Design and Simulation of an Edge Compute Architecture for IoT-based Clinical Decision Support System
Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospita...
Saved in:
| Published in | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3380906 |
Cover
| Abstract | Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospital scenario, a patient's vital signs like heart rate, blood pressure, respiration rate, ECG, EEG etc. are monitored with the use of embedded sensor devices, also called smart medical devices. These devices collect real-time data which is relayed to a compute device where several algorithms are employed to perform computations on said data to arrive at a prognosis e.g. real-time onset of hypotension can be detected by running predictive algorithms on real-time blood pressure data. The computation in IoT-based CDSS is done predominantly on the cloud, wherein the real-time data collected is relayed to a centralized cloud server. However, latency is a major drawback in a cloud-based monitoring system. Increased latency is of greater concern in healthcare applications as the decision-making process is time-sensitive. Edge computing can potentially overcome this drawback, wherein computation is done on edge-network devices rather than the cloud. While edge computing for IoT-based CDSS has been explored in literature, there are gaps in their implementations. A majority of literature dealing with edge computing for IoT-based healthcare only demonstrates a single application and does not address the varying data acquisition rates for different vital signs. Each prognosis or diagnosis requires different subsets of vital signs, and the underlying algorithm uses different sizes of data e.g. detecting arrhythmia requires processing of ECG data which is a time series data, and detecting cardiovascular disease requires blood pressure, cholesterol and certain habits of the patient which are mostly single points of data. This paper explores the use of edge computing in CDSS, quantifies its performance with respect to number of devices, sense time interval or intertransmission rate, and the size of data, and proposes a unified IoT edge gateway architecture to combine multiple patterns of data and computation algorithms to achieve reduced latency and network utilization. Simulation results show that edge computing reduces the latency of decision by approximately 87 times, and the network utilization by 1.5 times. The results show the efficacy of edge computing for implementing IoT-based CDSS and also demonstrate scalability with regard to the number of devices and the size and intertransmission rate of data. |
|---|---|
| AbstractList | Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospital scenario, a patient's vital signs like heart rate, blood pressure, respiration rate, ECG, EEG etc. are monitored with the use of embedded sensor devices, also called smart medical devices. These devices collect real-time data which is relayed to a compute device where several algorithms are employed to perform computations on said data to arrive at a prognosis e.g. real-time onset of hypotension can be detected by running predictive algorithms on real-time blood pressure data. The computation in IoT-based CDSS is done predominantly on the cloud, wherein the real-time data collected is relayed to a centralized cloud server. However, latency is a major drawback in a cloud-based monitoring system. Increased latency is of greater concern in healthcare applications as the decision-making process is time-sensitive. Edge computing can potentially overcome this drawback, wherein computation is done on edge-network devices rather than the cloud. While edge computing for IoT-based CDSS has been explored in literature, there are gaps in their implementations. A majority of literature dealing with edge computing for IoT-based healthcare only demonstrates a single application and does not address the varying data acquisition rates for different vital signs. Each prognosis or diagnosis requires different subsets of vital signs, and the underlying algorithm uses different sizes of data e.g. detecting arrhythmia requires processing of ECG data which is a time series data, and detecting cardiovascular disease requires blood pressure, cholesterol and certain habits of the patient which are mostly single points of data. This paper explores the use of edge computing in CDSS, quantifies its performance with respect to number of devices, sense time interval or intertransmission rate, and the size of data, and proposes a unified IoT edge gateway architecture to combine multiple patterns of data and computation algorithms to achieve reduced latency and network utilization. Simulation results show that edge computing reduces the latency of decision by approximately 87 times, and the network utilization by 1.5 times. The results show the efficacy of edge computing for implementing IoT-based CDSS and also demonstrate scalability with regard to the number of devices and the size and intertransmission rate of data. |
| Author | Rajaram, Bharghava Kumar, Rachuri Harish |
| Author_xml | – sequence: 1 givenname: Rachuri Harish orcidid: 0000-0003-2860-8379 surname: Kumar fullname: Kumar, Rachuri Harish organization: Department of Electrical and Computer Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India – sequence: 2 givenname: Bharghava surname: Rajaram fullname: Rajaram, Bharghava organization: Department of Electrical and Computer Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India |
| BookMark | eNqFkcFu3CAQhlGVSk3TPEF7QOrZWzDYhuPK2bYrRerB6RlhGLasvMYFrGrfPt44qqL0UC6g0XzfiH_eo6sxjIDQR0o2lBL5Zdu2u67blKTkG8YEkaR-g65LWsuCVay-evF-h25TOpLliKVUNdfI3kHyhxHr0eLOn-ZBZx9GHNxSwTt7ANyG0zRnwNtofvkMJs8RsAsR78ND0esEFreDH73RA74D49OF7-ZpCjHj7pwynD6gt04PCW6f7xv08-vuof1e3P_4tm-394XhROZCGEcsbYTktrc9AdpLzUwJnArKeC2MJVD1pW2aypK-h8YRIwQAcaWwvbPsBu1Xrw36qKboTzqeVdBePRVCPCgdszcDKFaX1FjhDOOak5rKitTOLRGaxuiaV4uLr655nPT5jx6Gv0JK1CV4pY2BlNQlePUc_IJ9XrEpht8zpKyOYY7j8mvFCK1IJSWVSxdbu0wMKUVw_7jXpb52y1eU8flpXzlqP_yH_bSyHgBeTONNIyVhj1zhsGQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1142_S0218126625501063 crossref_primary_10_3390_fi16090329 crossref_primary_10_1007_s13369_024_09898_3 |
| Cites_doi | 10.1109/JIOT.2018.2822818 10.1109/JIOT.2022.3176400 10.1007/978-3-319-70688-7_11 10.1007/s10916-018-1075-6 10.3390/s20051454 10.4018/978-1-7998-6527-8.ch013 10.1016/j.future.2018.10.029 10.1093/pcmedi/pbz020 10.3390/fi11110235 10.1109/WiSPNET54241.2022.9767142 10.1109/NAS.2017.8026861 10.1002/spe.2509 10.1016/j.asoc.2020.106612 10.1109/GLOBECOM42002.2020.9347951 10.1109/JIOT.2017.2767608 10.1007/s00521-016-2604-1 10.1109/MCOM.2018.1701231 10.1007/s00607-022-01104-2 10.1109/MNET.011.1900636 10.1109/PuneCon50868.2020.9362367 10.1109/ACCESS.2020.3011503 10.1016/j.aucc.2007.12.061 10.1109/TBME.2018.2871638 10.1093/eurpub/ckv122 10.3390/s20226441 10.1197/jamia.M1700 10.1109/ACCESS.2021.3110604 10.1109/ICICCS48265.2020.9121169 10.1155/2017/9324035 10.1109/JIOT.2021.3062630 10.1109/JIOT.2018.2849014 10.1109/ACCESS.2017.2702013 10.3390/su15086337 10.1017/ice.2018.265 10.3390/fi15020054 10.1016/j.cmi.2019.09.009 10.1109/ACCESS.2019.2950950 10.5772/61821 10.1016/j.jpdc.2018.08.010 10.1109/MCOM.2018.1700822 10.1186/s12911-021-01488-9 10.1007/978-3-319-61949-1_2 10.1007/978-3-319-63645-0_44 10.1201/9781003230946 10.3390/s20144047 10.1093/cid/cix731 10.1109/WF-IoT.2015.7389122 10.1109/MNET.2019.1800083 10.1016/j.jamda.2010.04.009 10.1080/09720502.2018.1493040 10.3390/s18082414 10.1016/j.comcom.2021.09.003 10.1109/JIOT.2016.2579198 10.1007/s10586-022-03717-w 10.1007/978-3-319-99713-1_11 10.1016/j.future.2018.07.049 10.1002/9781119525080 10.1136/bmj.320.7236.686 10.12968/bjon.2012.21.10.621 10.1109/COMST.2020.3009103 10.5121/csit.2014.4519 10.1016/j.procs.2020.03.424 10.1109/ACCESS.2020.3010511 10.1038/s41746-020-0221-y 10.3390/s22176625 10.1007/s42452-019-1925-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3380906 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645 10.1109/access.2024.3380906 10_1109_ACCESS_2024_3380906 10477990 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-8cf0d17894dbdb0e1b9a3c2e41813468cd0e5b2d775d0bbe7f0c88ee0f28dbfd3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:41 EDT 2025 Tue Aug 19 22:37:12 EDT 2025 Mon Jun 30 07:02:59 EDT 2025 Wed Oct 01 04:52:24 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Wed Aug 27 02:17:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-8cf0d17894dbdb0e1b9a3c2e41813468cd0e5b2d775d0bbe7f0c88ee0f28dbfd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2860-8379 |
| OpenAccessLink | https://doaj.org/article/3621cd8fc34a40619506ff024c7ca645 |
| PQID | 3015059919 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3380906 proquest_journals_3015059919 ieee_primary_10477990 doaj_primary_oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645 crossref_citationtrail_10_1109_ACCESS_2024_3380906 unpaywall_primary_10_1109_access_2024_3380906 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Ulianova (ref67) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Arjunan (ref70) 2016; 2 ref9 Sharma (ref64) 2024 ref4 ref3 ref6 ref5 DeMers (ref65) 2024 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref63 ref22 ref66 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref29 doi: 10.1109/JIOT.2018.2822818 – ident: ref40 doi: 10.1109/JIOT.2022.3176400 – ident: ref21 doi: 10.1007/978-3-319-70688-7_11 – ident: ref17 doi: 10.1007/s10916-018-1075-6 – ident: ref28 doi: 10.3390/s20051454 – ident: ref5 doi: 10.4018/978-1-7998-6527-8.ch013 – ident: ref38 doi: 10.1016/j.future.2018.10.029 – ident: ref8 doi: 10.1093/pcmedi/pbz020 – ident: ref60 doi: 10.3390/fi11110235 – ident: ref51 doi: 10.1109/WiSPNET54241.2022.9767142 – ident: ref56 doi: 10.1109/NAS.2017.8026861 – ident: ref6 doi: 10.1002/spe.2509 – ident: ref32 doi: 10.1016/j.asoc.2020.106612 – ident: ref49 doi: 10.1109/GLOBECOM42002.2020.9347951 – ident: ref39 doi: 10.1109/JIOT.2017.2767608 – ident: ref68 doi: 10.1007/s00521-016-2604-1 – ident: ref41 doi: 10.1109/MCOM.2018.1701231 – ident: ref42 doi: 10.1007/s00607-022-01104-2 – ident: ref55 doi: 10.1109/MNET.011.1900636 – ident: ref3 doi: 10.1109/PuneCon50868.2020.9362367 – ident: ref52 doi: 10.1109/ACCESS.2020.3011503 – ident: ref26 doi: 10.1016/j.aucc.2007.12.061 – ident: ref2 doi: 10.1109/TBME.2018.2871638 – ident: ref18 doi: 10.1093/eurpub/ckv122 – ident: ref48 doi: 10.3390/s20226441 – ident: ref19 doi: 10.1197/jamia.M1700 – ident: ref30 doi: 10.1109/ACCESS.2021.3110604 – ident: ref69 doi: 10.1109/ICICCS48265.2020.9121169 – ident: ref57 doi: 10.1155/2017/9324035 – ident: ref67 article-title: Cardiovascular disease dataset – ident: ref10 doi: 10.1109/JIOT.2021.3062630 – volume-title: StatPearls [Internet] year: 2024 ident: ref64 article-title: Hypotension – ident: ref12 doi: 10.1109/JIOT.2018.2849014 – ident: ref62 doi: 10.1109/ACCESS.2017.2702013 – ident: ref20 doi: 10.3390/su15086337 – ident: ref15 doi: 10.1017/ice.2018.265 – volume: 2 start-page: 5 issue: 1 year: 2016 ident: ref70 article-title: ECG signal classification based on statistical features with SVM classification publication-title: Int. J. Adv. Signal Image Sci. – ident: ref58 doi: 10.3390/fi15020054 – ident: ref34 doi: 10.1016/j.cmi.2019.09.009 – ident: ref63 doi: 10.1109/ACCESS.2019.2950950 – ident: ref22 doi: 10.5772/61821 – ident: ref53 doi: 10.1016/j.jpdc.2018.08.010 – ident: ref47 doi: 10.1109/MCOM.2018.1700822 – ident: ref7 doi: 10.1186/s12911-021-01488-9 – ident: ref36 doi: 10.1007/978-3-319-61949-1_2 – ident: ref35 doi: 10.1007/978-3-319-63645-0_44 – volume-title: StatPearls [Internet] year: 2024 ident: ref65 article-title: Physiology, mean arterial pressure – ident: ref66 doi: 10.1201/9781003230946 – ident: ref9 doi: 10.3390/s20144047 – ident: ref16 doi: 10.1093/cid/cix731 – ident: ref43 doi: 10.1109/WF-IoT.2015.7389122 – ident: ref54 doi: 10.1109/MNET.2019.1800083 – ident: ref33 doi: 10.1016/j.jamda.2010.04.009 – ident: ref23 doi: 10.1080/09720502.2018.1493040 – ident: ref25 doi: 10.3390/s18082414 – ident: ref44 doi: 10.1016/j.comcom.2021.09.003 – ident: ref45 doi: 10.1109/JIOT.2016.2579198 – ident: ref50 doi: 10.1007/s10586-022-03717-w – ident: ref4 doi: 10.1007/978-3-319-99713-1_11 – ident: ref14 doi: 10.1016/j.future.2018.07.049 – ident: ref61 doi: 10.1002/9781119525080 – ident: ref31 doi: 10.1136/bmj.320.7236.686 – ident: ref27 doi: 10.12968/bjon.2012.21.10.621 – ident: ref46 doi: 10.1109/COMST.2020.3009103 – ident: ref59 doi: 10.5121/csit.2014.4519 – ident: ref13 doi: 10.1016/j.procs.2020.03.424 – ident: ref24 doi: 10.1109/ACCESS.2020.3010511 – ident: ref1 doi: 10.1038/s41746-020-0221-y – ident: ref37 doi: 10.3390/s22176625 – ident: ref11 doi: 10.1007/s42452-019-1925-y |
| SSID | ssj0000816957 |
| Score | 2.379198 |
| Snippet | Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging modern technologies such as internet of things (IoT), artificial... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Augmented reality Blood pressure Clinical decision making Clinical Decision support system Cloud computing Computer architecture Computer networks Data acquisition Decision support systems Edge computing Electroencephalography Embedded sensors Health care Heart rate Hypotension Internet of Things Medical devices Medical equipment Medical services Network latency Prognosis Real time Servers smart healthcare Virtual reality vital sign monitoring Vital signs |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2i3QALnkUECvKCJZ7aedleDtNWBYluaKXuLD8RYshUMCMEX8-14xmlIBC7KHISW8fOPdePcwBeyZp7Z3igSkpDW9NLapRpaIotoTVtbWQ6KPz-vD-7bN9ddVflsHo-CxNCyJvPwixd5rV8v3KbNFV2lGQFBP4-92BPyH48rLWbUEkOEqoTRVmIM3U0XyywEZgD1u0MMzGmkq3RJPpkkf7iqnKDYN7eDNfmx3ezXE5izel9ON_Wctxi8nm2WduZ-_mbgON_N-MB3Cusk8zHbvIQboXhEdydaBE-Bn-c93IQM3jy4dOX4upFVhHvkBP_MZBiAEHmk7UHgpyXvF1d0BQNPSkqo0tyXKx7SHINRYZPRmX0A7g8PblYnNFiwUAdJn5rKl1kngupWm-9ZYFbBNLVoUVi0LS9dJ6FztZeiM4za4OIzEkZAou19Db65gnsD6shPAVieEpnTOi5S4upxnBkco7HhkXM7oWpoN5Co13RJ082GUud8xSm9IinTnjqgmcFr3cPXY_yHP8u_iZhviuatLXzDcRHl6GqMaRz52V0DfZVpDuqY32M-BYnnMGqV3CQMJ18b4SzgsNtF9LlR_BNN2lGqUMSriqgu271R11Ndse8Uddnf_nMc7iTio3TQIewv_66CS-QGK3tyzwgfgGx1Qjw priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAceBYRWpAPHHHWztM5bretChIVEl2pnCzHj6oiZFewKx6_nrHjXaUgIcEtsZzE0Yw93_jxfQCvRMaNVtzSRghFC1UJqhqVUx9bbKGKTAl_UPjdeXW2KN5elpdxwi2chbHWhs1nNvWXYS3_2nbf62mVefK0ZlphiMckYeo5BmocS9OVcbdhryoRi09gb3H-fvbRK8rxqqF5WJs8iMSaUxU0CDEpzIoUUzPWeJ2jUTgKrP1RZuUG4ryz6VfqxzfVdaPgc_oA5LbZw56TT-lm3ab652-Mjv__Xw_hfsSlZDY40iO4ZfvHcG_EVvgEzHHY7UFUb8iH689R94ssHZaQE3NlSZSIILPR6gRBVEzeLC_oEcZLQyIPaUeOo7gP8bqimAOQgTt9HxanJxfzMxpFGqjG1HBNhXbM8Fo0hWlNyyxv0dQ6swVCh7yohDbMlm1m6ro0rG1t7ZgWwlrmMmFaZ_KnMOmXvX0GRHGf8Chbce2XW5XiiPU0dzlzmP_XKoFsayupI4O5F9LoZMhkWCNn8zm6rfQGltHACbzePbQaCDz-Xv3IO8GuqmffDgVoMBk7s8Sgz7URTufozQiImpJVzuFbdK0VNj2BfW_k0fcGkyZwuPUpGYeKrzL3c04lwvQmAbrzsz_aOvjujbY-_8f6B3DX3w4TSIcwWX_Z2BcIqdbty9hvfgHK1Rh9 priority: 102 providerName: Unpaywall |
| Title | Design and Simulation of an Edge Compute Architecture for IoT-based Clinical Decision Support System |
| URI | https://ieeexplore.ieee.org/document/10477990 https://www.proquest.com/docview/3015059919 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10477990.pdf https://doaj.org/article/3621cd8fc34a40619506ff024c7ca645 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h9gAcEI8iAu3KB46Y2okT28fttlVBokKiK5WT5fiBkJZsBVsh_j1jx12lqlQuXC07mcxMPDN-fB_AW1Vz7ywPVCtlqbCdolbbhqbYEoQVtVXpovCn8-5sKT5etpcTqq90JmyEBx4Vd4gTLHdeRdfgSAw-umVdjBhZnHS2Exm9lCk9KabyHKx4p1tZYIY404fzxQK_CAvCWrzHsozpxHE0CUUZsb9QrNzKNh9eD1f2z2-7Wk0Cz-lTeFIyRjIfJX0GD8LwHB5PcARfgD_O5zCIHTz58v1HYeQi64gt5MR_C6SQN5D5ZN-AYL5KPqwv6BFGMk8KQuiKHBfaHZIYPzE7JyOq-R4sT08uFme00CdQh0XbhioXmedSaeF737PAezSCq4PAoN6ITjnPQtvXXsrWs74PMjKnVAgs1sr30TcvYWdYD-EVEMtTKWJDx13aCLWWYxbmeGxYxMpc2grqG00aV7DFE8XFyuQag2kzqt8k9Zui_grebQddjdAa93c_Sibadk242LkBvcUUbzH_8pYK9pKBJ-8TUmJArmD_xuKm_MS_TJNWg1pMoHUFdOsFd2S1mdnylqyv_4esb-BReua43rMPO5uf1-EAM6BNP8vOPsuXFWewuzz_PP_6F0JgALE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2Csihd8CxqoIAXLPHUTpzEWQ7TVlNoZ8NU6s5y_KgQQ6aCGSH4eq4dzygFgdhFUZzYOnbuuX6cA_BG5twazR1tpNRU6EpS3eiChtjihBa5luGg8MWsml6K91flVTqsHs_COOfi5jM3CpdxLd8uzTpMlR0FWYEaf5934V4phCj741rbKZXgIdGUddIW4qw5Gk8m2AzMAnMxwlyMNcHYaBB_okx_8lW5RTF3192N_vFdLxaDaHP6EGabevabTD6P1qt2ZH7-JuH43w15BA8S7yTjvqM8hjuuewJ7AzXCp2CP424OojtLPn76kny9yNLjHXJirx1JFhBkPFh9IMh6ydlyTkM8tCTpjC7IcTLvIcE3FDk-6bXR9-Hy9GQ-mdJkwkANpn4rKo1nlteyEba1LXO8RShN7gRSg0JU0ljmyja3dV1a1rau9sxI6RzzubStt8Uz2OmWnTsAonlIaLSruAnLqVpz5HKG-4J5zO9rnUG-gUaZpFAejDIWKmYqrFE9nirgqRKeGbzdFrrpBTr-_fi7gPn20aCuHW8gPioNVoVBnRsrvSmwtyLhaUpWeY9vMbXRWPUM9gOmg-_1cGZwuOlCKv0KvqkizCmVSMObDOi2W_1RVx39MW_V9flfPvMadqfzi3N1fjb78ALuhyL9pNAh7Ky-rt1LpEmr9lUcHL8ArwkMPQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAceBYRWpAPHHHWztM5bretChIVEl2pnCzHj6oiZFewKx6_nrHjXaUgIcEtsZzE0Yw93_jxfQCvRMaNVtzSRghFC1UJqhqVUx9bbKGKTAl_UPjdeXW2KN5elpdxwi2chbHWhs1nNvWXYS3_2nbf62mVefK0ZlphiMckYeo5BmocS9OVcbdhryoRi09gb3H-fvbRK8rxqqF5WJs8iMSaUxU0CDEpzIoUUzPWeJ2jUTgKrP1RZuUG4ryz6VfqxzfVdaPgc_oA5LbZw56TT-lm3ab652-Mjv__Xw_hfsSlZDY40iO4ZfvHcG_EVvgEzHHY7UFUb8iH689R94ssHZaQE3NlSZSIILPR6gRBVEzeLC_oEcZLQyIPaUeOo7gP8bqimAOQgTt9HxanJxfzMxpFGqjG1HBNhXbM8Fo0hWlNyyxv0dQ6swVCh7yohDbMlm1m6ro0rG1t7ZgWwlrmMmFaZ_KnMOmXvX0GRHGf8Chbce2XW5XiiPU0dzlzmP_XKoFsayupI4O5F9LoZMhkWCNn8zm6rfQGltHACbzePbQaCDz-Xv3IO8GuqmffDgVoMBk7s8Sgz7URTufozQiImpJVzuFbdK0VNj2BfW_k0fcGkyZwuPUpGYeKrzL3c04lwvQmAbrzsz_aOvjujbY-_8f6B3DX3w4TSIcwWX_Z2BcIqdbty9hvfgHK1Rh9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Simulation+of+an+Edge+Compute+Architecture+for+IoT-Based+Clinical+Decision+Support+System&rft.jtitle=IEEE+access&rft.au=Rachuri+Harish+Kumar&rft.au=Bharghava+Rajaram&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=45456&rft.epage=45474&rft_id=info:doi/10.1109%2FACCESS.2024.3380906&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3621cd8fc34a40619506ff024c7ca645 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |