Indole-3-Pyruvic Acid, an Aryl Hydrocarbon Receptor Activator, Suppresses Experimental Colitis in Mice

Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammat...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 201; no. 12; pp. 3683 - 3693
Main Authors Aoki, Reiji, Aoki-Yoshida, Ayako, Suzuki, Chise, Takayama, Yoshiharu
Format Journal Article
LanguageEnglish
Published United States 15.12.2018
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.1701734

Cover

Abstract Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced Il-10 gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ+ IL-10− CD4+ T cells and increased that of IFN-γ− IL-10+ CD4+ T cells in the colon lamina propria in a T cell–mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ–producing T cells, increased the frequency of CD103+ CD11b− DCs, and decreased the frequency of CD103− CD11b+ DCs in the MLN. Adoptive transfer of MLN CD103+ CD11b− DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103+ CD11b− DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.
AbstractList Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ IL-10 CD4 T cells and increased that of IFN-γ IL-10 CD4 T cells in the colon lamina propria in a T cell-mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ-producing T cells, increased the frequency of CD103 CD11b DCs, and decreased the frequency of CD103 CD11b DCs in the MLN. Adoptive transfer of MLN CD103 CD11b DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103 CD11b DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.
Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced Il-10 gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ+ IL-10− CD4+ T cells and increased that of IFN-γ− IL-10+ CD4+ T cells in the colon lamina propria in a T cell–mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ–producing T cells, increased the frequency of CD103+ CD11b− DCs, and decreased the frequency of CD103− CD11b+ DCs in the MLN. Adoptive transfer of MLN CD103+ CD11b− DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103+ CD11b− DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.
Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced Il-10 gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ+ IL-10- CD4+ T cells and increased that of IFN-γ- IL-10+ CD4+ T cells in the colon lamina propria in a T cell-mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ-producing T cells, increased the frequency of CD103+ CD11b- DCs, and decreased the frequency of CD103- CD11b+ DCs in the MLN. Adoptive transfer of MLN CD103+ CD11b- DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103+ CD11b- DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced Il-10 gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ+ IL-10- CD4+ T cells and increased that of IFN-γ- IL-10+ CD4+ T cells in the colon lamina propria in a T cell-mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ-producing T cells, increased the frequency of CD103+ CD11b- DCs, and decreased the frequency of CD103- CD11b+ DCs in the MLN. Adoptive transfer of MLN CD103+ CD11b- DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103+ CD11b- DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.
Author Aoki, Reiji
Suzuki, Chise
Takayama, Yoshiharu
Aoki-Yoshida, Ayako
Author_xml – sequence: 1
  givenname: Reiji
  orcidid: 0000-0003-2314-6777
  surname: Aoki
  fullname: Aoki, Reiji
– sequence: 2
  givenname: Ayako
  surname: Aoki-Yoshida
  fullname: Aoki-Yoshida, Ayako
– sequence: 3
  givenname: Chise
  orcidid: 0000-0001-7148-8101
  surname: Suzuki
  fullname: Suzuki, Chise
– sequence: 4
  givenname: Yoshiharu
  orcidid: 0000-0003-4532-7114
  surname: Takayama
  fullname: Takayama, Yoshiharu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30429284$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PHDEUxK2IKByEPlXkkoKF54_9Kk8nEpCIiJJQWz7vs2TktRfbe-L--yziromU6k3xm9HozRk5CTEgIV8YXEuQ_c2zG8c5RH_NWmCtkB_IitU1VE0DzQlZAXBesbZpT8lZzs8A0ACXn8ipAMl73skVsfdhiB4rUf3cp3nnDF0bN1xRHeg67T292w8pGp22MdBfaHAqMS1IcTu9qCv6e56mhDljprevEyY3Yija0030rrhMXaA_nMHP5KPVPuPF4Z6Tp2-3fzZ31cPj9_vN-qEyEvpSdZ1462y57Rgf-CBNA71u-3bQukPZ2q1BzSzUqLk1uja847KvjeC8twOCOCeX77lTii8z5qJGlw16rwPGOSvOhOh4zUS9oF8P6LwdcVDT0l2nvTr-ZgGad8CkmHNCq4wrurgYStLOKwbqbQR1HEEdRliM8I_xmP1fy1_H14y8
CitedBy_id crossref_primary_10_1080_19490976_2024_2347757
crossref_primary_10_1042_BCJ20200440
crossref_primary_10_3389_fcimb_2023_1279172
crossref_primary_10_1007_s11010_023_04867_0
crossref_primary_10_1360_SSV_2024_0269
crossref_primary_10_3390_antiox12010167
crossref_primary_10_1007_s00726_022_03179_9
crossref_primary_10_1186_s13020_024_00991_1
crossref_primary_10_3390_ijms24021806
crossref_primary_10_4110_in_2025_25_e10
crossref_primary_10_1128_spectrum_00393_24
crossref_primary_10_1021_acs_jafc_0c03735
crossref_primary_10_1146_annurev_immunol_090222_102035
crossref_primary_10_1177_11786469231182510
crossref_primary_10_3390_nu15194193
crossref_primary_10_1146_annurev_immunol_071219_125715
crossref_primary_10_1016_j_phrs_2024_107373
crossref_primary_10_1038_s41419_024_07024_7
crossref_primary_10_1073_pnas_2000047117
crossref_primary_10_1152_ajpgi_00160_2021
crossref_primary_10_1002_mnfr_202100539
crossref_primary_10_4049_immunohorizons_2100018
crossref_primary_10_1038_s41423_022_00943_5
crossref_primary_10_1038_s41598_022_26156_4
crossref_primary_10_1016_j_fbio_2023_103437
crossref_primary_10_1016_j_tips_2020_09_013
crossref_primary_10_3389_fimmu_2021_637960
crossref_primary_10_1016_j_gpb_2022_05_002
crossref_primary_10_1007_s43393_023_00223_x
crossref_primary_10_3389_fimmu_2022_923754
crossref_primary_10_1007_s12026_024_09480_x
crossref_primary_10_1080_19490976_2020_1859812
crossref_primary_10_1080_09637486_2024_2318590
crossref_primary_10_1016_j_tem_2020_02_012
crossref_primary_10_3390_ph14060506
crossref_primary_10_3390_ijms231810644
crossref_primary_10_3390_toxins14090645
crossref_primary_10_1016_j_cell_2020_07_038
crossref_primary_10_1111_febs_16470
crossref_primary_10_1016_j_chom_2023_08_004
crossref_primary_10_1038_s41575_021_00430_8
crossref_primary_10_1016_j_nbd_2021_105403
crossref_primary_10_3390_ijms24098024
crossref_primary_10_1080_08830185_2021_1954638
crossref_primary_10_1093_cei_uxad040
crossref_primary_10_3390_ijms22041623
crossref_primary_10_3390_molecules26175235
crossref_primary_10_3390_ijms24119192
crossref_primary_10_1093_nutrit_nuac039
crossref_primary_10_1002_ctm2_634
crossref_primary_10_1136_gutjnl_2020_321565
crossref_primary_10_3390_ijms22041597
crossref_primary_10_1016_j_jep_2020_112928
crossref_primary_10_1016_j_pharmthera_2024_108605
crossref_primary_10_1016_j_jchromb_2022_123313
crossref_primary_10_3390_nu14112237
crossref_primary_10_1002_med_21752
crossref_primary_10_1042_BSR20221682
crossref_primary_10_3389_fcell_2021_719072
crossref_primary_10_1016_j_biopha_2023_115395
crossref_primary_10_3389_fimmu_2022_903526
crossref_primary_10_1271_kagakutoseibutsu_60_189
crossref_primary_10_3390_biomedicines12122912
crossref_primary_10_1016_j_micres_2023_127392
crossref_primary_10_1021_acsomega_2c04157
crossref_primary_10_1007_s12016_020_08789_3
crossref_primary_10_4103_RPS_RPS_273_23
crossref_primary_10_3390_ijms22094644
crossref_primary_10_3390_metabo14080444
crossref_primary_10_1038_s41390_019_0740_x
crossref_primary_10_3390_antiox11010164
crossref_primary_10_1111_brv_12765
crossref_primary_10_3389_fphar_2021_769501
crossref_primary_10_1016_j_chom_2024_06_013
crossref_primary_10_1136_bmjgast_2021_000813
crossref_primary_10_3136_fstr_26_79
crossref_primary_10_1210_endocr_bqaa235
crossref_primary_10_1016_j_jep_2022_115145
crossref_primary_10_1007_s00535_019_01618_1
crossref_primary_10_1093_ibd_izae022
crossref_primary_10_1155_2019_7546047
crossref_primary_10_4014_jmb_2308_08015
crossref_primary_10_1002_prp2_70062
crossref_primary_10_3748_wjg_v27_i42_7247
crossref_primary_10_1124_molpharm_120_000035
crossref_primary_10_1016_j_labinv_2022_100012
crossref_primary_10_3389_fimmu_2023_1300378
crossref_primary_10_1186_s13578_022_00780_z
crossref_primary_10_1016_j_clnu_2024_04_008
crossref_primary_10_1039_D1FO03520G
crossref_primary_10_1128_spectrum_00291_24
crossref_primary_10_1080_10408398_2021_1934813
crossref_primary_10_1021_acs_analchem_4c01584
crossref_primary_10_1080_19490976_2022_2154092
crossref_primary_10_1016_j_jaut_2023_103049
crossref_primary_10_1038_s41536_023_00345_9
crossref_primary_10_1128_mSystems_00985_20
crossref_primary_10_1093_jambio_lxad032
crossref_primary_10_4049_jimmunol_2100402
crossref_primary_10_1111_bph_16219
crossref_primary_10_3390_ijms252312767
crossref_primary_10_1007_s00109_023_02289_5
crossref_primary_10_1002_imt2_180
crossref_primary_10_3390_metabo13111166
crossref_primary_10_3390_metabo11030159
crossref_primary_10_11569_wcjd_v31_i21_896
crossref_primary_10_3389_fimmu_2024_1421346
crossref_primary_10_1038_s41423_020_00585_5
crossref_primary_10_1016_j_foodchem_2025_142756
crossref_primary_10_1186_s13578_023_01046_y
crossref_primary_10_1084_jem_20232055
crossref_primary_10_1002_mnfr_202000426
Cites_doi 10.1084/jem.157.6.1758
10.1002/1521-4141(200105)31:5<1550::AID-IMMU1550>3.0.CO;2-3
10.1038/nature06880
10.1016/0197-0186(93)90091-I
10.1084/jem.20052016
10.1038/nm.4102
10.4049/jimmunol.176.2.803
10.1007/978-1-4615-4709-9_29
10.1371/journal.pone.0130750
10.1016/j.addr.2007.07.003
10.1038/mi.2012.53
10.1371/journal.ppat.1002714
10.1053/j.gastro.2012.07.116
10.1111/cei.12352
10.1016/j.immuni.2013.08.003
10.1038/mi.2015.64
10.1124/mol.64.3.550
10.1016/S0021-9258(17)33205-2
10.1073/pnas.0804231105
10.1016/0003-9861(69)90081-2
10.1177/030006059101900507
10.1084/jem.20082805
10.1016/j.cotox.2017.01.003
10.1016/j.immuni.2013.03.009
10.1073/pnas.1316447111
10.1016/j.celrep.2016.09.082
10.1038/39614
10.1136/gut.2005.078055
10.1016/1074-7613(94)90045-0
10.1084/jem.20070602
10.1128/IAI.00272-09
10.1038/srep23820
10.1016/j.immuni.2010.03.017
10.4049/jimmunol.164.9.4878
10.1038/ni.1915
10.1016/j.immuni.2013.04.011
10.1159/000353806
10.1016/j.autrev.2013.06.002
10.1093/toxsci/kfq360
10.1371/journal.pone.0158017
10.1111/imm.12747
10.1021/acs.chemrestox.5b00416
10.1016/j.taap.2010.03.013
10.1016/j.celrep.2016.09.091
10.3389/fimmu.2017.00254
10.1093/toxsci/kfq354
10.1146/annurev-immunol-030409-101225
10.1124/jpet.110.178392
10.1073/pnas.1608221113
10.1538/expanim.16-0092
10.1016/S1542-3565(04)00344-1
10.1084/jem.191.3.435
10.1038/mi.2014.40
10.1053/j.gastro.2011.04.007
10.1093/toxsci/kfr249
10.1084/jem.20111453
10.1038/ni.1912
10.1038/ni.3435
10.1084/jem.20070590
10.1371/journal.pone.0096804
10.1016/j.immuni.2016.02.008
10.1016/j.immuni.2009.08.011
ContentType Journal Article
Copyright Copyright © 2018 by The American Association of Immunologists, Inc.
Copyright_xml – notice: Copyright © 2018 by The American Association of Immunologists, Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.4049/jimmunol.1701734
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 3693
ExternalDocumentID 30429284
10_4049_jimmunol_1701734
Genre Journal Article
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFRAH
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
IH2
K-O
KOP
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XSW
XTH
YHG
AFOSN
FRP
NPM
7X8
ID FETCH-LOGICAL-c409t-8830022f2f812d2d4c609a797daa8e47fbcea1f05ea2fca5c282495c3229fde03
ISSN 0022-1767
1550-6606
IngestDate Sun Sep 28 02:39:53 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Wed Oct 01 06:43:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Copyright © 2018 by The American Association of Immunologists, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-8830022f2f812d2d4c609a797daa8e47fbcea1f05ea2fca5c282495c3229fde03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-2314-6777
0000-0001-7148-8101
0000-0003-4532-7114
PMID 30429284
PQID 2133825135
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2133825135
pubmed_primary_30429284
crossref_citationtrail_10_4049_jimmunol_1701734
crossref_primary_10_4049_jimmunol_1701734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2018
References Luda (2025030417575997800_r58) 2016; 44
Siddiqui (2025030417575997800_r54) 2010; 32
Yamamoto (2025030417575997800_r28) 2000; 164
Shiokawa (2025030417575997800_r59) 2017; 152
Wirtz (2025030417575997800_r2) 2007; 59
Apetoh (2025030417575997800_r41) 2010; 11
Cerovic (2025030417575997800_r50) 2015; 8
Wenzel (2025030417575997800_r51) 2015; 10
Benson (2025030417575997800_r13) 2011; 120
Kaser (2025030417575997800_r1) 2010; 28
Quintana (2025030417575997800_r38) 2008; 453
Coccia (2025030417575997800_r27) 2012; 209
Fortin (2025030417575997800_r53) 2009; 206
Zoli (2025030417575997800_r21) 1993; 23
Simones (2025030417575997800_r61) 2011; 119
Desreumaux (2025030417575997800_r45) 2012; 143
Cerovic (2025030417575997800_r36) 2013; 6
McGettrick (2025030417575997800_r20) 2016; 113
Powrie (2025030417575997800_r25) 1994; 1
Worbs (2025030417575997800_r33) 2006; 203
Dubinsky (2025030417575997800_r4) 2004; 2
Kimura (2025030417575997800_r39) 2008; 105
Kawajiri (2025030417575997800_r11) 2017; 66
Liu (2025030417575997800_r26) 2001; 31
Barnes (2025030417575997800_r42) 2009; 31
Aoki (2025030417575997800_r24) 2014; 9
Coombes (2025030417575997800_r47) 2007; 204
Zelante (2025030417575997800_r15) 2013; 39
Murray (2025030417575997800_r12) 2017; 2
Persson (2025030417575997800_r48) 2013; 38
Sands (2025030417575997800_r6) 2006; 55
Kaistha (2025030417575997800_r3) 2014; 44
Poland (2025030417575997800_r10) 1976; 251
Muzaki (2025030417575997800_r57) 2016; 9
Bhaumik (2025030417575997800_r29) 2017; 8
Bankoti (2025030417575997800_r60) 2010; 246
Silvestri (2025030417575997800_r22) 1991; 19
Politi (2025030417575997800_r23) 1999; 467
Huang (2025030417575997800_r31) 2000; 191
Hinterleitner (2025030417575997800_r35) 2016; 17
Schlitzer (2025030417575997800_r49) 2013; 38
Liang (2025030417575997800_r52) 2016; 17
Bittinger (2025030417575997800_r18) 2003; 64
Smirnova (2025030417575997800_r64) 2016; 29
Ben-Horin (2025030417575997800_r8) 2014; 13
Kourepini (2025030417575997800_r55) 2014; 111
Jeon (2025030417575997800_r44) 2012; 8
Lopez (2025030417575997800_r7) 2013; 31
Voedisch (2025030417575997800_r34) 2009; 77
Smith (2025030417575997800_r37) 2011; 338
Groux (2025030417575997800_r43) 1997; 389
Chng (2025030417575997800_r56) 2016; 6
Waljee (2025030417575997800_r5) 2016; 11
Monteleone (2025030417575997800_r16) 2011; 141
Baert (2025030417575997800_r9) 2007; 70
Jang (2025030417575997800_r32) 2006; 176
Wang (2025030417575997800_r62) 2014; 177
Goettel (2025030417575997800_r14) 2016; 17
Sun (2025030417575997800_r46) 2007; 204
Lamas (2025030417575997800_r17) 2016; 22
Krishnamurthi (2025030417575997800_r19) 1969; 130
Pugh (2025030417575997800_r30) 1983; 157
Gandhi (2025030417575997800_r40) 2010; 11
Benson (2025030417575997800_r63) 2011; 124
References_xml – volume: 157
  start-page: 1758
  year: 1983
  ident: 2025030417575997800_r30
  article-title: Characterization of nonlymphoid cells derived from rat peripheral lymph
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.157.6.1758
– volume: 70
  start-page: 163
  year: 2007
  ident: 2025030417575997800_r9
  article-title: Immunogenicity of infliximab: how to handle the problem?
  publication-title: Acta Gastroenterol. Belg.
– volume: 31
  start-page: 1550
  year: 2001
  ident: 2025030417575997800_r26
  article-title: Role of interleukin-12 in the induction of mucosal inflammation and abrogation of regulatory T cell function in chronic experimental colitis
  publication-title: Eur. J. Immunol.
  doi: 10.1002/1521-4141(200105)31:5<1550::AID-IMMU1550>3.0.CO;2-3
– volume: 453
  start-page: 65
  year: 2008
  ident: 2025030417575997800_r38
  article-title: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor
  publication-title: Nature
  doi: 10.1038/nature06880
– volume: 23
  start-page: 139
  year: 1993
  ident: 2025030417575997800_r21
  article-title: Indole-pyruvic acid treatment reduces damage in striatum but not in hippocampus after transient forebrain ischemia in the rat
  publication-title: Neurochem. Int.
  doi: 10.1016/0197-0186(93)90091-I
– volume: 203
  start-page: 519
  year: 2006
  ident: 2025030417575997800_r33
  article-title: Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20052016
– volume: 22
  start-page: 598
  year: 2016
  ident: 2025030417575997800_r17
  article-title: CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
  publication-title: Nat. Med.
  doi: 10.1038/nm.4102
– volume: 176
  start-page: 803
  year: 2006
  ident: 2025030417575997800_r32
  article-title: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.2.803
– volume: 467
  start-page: 227
  year: 1999
  ident: 2025030417575997800_r23
  article-title: Clinical experiences with the use of indole-3-pyruvic acid
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-4709-9_29
– volume: 10
  start-page: e0130750
  year: 2015
  ident: 2025030417575997800_r51
  article-title: CD103+ CD11b+ dendritic cells induce Th17 T cells in muc2-deficient mice with extensively spread colitis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130750
– volume: 59
  start-page: 1073
  year: 2007
  ident: 2025030417575997800_r2
  article-title: Mouse models of inflammatory bowel disease
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.07.003
– volume: 6
  start-page: 104
  year: 2013
  ident: 2025030417575997800_r36
  article-title: Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2012.53
– volume: 8
  start-page: e1002714
  year: 2012
  ident: 2025030417575997800_r44
  article-title: Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002714
– volume: 143
  start-page: 1207
  year: 2012
  ident: 2025030417575997800_r45
  article-title: Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.07.116
– volume: 177
  start-page: 521
  year: 2014
  ident: 2025030417575997800_r62
  article-title: Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12352
– volume: 39
  start-page: 372
  year: 2013
  ident: 2025030417575997800_r15
  article-title: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.003
– volume: 9
  start-page: 336
  year: 2016
  ident: 2025030417575997800_r57
  article-title: Intestinal CD103(+)CD11b(-) dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2015.64
– volume: 64
  start-page: 550
  year: 2003
  ident: 2025030417575997800_r18
  article-title: Aspartate aminotransferase generates proagonists of the aryl hydrocarbon receptor
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.64.3.550
– volume: 251
  start-page: 4936
  year: 1976
  ident: 2025030417575997800_r10
  article-title: Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33205-2
– volume: 105
  start-page: 9721
  year: 2008
  ident: 2025030417575997800_r39
  article-title: Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804231105
– volume: 130
  start-page: 636
  year: 1969
  ident: 2025030417575997800_r19
  article-title: Pigment formation from L-tryptophan by a particulate fraction from an Achromobacter species
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(69)90081-2
– volume: 19
  start-page: 403
  year: 1991
  ident: 2025030417575997800_r22
  article-title: Indole-3-pyruvic acid as a possible hypnotic agent in insomniac subjects
  publication-title: J. Int. Med. Res.
  doi: 10.1177/030006059101900507
– volume: 206
  start-page: 1995
  year: 2009
  ident: 2025030417575997800_r53
  article-title: A role for CD47 in the development of experimental colitis mediated by SIRPalpha+CD103- dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20082805
– volume: 2
  start-page: 15
  year: 2017
  ident: 2025030417575997800_r12
  article-title: Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis
  publication-title: Curr. Opin. Toxicol.
  doi: 10.1016/j.cotox.2017.01.003
– volume: 38
  start-page: 958
  year: 2013
  ident: 2025030417575997800_r48
  article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.03.009
– volume: 111
  start-page: E856
  year: 2014
  ident: 2025030417575997800_r55
  article-title: Osteopontin expression by CD103- dendritic cells drives intestinal inflammation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1316447111
– volume: 17
  start-page: 1318
  year: 2016
  ident: 2025030417575997800_r14
  article-title: AHR activation is protective against colitis driven by T cells in humanized mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.082
– volume: 389
  start-page: 737
  year: 1997
  ident: 2025030417575997800_r43
  article-title: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis
  publication-title: Nature
  doi: 10.1038/39614
– volume: 55
  start-page: 437
  year: 2006
  ident: 2025030417575997800_r6
  article-title: Immunosuppressive drugs in ulcerative colitis: twisting facts to suit theories?
  publication-title: Gut
  doi: 10.1136/gut.2005.078055
– volume: 1
  start-page: 553
  year: 1994
  ident: 2025030417575997800_r25
  article-title: Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells
  publication-title: Immunity
  doi: 10.1016/1074-7613(94)90045-0
– volume: 204
  start-page: 1775
  year: 2007
  ident: 2025030417575997800_r46
  article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070602
– volume: 77
  start-page: 3170
  year: 2009
  ident: 2025030417575997800_r34
  article-title: Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00272-09
– volume: 6
  start-page: 23820
  year: 2016
  ident: 2025030417575997800_r56
  article-title: Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity
  publication-title: Sci. Rep.
  doi: 10.1038/srep23820
– volume: 32
  start-page: 557
  year: 2010
  ident: 2025030417575997800_r54
  article-title: E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.03.017
– volume: 164
  start-page: 4878
  year: 2000
  ident: 2025030417575997800_r28
  article-title: IL-6 is required for the development of Th1 cell-mediated murine colitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.9.4878
– volume: 11
  start-page: 846
  year: 2010
  ident: 2025030417575997800_r40
  article-title: Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1915
– volume: 38
  start-page: 970
  year: 2013
  ident: 2025030417575997800_r49
  article-title: IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.04.011
– volume: 31
  start-page: 248
  year: 2013
  ident: 2025030417575997800_r7
  article-title: 5-Aminosalicylic acid and chemoprevention: does it work?
  publication-title: Dig. Dis.
  doi: 10.1159/000353806
– volume: 13
  start-page: 24
  year: 2014
  ident: 2025030417575997800_r8
  article-title: Optimizing anti-TNF treatments in inflammatory bowel disease
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2013.06.002
– volume: 120
  start-page: 68
  year: 2011
  ident: 2025030417575997800_r13
  article-title: Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn’s disease
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfq360
– volume: 11
  start-page: e0158017
  year: 2016
  ident: 2025030417575997800_r5
  article-title: Corticosteroid use and complications in a US inflammatory bowel disease cohort. [Published erratum appears in 2018 PLoS One. 13: e0197341.]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158017
– volume: 152
  start-page: 52
  year: 2017
  ident: 2025030417575997800_r59
  article-title: Mesenteric lymph node CD11b- CD103+ PD-L1High dendritic cells highly induce regulatory T cells
  publication-title: Immunology
  doi: 10.1111/imm.12747
– volume: 29
  start-page: 75
  year: 2016
  ident: 2025030417575997800_r64
  article-title: Evidence for new light-independent pathways for generation of the endogenous aryl hydrocarbon receptor agonist FICZ
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.5b00416
– volume: 246
  start-page: 18
  year: 2010
  ident: 2025030417575997800_r60
  article-title: Functional and phenotypic effects of AhR activation in inflammatory dendritic cells
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2010.03.013
– volume: 17
  start-page: 1330
  year: 2016
  ident: 2025030417575997800_r52
  article-title: Inflammatory Th1 and Th17 in the intestine are each driven by functionally specialized dendritic cells with distinct requirements for MyD88
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.091
– volume: 8
  start-page: 254
  year: 2017
  ident: 2025030417575997800_r29
  article-title: Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00254
– volume: 119
  start-page: 293
  year: 2011
  ident: 2025030417575997800_r61
  article-title: Consequences of AhR activation in steady-state dendritic cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfq354
– volume: 28
  start-page: 573
  year: 2010
  ident: 2025030417575997800_r1
  article-title: Inflammatory bowel disease
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-030409-101225
– volume: 338
  start-page: 318
  year: 2011
  ident: 2025030417575997800_r37
  article-title: Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.110.178392
– volume: 113
  start-page: E7778
  year: 2016
  ident: 2025030417575997800_r20
  article-title: Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608221113
– volume: 66
  start-page: 75
  year: 2017
  ident: 2025030417575997800_r11
  article-title: The aryl hydrocarbon receptor: a multifunctional chemical sensor for host defense and homeostatic maintenance
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.16-0092
– volume: 2
  start-page: 731
  year: 2004
  ident: 2025030417575997800_r4
  article-title: Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/S1542-3565(04)00344-1
– volume: 191
  start-page: 435
  year: 2000
  ident: 2025030417575997800_r31
  article-title: A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.191.3.435
– volume: 8
  start-page: 38
  year: 2015
  ident: 2025030417575997800_r50
  article-title: Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2014.40
– volume: 141
  start-page: 237
  year: 2011
  ident: 2025030417575997800_r16
  article-title: Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.04.007
– volume: 44
  start-page: 328
  year: 2014
  ident: 2025030417575997800_r3
  article-title: Inflammatory bowel disease: the classic gastrointestinal autoimmune disease
  publication-title: Curr. Probl. Pediatr. Adolesc. Health Care
– volume: 124
  start-page: 327
  year: 2011
  ident: 2025030417575997800_r63
  article-title: Dietary ligands of the aryl hydrocarbon receptor induce anti-inflammatory and immunoregulatory effects on murine dendritic cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfr249
– volume: 209
  start-page: 1595
  year: 2012
  ident: 2025030417575997800_r27
  article-title: IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20111453
– volume: 11
  start-page: 854
  year: 2010
  ident: 2025030417575997800_r41
  article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1912
– volume: 17
  start-page: 474
  year: 2016
  ident: 2025030417575997800_r35
  article-title: A dendritic cell subset designed for oral tolerance
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3435
– volume: 204
  start-page: 1757
  year: 2007
  ident: 2025030417575997800_r47
  article-title: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070590
– volume: 9
  start-page: e96804
  year: 2014
  ident: 2025030417575997800_r24
  article-title: Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice [Published erratum appears in 2015 PLoS One. 10: e0128054.]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096804
– volume: 44
  start-page: 860
  year: 2016
  ident: 2025030417575997800_r58
  article-title: IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.02.008
– volume: 31
  start-page: 401
  year: 2009
  ident: 2025030417575997800_r42
  article-title: Regulatory T cells reinforce intestinal homeostasis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.011
SSID ssj0006024
Score 2.6040204
Snippet Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3683
Title Indole-3-Pyruvic Acid, an Aryl Hydrocarbon Receptor Activator, Suppresses Experimental Colitis in Mice
URI https://www.ncbi.nlm.nih.gov/pubmed/30429284
https://www.proquest.com/docview/2133825135
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1550-6606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006024
  issn: 0022-1767
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1550-6606
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0006024
  issn: 0022-1767
  databaseCode: DIK
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1550-6606
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0006024
  issn: 0022-1767
  databaseCode: GX1
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKENNeEAwY5SYjwQPq0qW557GqQAWpCKFOKk-R49hq2JZMafOQ_QB-N-fYThMqhoCXqHJiR_H5em4-F0Le2D6fCBAMVsh82_JknFrMdzLLRmEi0kjGqnvD4nMwP_c-rfzVYPCjF7VUb9Mxv_ltXsn_UBXGgK6YJfsPlN0tCgPwG-gLV6AwXP-Kxh8LrMdkudaXpsJsmdGU55mOxxxNq-ZyNG8yEFCsSkt01GMES4kh8aqlmbbTsaunqh--MVWPTbH_mYqLU8GyCxMe1-qwXTaZLjiBGSa6ktNbdV5m970LpW6L_VXk3_P-oPWt3KzzTHt1G3ZRdqdTN7WeM1vn3cnRkl2whl2p59XUNavqvstiEmH4h07aHAvDZgEYQWAHfT7sGK-GAZzTY6tuoLvd7PN7D-wb5PfmS8dYXD7UztEe-a-vFP3RcRM7uiHdXo3t9tYdctcB6aBagKy6UKEAFBl9xI0vPNt_3RE5bBf4Vbu5xWRRqsvyAblvaEWnGkAPyUAUx-Se7kLaHJPDhYmveETkPqIoIuqUsoIinmgPT7TFE93h6ZR2aKJ9NFGDJpoXFNH0mJx_eL-czS3TicPiYP9vrShyUdmTjoS_cOZkHg_smIVxmDEWCS-UKRdsIm1fMEdy5nMw5MHy5iAtYpkJ231CDoqyEE8JjeIMxGsQMMcGTRyMJuZ53IsCGWaoTMZDctbuYMJNmXrslnKZgLmK25-025-Y7R-Sd7sZ17pEyx-efd0SJQE-iodjrBBlvUkcdNaAsu_6Q3KiqbVbraXus1vvPCdHHdBfkINtVYuXoK1u01cKSj8BOIaUtw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole-3-Pyruvic+Acid%2C+an+Aryl+Hydrocarbon+Receptor+Activator%2C+Suppresses+Experimental+Colitis+in+Mice&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Aoki%2C+Reiji&rft.au=Aoki-Yoshida%2C+Ayako&rft.au=Suzuki%2C+Chise&rft.au=Takayama%2C+Yoshiharu&rft.date=2018-12-15&rft.eissn=1550-6606&rft.volume=201&rft.issue=12&rft.spage=3683&rft_id=info:doi/10.4049%2Fjimmunol.1701734&rft_id=info%3Apmid%2F30429284&rft.externalDocID=30429284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon