Optimization for Inconsistent Split Feasibility Problems

The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and genera...

Full description

Saved in:
Bibliographic Details
Published inNumerical functional analysis and optimization Vol. 37; no. 2; pp. 186 - 205
Main Author Iiduka, Hideaki
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.02.2016
Subjects
Online AccessGet full text
ISSN0163-0563
1532-2467
DOI10.1080/01630563.2015.1080270

Cover

Abstract The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem.
AbstractList The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem.
Author Iiduka, Hideaki
Author_xml – sequence: 1
  givenname: Hideaki
  orcidid: 0000-0001-9173-6723
  surname: Iiduka
  fullname: Iiduka, Hideaki
  email: iiduka@cs.meiji.ac.jp
  organization: Department of Computer Science, Meiji University
BookMark eNqFkE1LAzEQhoNUsK3-BGGPXrbma7_wohSrhUIF9RySbAKRbLImEam_3t22XjzoYZhheN6BeWZg4rxTAFwiuECwhtcQlQQWJVlgiIr9ClfwBExRQXCOaVlNwHRk8hE6A7MY3yCEBDf1FNTbPpnOfPFkvMu0D9naSe-iiUm5lD331qRspXg0wgzjLnsKXljVxXNwqrmN6uLY5-B1df-yfMw324f18m6TSwqblNcCa1gOVVPRQi0bKjBSrWyJwC1VotSVKrCuCyElKjgWkHIuJNSYFqqmnMzB1eFuH_z7h4qJdSZKZS13yn9EhqqGYFLihgzozQGVwccYlGbSpP1jKXBjGYJslMN-fLHRFzv6GtLFr3QfTMfD7t_c7SFn3KCv458-2JYlvrM-6MCdNJGRv098A9gihDk
CitedBy_id crossref_primary_10_1007_s11075_022_01308_9
Cites_doi 10.1016/j.cam.2011.10.004
10.1093/imanum/drl016
10.1080/10556780701223293
10.1137/120866877
10.1137/110850542
10.1016/j.amc.2011.01.005
10.1080/01630560701749524
10.1137/080743573
10.1088/0266-5611/21/6/017
10.1007/s11228-011-0191-y
10.1109/TSP.2003.812846
10.1007/BF02142692
10.1109/78.782189
10.1137/110849456
10.1007/s10107-013-0741-1
10.1007/BF01190119
10.1007/s10444-011-9254-8
10.1007/s10957-010-9769-z
10.1007/s10957-012-0245-9
10.1088/0266-5611/22/6/007
10.1088/0266-5611/20/4/014
10.1137/S0036144593251710
10.1088/0266-5611/18/2/310
10.1137/070702497
10.1090/S0002-9904-1967-11864-0
10.1090/conm/313/05379
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC 2016
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC 2016
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/01630563.2015.1080270
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 205
ExternalDocumentID 10_1080_01630563_2015_1080270
1080270
Genre Article
GrantInformation_xml – fundername: This work was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (C) (15K04763).
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-8b2f062f084bd0fc94b21edcd3b2d4eb6f7e52f85bcc15a2b04aabc0f245e84a3
ISSN 0163-0563
IngestDate Wed Oct 01 14:53:31 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Wed Oct 01 04:47:44 EDT 2025
Mon Oct 20 23:46:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-8b2f062f084bd0fc94b21edcd3b2d4eb6f7e52f85bcc15a2b04aabc0f245e84a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9173-6723
PQID 1793236293
PQPubID 23500
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_01630563_2015_1080270
proquest_miscellaneous_1793236293
crossref_citationtrail_10_1080_01630563_2015_1080270
crossref_primary_10_1080_01630563_2015_1080270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Goebel K. (CIT0014) 1984
CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0016
CIT0015
Nocedal J. (CIT0025) 2006
CIT0018
CIT0017
CIT0019
Berinde V. (CIT0003) 2007
CIT0021
CIT0020
CIT0023
CIT0022
Aoyama K. (CIT0001) 2007; 8
Censor Y. (CIT0007) 2009; 16
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0018
  doi: 10.1016/j.cam.2011.10.004
– ident: CIT0032
  doi: 10.1093/imanum/drl016
– volume-title: Numerical Optimization
  year: 2006
  ident: CIT0025
– ident: CIT0034
  doi: 10.1080/10556780701223293
– ident: CIT0020
  doi: 10.1137/120866877
– ident: CIT0023
  doi: 10.1137/110850542
– ident: CIT0017
  doi: 10.1016/j.amc.2011.01.005
– ident: CIT0008
  doi: 10.1080/01630560701749524
– ident: CIT0024
  doi: 10.1137/080743573
– ident: CIT0006
  doi: 10.1088/0266-5611/21/6/017
– ident: CIT0011
  doi: 10.1007/s11228-011-0191-y
– volume: 8
  start-page: 471
  year: 2007
  ident: CIT0001
  publication-title: Journal of Nonlinear and Convex Analysis
– ident: CIT0009
  doi: 10.1109/TSP.2003.812846
– ident: CIT0005
  doi: 10.1007/BF02142692
– ident: CIT0010
  doi: 10.1109/78.782189
– ident: CIT0019
  doi: 10.1137/110849456
– ident: CIT0021
  doi: 10.1007/s10107-013-0741-1
– ident: CIT0027
  doi: 10.1007/BF01190119
– ident: CIT0026
  doi: 10.1007/s10444-011-9254-8
– ident: CIT0016
  doi: 10.1007/s10957-010-9769-z
– ident: CIT0012
  doi: 10.1007/s10957-012-0245-9
– ident: CIT0028
  doi: 10.1088/0266-5611/22/6/007
– ident: CIT0031
  doi: 10.1088/0266-5611/20/4/014
– ident: CIT0002
  doi: 10.1137/S0036144593251710
– ident: CIT0004
  doi: 10.1088/0266-5611/18/2/310
– volume-title: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
  year: 1984
  ident: CIT0014
– ident: CIT0022
  doi: 10.1137/070702497
– volume: 16
  start-page: 587
  year: 2009
  ident: CIT0007
  publication-title: Journal of Convex Analysis
– ident: CIT0015
  doi: 10.1090/S0002-9904-1967-11864-0
– volume-title: Iterative Approximation of Fixed Points
  year: 2007
  ident: CIT0003
– ident: CIT0030
  doi: 10.1090/conm/313/05379
SSID ssj0003298
Score 2.0393748
Snippet The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 186
SubjectTerms Convex optimization
Feasibility
fixed point
inconsistent split feasibility problem
Iterative algorithms
Linear operators
Mathematical models
Minimization
nonexpansive mapping
Optimization
Subsidiaries
three-term conjugate gradient method
Title Optimization for Inconsistent Split Feasibility Problems
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2015.1080270
https://www.proquest.com/docview/1793236293
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1532-2467
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: ABDBF
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: AMVHM
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvFNBW9LpU2T3fQoPlgE9aCieCl5gqhdcbsXf72TNKldFV-HLUsgk7bzyHQy8w1Ce9hkqQRNiKUSKiaCJTEnjMYppzkXRhLpQgNn573BNTm9pbehxb2vLqnEvnz9sq7kP1yFMeCrrZL9A2cbojAA_4G_cAUOw_VXPL4AfX_yhZQuXxC03Sa8AufKqnsJ_mXVBR_PZ8DaWkDXPWbU9kjPx_WZzWPXbnE-MsgDVIkNqw9bqzSSdK_GD87vHNwrDV5oO3qQNgnH7wFFe45LvZHRwQjiGJO6TUawkjU0i5cG3DJ5aYCyrg2gK6L-bJh9JiOsZhezKXXUDeK6bcgkEPaHDapJG0wDnqknU1gyhSczjWYwWPakg2YOBkd3N81-nGHXEbl50lDHZRHWv7qfCQ9lAr_2037tnJCrBTTvvx6ig1oUFtGULpfQ3FkDvTtaRqwtFBFQjdpCETmhiFpCEQWhWEHXJ8dXh4PYt8eIJXyUVzET2CQ9-DEiVGJkTgROtZIqE1gRLXqmryk2jAopU8qxSAjnQiYGE6oZ4dkq6pTDUq-hCPeNyrU9EhaMYJUIxhjRfdoH_eYsT9cRCa-kkB473rYweSy-Zck62m-mPdfgKT9NyNvvu6hc1MrULWaK7Ie5u4E5BZhIe-7FSz0cjwq7B2Fw1PJs4683tIlm37VmC3Wql7HeBi-0EjtezN4A-oV-hQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1GeQWJNSfxonBEhqgJtQYJK3Sw_FyBFNB3g13POo2pBiKFDlkRnOefz-Tv7_B1CF9iRWMNMCLVRJqSKR6GknIWxZKlUTlNdbA30-q3OgN4N2XDmLoxPq_QxtCuJIgpf7Se334yuU-IuAaZ45Et8ZhYrXuEEwvYVBmDfVzEgUX_qjQku6uF6kdDL1Ld4_mpmbn2aYy_95a2LJai9iXTd-TLz5KU5yVVTf_3gdVzs77bQRoVQg6vSpLbRks120HpvSu863kX8ARzNW3WDM4C-B-BmfKYtmEyWB08AbPMAwGWVevsZPJZla8Z7aNC-eb7uhFUJhlBD4JeHXGEXteDhVJnI6ZQqHFujDVHYUKtaLrEMO86U1jGTWEVUSqUjhymznEqyj5azUWYPUIATZ1Lrjx0Vp9hECmJvahOWgA1JnsYNRGvFC13xk_syGa8irmlMK8UIrxhRKaaBmlOx95Kg4z-BdHZURV7sjLiyjIkg_8ie1yYgYBr6sxWZ2dFkLLyfwwAGUnK4QPtnaLXz3OuK7m3__gitwacqQ_wYLecfE3sCAChXp4WFfwPkMfZZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLb6t4DVrmyZtehR18bkuqOAt5HlRu-J2D_rrnbTp4iriwUMvLRPSyWQyk3z5BqFD4tJEw0zA2iiDqeIxlpQznEhWSOU01fXWwE0vO3-gl4-sRRMOA6zS59CuIYqofbWf3K_GtYi4I4hSfOCbemAWq1-RHLL2mcyfivlbHHFv7IxTUpfD9SLYy7SXeH5rZmJ5miAv_eGs6xWou4hU2_cGePLUGVWqoz--0Tr-6-eW0EKIT6PjxqCW0ZQtV9D8zZjcdbiK-C24mZdwfzOCrkfgZDzOFgymrKI7CGurCELLALx9j_pN0ZrhGnront2fnONQgAFrSPsqzBVxcQYPp8rEThdUkcQabVJFDLUqc7llxHGmtE6YJCqmUiodO0KZ5VSm62i6HJR2A0Ukd6aw_tBRcUpMrCDzpjZnOViQ5EWyiWird6EDO7kvkvEskpbENChGeMWIoJhN1BmLvTb0HH8JFF8HVVT1vohripiI9A_Zg9YCBExCf7IiSzsYDYX3cgRCgSLd-kf7-2i2f9oV1xe9q200B18CPHwHTVdvI7sL0U-l9mr7_gTXl_T9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+for+Inconsistent+Split+Feasibility+Problems&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Iiduka%2C+Hideaki&rft.date=2016-02-01&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=37&rft.issue=2&rft.spage=186&rft.epage=205&rft_id=info:doi/10.1080%2F01630563.2015.1080270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01630563_2015_1080270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon