 10.1197/jamia.M1700
– ident: ref30
  doi: 10.1109/ACCESS.2021.3110604
– ident: ref69
  doi: 10.1109/ICICCS48265.2020.9121169
– ident: ref57
  doi: 10.1155/2017/9324035
– ident: ref67
  article-title: Cardiovascular disease dataset
– ident: ref10
  doi: 10.1109/JIOT.2021.3062630
– volume-title: StatPearls [Internet]
  year: 2024
  ident: ref64
  article-title: Hypotension
– ident: ref12
  doi: 10.1109/JIOT.2018.2849014
– ident: ref62
  doi: 10.1109/ACCESS.2017.2702013
– ident: ref20
  doi: 10.3390/su15086337
– ident: ref15
  doi: 10.1017/ice.2018.265
– volume: 2
  start-page: 5
  issue: 1
  year: 2016
  ident: ref70
  article-title: ECG signal classification based on statistical features with SVM classification
  publication-title: Int. J. Adv. Signal Image Sci.
– ident: ref58
  doi: 10.3390/fi15020054
– ident: ref34
  doi: 10.1016/j.cmi.2019.09.009
– ident: ref63
  doi: 10.1109/ACCESS.2019.2950950
– ident: ref22
  doi: 10.5772/61821
– ident: ref53
  doi: 10.1016/j.jpdc.2018.08.010
– ident: ref47
  doi: 10.1109/MCOM.2018.1700822
– ident: ref7
  doi: 10.1186/s12911-021-01488-9
– ident: ref36
  doi: 10.1007/978-3-319-61949-1_2
– ident: ref35
  doi: 10.1007/978-3-319-63645-0_44
– volume-title: StatPearls [Internet]
  year: 2024
  ident: ref65
  article-title: Physiology, mean arterial pressure
– ident: ref66
  doi: 10.1201/9781003230946
– ident: ref9
  doi: 10.3390/s20144047
– ident: ref16
  doi: 10.1093/cid/cix731
– ident: ref43
  doi: 10.1109/WF-IoT.2015.7389122
– ident: ref54
  doi: 10.1109/MNET.2019.1800083
– ident: ref33
  doi: 10.1016/j.jamda.2010.04.009
– ident: ref23
  doi: 10.1080/09720502.2018.1493040
– ident: ref25
  doi: 10.3390/s18082414
– ident: ref44
  doi: 10.1016/j.comcom.2021.09.003
– ident: ref45
  doi: 10.1109/JIOT.2016.2579198
– ident: ref50
  doi: 10.1007/s10586-022-03717-w
– ident: ref4
  doi: 10.1007/978-3-319-99713-1_11
– ident: ref14
  doi: 10.1016/j.future.2018.07.049
– ident: ref61
  doi: 10.1002/9781119525080
– ident: ref31
  doi: 10.1136/bmj.320.7236.686
– ident: ref27
  doi: 10.12968/bjon.2012.21.10.621
– ident: ref46
  doi: 10.1109/COMST.2020.3009103
– ident: ref59
  doi: 10.5121/csit.2014.4519
– ident: ref13
  doi: 10.1016/j.procs.2020.03.424
– ident: ref24
  doi: 10.1109/ACCESS.2020.3010511
– ident: ref1
  doi: 10.1038/s41746-020-0221-y
– ident: ref37
  doi: 10.3390/s22176625
– ident: ref11
  doi: 10.1007/s42452-019-1925-y
SSID ssj0000816957
Score 2.379198
Snippet Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Augmented reality
Blood pressure
Clinical decision making
Clinical Decision support system
Cloud computing
Computer architecture
Computer networks
Data acquisition
Decision support systems
Edge computing
Electroencephalography
Embedded sensors
Health care
Heart rate
Hypotension
Internet of Things
Medical devices
Medical equipment
Medical services
Network latency
Prognosis
Real time
Servers
smart healthcare
Virtual reality
vital sign monitoring
Vital signs
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2i3QALnkUECvKCJZ7aedleDtNWBYluaKXuLD8RYshUMCMEX8-14xmlIBC7KHISW8fOPdePcwBeyZp7Z3igSkpDW9NLapRpaIotoTVtbWQ6KPz-vD-7bN9ddVflsHo-CxNCyJvPwixd5rV8v3KbNFV2lGQFBP4-92BPyH48rLWbUEkOEqoTRVmIM3U0XyywEZgD1u0MMzGmkq3RJPpkkf7iqnKDYN7eDNfmx3ezXE5izel9ON_Wctxi8nm2WduZ-_mbgON_N-MB3Cusk8zHbvIQboXhEdydaBE-Bn-c93IQM3jy4dOX4upFVhHvkBP_MZBiAEHmk7UHgpyXvF1d0BQNPSkqo0tyXKx7SHINRYZPRmX0A7g8PblYnNFiwUAdJn5rKl1kngupWm-9ZYFbBNLVoUVi0LS9dJ6FztZeiM4za4OIzEkZAou19Db65gnsD6shPAVieEpnTOi5S4upxnBkco7HhkXM7oWpoN5Co13RJ082GUud8xSm9IinTnjqgmcFr3cPXY_yHP8u_iZhviuatLXzDcRHl6GqMaRz52V0DfZVpDuqY32M-BYnnMGqV3CQMJ18b4SzgsNtF9LlR_BNN2lGqUMSriqgu271R11Ndse8Uddnf_nMc7iTio3TQIewv_66CS-QGK3tyzwgfgGx1Qjw
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAceBYRWpAPHHHWztM5bretChIVEl2pnCzHj6oiZFewKx6_nrHjXaUgIcEtsZzE0Yw93_jxfQCvRMaNVtzSRghFC1UJqhqVUx9bbKGKTAl_UPjdeXW2KN5elpdxwi2chbHWhs1nNvWXYS3_2nbf62mVefK0ZlphiMckYeo5BmocS9OVcbdhryoRi09gb3H-fvbRK8rxqqF5WJs8iMSaUxU0CDEpzIoUUzPWeJ2jUTgKrP1RZuUG4ryz6VfqxzfVdaPgc_oA5LbZw56TT-lm3ab652-Mjv__Xw_hfsSlZDY40iO4ZfvHcG_EVvgEzHHY7UFUb8iH689R94ssHZaQE3NlSZSIILPR6gRBVEzeLC_oEcZLQyIPaUeOo7gP8bqimAOQgTt9HxanJxfzMxpFGqjG1HBNhXbM8Fo0hWlNyyxv0dQ6swVCh7yohDbMlm1m6ro0rG1t7ZgWwlrmMmFaZ_KnMOmXvX0GRHGf8Chbce2XW5XiiPU0dzlzmP_XKoFsayupI4O5F9LoZMhkWCNn8zm6rfQGltHACbzePbQaCDz-Xv3IO8GuqmffDgVoMBk7s8Sgz7URTufozQiImpJVzuFbdK0VNj2BfW_k0fcGkyZwuPUpGYeKrzL3c04lwvQmAbrzsz_aOvjujbY-_8f6B3DX3w4TSIcwWX_Z2BcIqdbty9hvfgHK1Rh9
  priority: 102
  providerName: Unpaywall
Title Design and Simulation of an Edge Compute Architecture for IoT-based Clinical Decision Support System
URI https://ieeexplore.ieee.org/document/10477990
https://www.proquest.com/docview/3015059919
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10477990.pdf
https://doaj.org/article/3621cd8fc34a40619506ff024c7ca645
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h9gAcEI8iAu3KB46Y2okT28fttlVBokKiK5WT5fiBkJZsBVsh_j1jx12lqlQuXC07mcxMPDN-fB_AW1Vz7ywPVCtlqbCdolbbhqbYEoQVtVXpovCn8-5sKT5etpcTqq90JmyEBx4Vd4gTLHdeRdfgSAw-umVdjBhZnHS2Exm9lCk9KabyHKx4p1tZYIY404fzxQK_CAvCWrzHsozpxHE0CUUZsb9QrNzKNh9eD1f2z2-7Wk0Cz-lTeFIyRjIfJX0GD8LwHB5PcARfgD_O5zCIHTz58v1HYeQi64gt5MR_C6SQN5D5ZN-AYL5KPqwv6BFGMk8KQuiKHBfaHZIYPzE7JyOq-R4sT08uFme00CdQh0XbhioXmedSaeF737PAezSCq4PAoN6ITjnPQtvXXsrWs74PMjKnVAgs1sr30TcvYWdYD-EVEMtTKWJDx13aCLWWYxbmeGxYxMpc2grqG00aV7DFE8XFyuQag2kzqt8k9Zui_grebQddjdAa93c_Sibadk242LkBvcUUbzH_8pYK9pKBJ-8TUmJArmD_xuKm_MS_TJNWg1pMoHUFdOsFd2S1mdnylqyv_4esb-BReua43rMPO5uf1-EAM6BNP8vOPsuXFWewuzz_PP_6F0JgALE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2Csihd8CxqoIAXLPHUTpzEWQ7TVlNoZ8NU6s5y_KgQQ6aCGSH4eq4dzygFgdhFUZzYOnbuuX6cA_BG5twazR1tpNRU6EpS3eiChtjihBa5luGg8MWsml6K91flVTqsHs_COOfi5jM3CpdxLd8uzTpMlR0FWYEaf5934V4phCj741rbKZXgIdGUddIW4qw5Gk8m2AzMAnMxwlyMNcHYaBB_okx_8lW5RTF3192N_vFdLxaDaHP6EGabevabTD6P1qt2ZH7-JuH43w15BA8S7yTjvqM8hjuuewJ7AzXCp2CP424OojtLPn76kny9yNLjHXJirx1JFhBkPFh9IMh6ydlyTkM8tCTpjC7IcTLvIcE3FDk-6bXR9-Hy9GQ-mdJkwkANpn4rKo1nlteyEba1LXO8RShN7gRSg0JU0ljmyja3dV1a1rau9sxI6RzzubStt8Uz2OmWnTsAonlIaLSruAnLqVpz5HKG-4J5zO9rnUG-gUaZpFAejDIWKmYqrFE9nirgqRKeGbzdFrrpBTr-_fi7gPn20aCuHW8gPioNVoVBnRsrvSmwtyLhaUpWeY9vMbXRWPUM9gOmg-_1cGZwuOlCKv0KvqkizCmVSMObDOi2W_1RVx39MW_V9flfPvMadqfzi3N1fjb78ALuhyL9pNAh7Ky-rt1LpEmr9lUcHL8ArwkMPQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAceBYRWpAPHHHWztM5bretChIVEl2pnCzHj6oiZFewKx6_nrHjXaUgIcEtsZzE0Yw93_jxfQCvRMaNVtzSRghFC1UJqhqVUx9bbKGKTAl_UPjdeXW2KN5elpdxwi2chbHWhs1nNvWXYS3_2nbf62mVefK0ZlphiMckYeo5BmocS9OVcbdhryoRi09gb3H-fvbRK8rxqqF5WJs8iMSaUxU0CDEpzIoUUzPWeJ2jUTgKrP1RZuUG4ryz6VfqxzfVdaPgc_oA5LbZw56TT-lm3ab652-Mjv__Xw_hfsSlZDY40iO4ZfvHcG_EVvgEzHHY7UFUb8iH689R94ssHZaQE3NlSZSIILPR6gRBVEzeLC_oEcZLQyIPaUeOo7gP8bqimAOQgTt9HxanJxfzMxpFGqjG1HBNhXbM8Fo0hWlNyyxv0dQ6swVCh7yohDbMlm1m6ro0rG1t7ZgWwlrmMmFaZ_KnMOmXvX0GRHGf8Chbce2XW5XiiPU0dzlzmP_XKoFsayupI4O5F9LoZMhkWCNn8zm6rfQGltHACbzePbQaCDz-Xv3IO8GuqmffDgVoMBk7s8Sgz7URTufozQiImpJVzuFbdK0VNj2BfW_k0fcGkyZwuPUpGYeKrzL3c04lwvQmAbrzsz_aOvjujbY-_8f6B3DX3w4TSIcwWX_Z2BcIqdbty9hvfgHK1Rh9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Simulation+of+an+Edge+Compute+Architecture+for+IoT-Based+Clinical+Decision+Support+System&rft.jtitle=IEEE+access&rft.au=Rachuri+Harish+Kumar&rft.au=Bharghava+Rajaram&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=45456&rft.epage=45474&rft_id=info:doi/10.1109%2FACCESS.2024.3380906&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon