Optimization for Inconsistent Split Feasibility Problems
The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and genera...
Saved in:
| Published in | Numerical functional analysis and optimization Vol. 37; no. 2; pp. 186 - 205 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
01.02.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0163-0563 1532-2467 |
| DOI | 10.1080/01630563.2015.1080270 |
Cover
| Abstract | The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem. |
|---|---|
| AbstractList | The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem. |
| Author | Iiduka, Hideaki |
| Author_xml | – sequence: 1 givenname: Hideaki orcidid: 0000-0001-9173-6723 surname: Iiduka fullname: Iiduka, Hideaki email: iiduka@cs.meiji.ac.jp organization: Department of Computer Science, Meiji University |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGGPXrbma7_wohSrhUIF9RySbAKRbLImEam_3t22XjzoYZhheN6BeWZg4rxTAFwiuECwhtcQlQQWJVlgiIr9ClfwBExRQXCOaVlNwHRk8hE6A7MY3yCEBDf1FNTbPpnOfPFkvMu0D9naSe-iiUm5lD331qRspXg0wgzjLnsKXljVxXNwqrmN6uLY5-B1df-yfMw324f18m6TSwqblNcCa1gOVVPRQi0bKjBSrWyJwC1VotSVKrCuCyElKjgWkHIuJNSYFqqmnMzB1eFuH_z7h4qJdSZKZS13yn9EhqqGYFLihgzozQGVwccYlGbSpP1jKXBjGYJslMN-fLHRFzv6GtLFr3QfTMfD7t_c7SFn3KCv458-2JYlvrM-6MCdNJGRv098A9gihDk |
| CitedBy_id | crossref_primary_10_1007_s11075_022_01308_9 |
| Cites_doi | 10.1016/j.cam.2011.10.004 10.1093/imanum/drl016 10.1080/10556780701223293 10.1137/120866877 10.1137/110850542 10.1016/j.amc.2011.01.005 10.1080/01630560701749524 10.1137/080743573 10.1088/0266-5611/21/6/017 10.1007/s11228-011-0191-y 10.1109/TSP.2003.812846 10.1007/BF02142692 10.1109/78.782189 10.1137/110849456 10.1007/s10107-013-0741-1 10.1007/BF01190119 10.1007/s10444-011-9254-8 10.1007/s10957-010-9769-z 10.1007/s10957-012-0245-9 10.1088/0266-5611/22/6/007 10.1088/0266-5611/20/4/014 10.1137/S0036144593251710 10.1088/0266-5611/18/2/310 10.1137/070702497 10.1090/S0002-9904-1967-11864-0 10.1090/conm/313/05379 |
| ContentType | Journal Article |
| Copyright | Copyright © Taylor & Francis Group, LLC 2016 |
| Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC 2016 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/01630563.2015.1080270 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1532-2467 |
| EndPage | 205 |
| ExternalDocumentID | 10_1080_01630563_2015_1080270 1080270 |
| Genre | Article |
| GrantInformation_xml | – fundername: This work was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (C) (15K04763). |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE ACTCW AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK IVXBP LJTGL NHB NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-8b2f062f084bd0fc94b21edcd3b2d4eb6f7e52f85bcc15a2b04aabc0f245e84a3 |
| ISSN | 0163-0563 |
| IngestDate | Wed Oct 01 14:53:31 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Wed Oct 01 04:47:44 EDT 2025 Mon Oct 20 23:46:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-8b2f062f084bd0fc94b21edcd3b2d4eb6f7e52f85bcc15a2b04aabc0f245e84a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9173-6723 |
| PQID | 1793236293 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_01630563_2015_1080270 proquest_miscellaneous_1793236293 crossref_citationtrail_10_1080_01630563_2015_1080270 crossref_primary_10_1080_01630563_2015_1080270 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Numerical functional analysis and optimization |
| PublicationYear | 2016 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Goebel K. (CIT0014) 1984 CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0016 CIT0015 Nocedal J. (CIT0025) 2006 CIT0018 CIT0017 CIT0019 Berinde V. (CIT0003) 2007 CIT0021 CIT0020 CIT0023 CIT0022 Aoyama K. (CIT0001) 2007; 8 Censor Y. (CIT0007) 2009; 16 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0018 doi: 10.1016/j.cam.2011.10.004 – ident: CIT0032 doi: 10.1093/imanum/drl016 – volume-title: Numerical Optimization year: 2006 ident: CIT0025 – ident: CIT0034 doi: 10.1080/10556780701223293 – ident: CIT0020 doi: 10.1137/120866877 – ident: CIT0023 doi: 10.1137/110850542 – ident: CIT0017 doi: 10.1016/j.amc.2011.01.005 – ident: CIT0008 doi: 10.1080/01630560701749524 – ident: CIT0024 doi: 10.1137/080743573 – ident: CIT0006 doi: 10.1088/0266-5611/21/6/017 – ident: CIT0011 doi: 10.1007/s11228-011-0191-y – volume: 8 start-page: 471 year: 2007 ident: CIT0001 publication-title: Journal of Nonlinear and Convex Analysis – ident: CIT0009 doi: 10.1109/TSP.2003.812846 – ident: CIT0005 doi: 10.1007/BF02142692 – ident: CIT0010 doi: 10.1109/78.782189 – ident: CIT0019 doi: 10.1137/110849456 – ident: CIT0021 doi: 10.1007/s10107-013-0741-1 – ident: CIT0027 doi: 10.1007/BF01190119 – ident: CIT0026 doi: 10.1007/s10444-011-9254-8 – ident: CIT0016 doi: 10.1007/s10957-010-9769-z – ident: CIT0012 doi: 10.1007/s10957-012-0245-9 – ident: CIT0028 doi: 10.1088/0266-5611/22/6/007 – ident: CIT0031 doi: 10.1088/0266-5611/20/4/014 – ident: CIT0002 doi: 10.1137/S0036144593251710 – ident: CIT0004 doi: 10.1088/0266-5611/18/2/310 – volume-title: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings year: 1984 ident: CIT0014 – ident: CIT0022 doi: 10.1137/070702497 – volume: 16 start-page: 587 year: 2009 ident: CIT0007 publication-title: Journal of Convex Analysis – ident: CIT0015 doi: 10.1090/S0002-9904-1967-11864-0 – volume-title: Iterative Approximation of Fixed Points year: 2007 ident: CIT0003 – ident: CIT0030 doi: 10.1090/conm/313/05379 |
| SSID | ssj0003298 |
| Score | 2.0393748 |
| Snippet | The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 186 |
| SubjectTerms | Convex optimization Feasibility fixed point inconsistent split feasibility problem Iterative algorithms Linear operators Mathematical models Minimization nonexpansive mapping Optimization Subsidiaries three-term conjugate gradient method |
| Title | Optimization for Inconsistent Split Feasibility Problems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2015.1080270 https://www.proquest.com/docview/1793236293 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1532-2467 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: ABDBF dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1532-2467 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: AMVHM dateStart: 19790101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvFNBW9LpU2T3fQoPlgE9aCieCl5gqhdcbsXf72TNKldFV-HLUsgk7bzyHQy8w1Ce9hkqQRNiKUSKiaCJTEnjMYppzkXRhLpQgNn573BNTm9pbehxb2vLqnEvnz9sq7kP1yFMeCrrZL9A2cbojAA_4G_cAUOw_VXPL4AfX_yhZQuXxC03Sa8AufKqnsJ_mXVBR_PZ8DaWkDXPWbU9kjPx_WZzWPXbnE-MsgDVIkNqw9bqzSSdK_GD87vHNwrDV5oO3qQNgnH7wFFe45LvZHRwQjiGJO6TUawkjU0i5cG3DJ5aYCyrg2gK6L-bJh9JiOsZhezKXXUDeK6bcgkEPaHDapJG0wDnqknU1gyhSczjWYwWPakg2YOBkd3N81-nGHXEbl50lDHZRHWv7qfCQ9lAr_2037tnJCrBTTvvx6ig1oUFtGULpfQ3FkDvTtaRqwtFBFQjdpCETmhiFpCEQWhWEHXJ8dXh4PYt8eIJXyUVzET2CQ9-DEiVGJkTgROtZIqE1gRLXqmryk2jAopU8qxSAjnQiYGE6oZ4dkq6pTDUq-hCPeNyrU9EhaMYJUIxhjRfdoH_eYsT9cRCa-kkB473rYweSy-Zck62m-mPdfgKT9NyNvvu6hc1MrULWaK7Ie5u4E5BZhIe-7FSz0cjwq7B2Fw1PJs4683tIlm37VmC3Wql7HeBi-0EjtezN4A-oV-hQ |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1GeQWJNSfxonBEhqgJtQYJK3Sw_FyBFNB3g13POo2pBiKFDlkRnOefz-Tv7_B1CF9iRWMNMCLVRJqSKR6GknIWxZKlUTlNdbA30-q3OgN4N2XDmLoxPq_QxtCuJIgpf7Se334yuU-IuAaZ45Et8ZhYrXuEEwvYVBmDfVzEgUX_qjQku6uF6kdDL1Ld4_mpmbn2aYy_95a2LJai9iXTd-TLz5KU5yVVTf_3gdVzs77bQRoVQg6vSpLbRks120HpvSu863kX8ARzNW3WDM4C-B-BmfKYtmEyWB08AbPMAwGWVevsZPJZla8Z7aNC-eb7uhFUJhlBD4JeHXGEXteDhVJnI6ZQqHFujDVHYUKtaLrEMO86U1jGTWEVUSqUjhymznEqyj5azUWYPUIATZ1Lrjx0Vp9hECmJvahOWgA1JnsYNRGvFC13xk_syGa8irmlMK8UIrxhRKaaBmlOx95Kg4z-BdHZURV7sjLiyjIkg_8ie1yYgYBr6sxWZ2dFkLLyfwwAGUnK4QPtnaLXz3OuK7m3__gitwacqQ_wYLecfE3sCAChXp4WFfwPkMfZZ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLb6t4DVrmyZtehR18bkuqOAt5HlRu-J2D_rrnbTp4iriwUMvLRPSyWQyk3z5BqFD4tJEw0zA2iiDqeIxlpQznEhWSOU01fXWwE0vO3-gl4-sRRMOA6zS59CuIYqofbWf3K_GtYi4I4hSfOCbemAWq1-RHLL2mcyfivlbHHFv7IxTUpfD9SLYy7SXeH5rZmJ5miAv_eGs6xWou4hU2_cGePLUGVWqoz--0Tr-6-eW0EKIT6PjxqCW0ZQtV9D8zZjcdbiK-C24mZdwfzOCrkfgZDzOFgymrKI7CGurCELLALx9j_pN0ZrhGnront2fnONQgAFrSPsqzBVxcQYPp8rEThdUkcQabVJFDLUqc7llxHGmtE6YJCqmUiodO0KZ5VSm62i6HJR2A0Ukd6aw_tBRcUpMrCDzpjZnOViQ5EWyiWird6EDO7kvkvEskpbENChGeMWIoJhN1BmLvTb0HH8JFF8HVVT1vohripiI9A_Zg9YCBExCf7IiSzsYDYX3cgRCgSLd-kf7-2i2f9oV1xe9q200B18CPHwHTVdvI7sL0U-l9mr7_gTXl_T9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+for+Inconsistent+Split+Feasibility+Problems&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Iiduka%2C+Hideaki&rft.date=2016-02-01&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=37&rft.issue=2&rft.spage=186&rft.epage=205&rft_id=info:doi/10.1080%2F01630563.2015.1080270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01630563_2015_1080270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |