An Improved Design for a Cloud Intrusion Detection System Using Hybrid Features Selection Approach with ML Classifier

The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both indiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Bakro, Mhamad, Kumar, Rakesh Ranjan, Alabrah, Amerah, Ashraf, Zubair, Ahmed, Md Nadeem, Shameem, Mohammad, Abdelsalam, Ahmed
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3289405

Cover

Abstract The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both individuals and organizations to implement a robust intrusion detection system (IDS) capable of monitoring packets in the network, distinguishing between benign and malicious behavior, and detecting the type of attacks. IDS based on ML are efficient and precise in spotting network threats. Yet, for large dimensional data sizes, the performance of these systems decreases. Thus, it is critical to building a suitable feature selection approach that selects necessary features without having an impact on the classification process or causing information loss. Furthermore, training ML models on unbalanced datasets show a rising false positive rate (FPR) and a lowering detection rate (DR). In this paper, we present an improved cloud IDS designed by incorporating the synthetic minority over-sampling technique (SMOTE) to address the imbalanced data issue, and for feature selection, we propose to use a hybrid approach that includes three techniques: information gain (IG), chi-square (CS), and particle swarm optimization (PSO). Finally, the random forest (RF) model is utilized for detecting and classifying various types of attacks. The suggested system has been verified by the UNSW-NB15 and Kyoto datasets, achieving accuracies of over 98% and 99% in the multi-class classification scenario, respectively. It was noticed that an intrusion detection system with fewer informative features would operate more effectively. The simulation results significantly outperform other methodologies proposed in the related work in terms of different evaluation metrics.
AbstractList The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both individuals and organizations to implement a robust intrusion detection system (IDS) capable of monitoring packets in the network, distinguishing between benign and malicious behavior, and detecting the type of attacks. IDS based on ML are efficient and precise in spotting network threats. Yet, for large dimensional data sizes, the performance of these systems decreases. Thus, it is critical to building a suitable feature selection approach that selects necessary features without having an impact on the classification process or causing information loss. Furthermore, training ML models on unbalanced datasets show a rising false positive rate (FPR) and a lowering detection rate (DR). In this paper, we present an improved cloud IDS designed by incorporating the synthetic minority over-sampling technique (SMOTE) to address the imbalanced data issue, and for feature selection, we propose to use a hybrid approach that includes three techniques: information gain (IG), chi-square (CS), and particle swarm optimization (PSO). Finally, the random forest (RF) model is utilized for detecting and classifying various types of attacks. The suggested system has been verified by the UNSW-NB15 and Kyoto datasets, achieving accuracies of over 98% and 99% in the multi-class classification scenario, respectively. It was noticed that an intrusion detection system with fewer informative features would operate more effectively. The simulation results significantly outperform other methodologies proposed in the related work in terms of different evaluation metrics.
Author Bakro, Mhamad
Shameem, Mohammad
Kumar, Rakesh Ranjan
Abdelsalam, Ahmed
Ahmed, Md Nadeem
Alabrah, Amerah
Ashraf, Zubair
Author_xml – sequence: 1
  givenname: Mhamad
  orcidid: 0000-0003-1446-5127
  surname: Bakro
  fullname: Bakro, Mhamad
  organization: Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India
– sequence: 2
  givenname: Rakesh Ranjan
  surname: Kumar
  fullname: Kumar, Rakesh Ranjan
  organization: Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India
– sequence: 3
  givenname: Amerah
  surname: Alabrah
  fullname: Alabrah, Amerah
  organization: College of Computer and Information Sciences, King Saud University, Saudi Arabia
– sequence: 4
  givenname: Zubair
  orcidid: 0000-0001-7122-2856
  surname: Ashraf
  fullname: Ashraf, Zubair
  organization: Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, India
– sequence: 5
  givenname: Md Nadeem
  surname: Ahmed
  fullname: Ahmed, Md Nadeem
  organization: AIT-CSE, Chandigarh University, Punjab, India
– sequence: 6
  givenname: Mohammad
  orcidid: 0000-0002-6055-5345
  surname: Shameem
  fullname: Shameem, Mohammad
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India
– sequence: 7
  givenname: Ahmed
  orcidid: 0000-0002-9090-8236
  surname: Abdelsalam
  fullname: Abdelsalam, Ahmed
  organization: Department of Software Engineering, LUT University, Finland
BookMark eNqFkcFuGyEQhldVKjVN8wTtAalnu7AssBytbdJYctSDmzOahbGDtd51gW3ktw_uWlWUHMqF0cz838D8H4uLfuixKD4zOmeM6m-LprlZr-clLfmcl7WuqHhXXJZM6hkXXF68iD8U1zHuaD51Tgl1WYyLniz3hzD8QUe-Y_TbnmyGQIA03TA6suxTGKMf-lxMaNMpWh9jwj15iL7fkrtjG7wjtwhpDBjJGrtz2-KQsWAfyZNPj-R-lYkQo994DJ-K9xvoIl6f76vi4fbmV3M3W_38sWwWq5mtqE4zZR1vOfIWUbUVsAqoRNRlfj5H0K3SlrUuF1xleSWldVY4pQC4dLqWjF8Vy4nrBtiZQ_B7CEczgDd_E0PYGgjJ2w6NhBqEVEJSJSrUVnOpSkctcKVLFG1mVRNr7A9wfIKu-wdk1JycMGAtxmhOTpizE1n2dZLlZfweMSazG8bQ51-bsuZMlJoJlbv41GXDEGPAzRv25PJrtn6lsj7BafkpgO_-o_0yaT0ivpjGZMm05M_K7rYo
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_electronics13091678
crossref_primary_10_3390_app14167426
crossref_primary_10_1007_s42979_024_03402_2
crossref_primary_10_1016_j_aej_2023_11_078
crossref_primary_10_1016_j_aej_2024_10_100
crossref_primary_10_1007_s10586_024_04388_5
crossref_primary_10_56294_dm2025699
crossref_primary_10_1038_s41598_025_91663_z
crossref_primary_10_1186_s13677_024_00707_8
crossref_primary_10_1109_ACCESS_2024_3390844
crossref_primary_10_1007_s42044_025_00249_5
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1155_2024_5522431
crossref_primary_10_1007_s11276_024_03815_0
crossref_primary_10_1109_ACCESS_2024_3353055
crossref_primary_10_3390_en16166082
crossref_primary_10_1007_s42979_023_02311_0
crossref_primary_10_1109_TCE_2024_3458810
Cites_doi 10.1109/ACCESS.2019.2899721
10.3390/sym12061046
10.1007/978-3-319-99807-7_20
10.1186/s40537-020-00379-6
10.3390/en12071223
10.1002/ett.4150
10.1080/17517575.2021.1889037
10.1093/comjnl/bxx101
10.1109/TBDATA.2017.2715166
10.1016/j.comnet.2021.108708
10.5120/ijca2017915495
10.1016/j.asoc.2020.106557
10.1016/j.jpdc.2019.12.008
10.1145/1978672.1978676
10.1016/j.asoc.2019.105936
10.3390/s19112528
10.1016/j.future.2021.03.024
10.1016/j.cose.2019.05.016
10.1109/ISEASP.2017.7976995
10.1016/j.eswa.2015.07.015
10.1016/j.knosys.2021.107132
10.1016/j.cose.2014.06.006
10.1109/ACCESS.2018.2875045
10.3390/electronics12112427
10.1007/s10489-021-02968-1
10.1007/978-981-16-9260-4_6
10.1109/ACCESS.2019.2895334
10.1007/978-981-16-0695-3_35
10.1109/ACCESS.2019.2928048
10.1016/j.cose.2017.06.005
10.1016/j.comnet.2021.107840
10.1016/j.eswa.2022.116545
10.1007/978-981-13-1813-9_28
10.1007/s10586-020-03222-y
10.1109/ACCESS.2019.2943249
10.1080/19393555.2015.1125974
10.1109/ISIE.2017.8001537
10.1016/j.cose.2020.102164
10.1007/s10586-019-03008-x
10.1002/ett.4014
10.1016/j.knosys.2017.03.012
10.1155/2022/2019485
10.1109/ACCESS.2020.2973730
10.1016/j.comnet.2020.107183
10.1016/j.comnet.2018.02.028
10.2139/ssrn.4115147
10.1109/INDICON45594.2018.8987192
10.1007/s10462-017-9567-1
10.1007/978-3-031-21750-0_2
10.1007/s10489-017-1085-y
10.1109/MilCIS.2017.8190421
10.1016/j.cose.2019.101681
10.1109/MilCIS.2015.7348942
10.1016/j.cose.2020.101752
10.1109/ACCESS.2019.2925828
10.1007/s10586-021-03516-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3289405
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_6a8a567560754e9c93672d0ca3792e5b
10.1109/access.2023.3289405
10_1109_ACCESS_2023_3289405
10162196
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-7cd3b3e3bee7b4a14a06ee920083ea9b79c1bd4a1d4c3466cdc5d77aa36d98613
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:32:44 EDT 2025
Tue Aug 19 18:57:21 EDT 2025
Mon Jun 30 06:54:04 EDT 2025
Wed Oct 01 03:26:53 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Wed Aug 27 02:56:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-7cd3b3e3bee7b4a14a06ee920083ea9b79c1bd4a1d4c3466cdc5d77aa36d98613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6055-5345
0000-0001-7122-2856
0000-0002-9090-8236
0000-0003-1446-5127
0000-0003-1602-0770
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10162196
PQID 2831529157
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2831529157
ieee_primary_10162196
crossref_citationtrail_10_1109_ACCESS_2023_3289405
doaj_primary_oai_doaj_org_article_6a8a567560754e9c93672d0ca3792e5b
unpaywall_primary_10_1109_access_2023_3289405
crossref_primary_10_1109_ACCESS_2023_3289405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
(ref6) 2023
(ref38) 2006
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
khan (ref51) 2018; 941
ref49
ref8
ref7
ref9
(ref37) 2015
ref3
ref40
ref35
(ref4) 2020
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref26
(ref5) 2023
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – volume: 941
  start-page: 69
  year: 2018
  ident: ref51
  article-title: Analysis on improving the performance of machine learning models using feature selection technique
  publication-title: Proc Int Conf Intell Syst Design Appl
– ident: ref16
  doi: 10.1109/ACCESS.2019.2899721
– ident: ref23
  doi: 10.3390/sym12061046
– ident: ref47
  doi: 10.1007/978-3-319-99807-7_20
– ident: ref21
  doi: 10.1186/s40537-020-00379-6
– ident: ref52
  doi: 10.3390/en12071223
– ident: ref11
  doi: 10.1002/ett.4150
– ident: ref7
  doi: 10.1080/17517575.2021.1889037
– ident: ref62
  doi: 10.1093/comjnl/bxx101
– ident: ref45
  doi: 10.1109/TBDATA.2017.2715166
– ident: ref35
  doi: 10.1016/j.comnet.2021.108708
– ident: ref29
  doi: 10.5120/ijca2017915495
– ident: ref8
  doi: 10.1016/j.asoc.2020.106557
– ident: ref53
  doi: 10.1016/j.jpdc.2019.12.008
– ident: ref40
  doi: 10.1145/1978672.1978676
– year: 2023
  ident: ref5
  publication-title: Digital Technology Market Research Services |Juniper Research
– ident: ref32
  doi: 10.1016/j.asoc.2019.105936
– ident: ref14
  doi: 10.3390/s19112528
– ident: ref57
  doi: 10.1016/j.future.2021.03.024
– ident: ref18
  doi: 10.1016/j.cose.2019.05.016
– ident: ref46
  doi: 10.1109/ISEASP.2017.7976995
– ident: ref60
  doi: 10.1016/j.eswa.2015.07.015
– ident: ref25
  doi: 10.1016/j.knosys.2021.107132
– ident: ref59
  doi: 10.1016/j.cose.2014.06.006
– ident: ref49
  doi: 10.1109/ACCESS.2018.2875045
– ident: ref9
  doi: 10.3390/electronics12112427
– ident: ref30
  doi: 10.1007/s10489-021-02968-1
– ident: ref10
  doi: 10.1007/978-981-16-9260-4_6
– ident: ref17
  doi: 10.1109/ACCESS.2019.2895334
– ident: ref3
  doi: 10.1007/978-981-16-0695-3_35
– ident: ref15
  doi: 10.1109/ACCESS.2019.2928048
– ident: ref36
  doi: 10.1016/j.cose.2017.06.005
– year: 2023
  ident: ref6
  publication-title: Cyber Security Market Size Share & Trends Report 2030
– ident: ref12
  doi: 10.1016/j.comnet.2021.107840
– ident: ref27
  doi: 10.1016/j.eswa.2022.116545
– ident: ref50
  doi: 10.1007/978-981-13-1813-9_28
– ident: ref28
  doi: 10.1007/s10586-020-03222-y
– ident: ref61
  doi: 10.1109/ACCESS.2019.2943249
– ident: ref41
  doi: 10.1080/19393555.2015.1125974
– year: 2020
  ident: ref4
  publication-title: Malware Statistics & Trends Report |AV-TEST
– ident: ref44
  doi: 10.1109/ISIE.2017.8001537
– year: 2015
  ident: ref37
  publication-title: The UNSW-NB15 Dataset |UNSW Research
– ident: ref58
  doi: 10.1016/j.cose.2020.102164
– ident: ref22
  doi: 10.1007/s10586-019-03008-x
– ident: ref55
  doi: 10.1002/ett.4014
– ident: ref43
  doi: 10.1016/j.knosys.2017.03.012
– ident: ref1
  doi: 10.1155/2022/2019485
– ident: ref24
  doi: 10.1109/ACCESS.2020.2973730
– ident: ref54
  doi: 10.1016/j.comnet.2020.107183
– ident: ref48
  doi: 10.1016/j.comnet.2018.02.028
– ident: ref33
  doi: 10.2139/ssrn.4115147
– ident: ref2
  doi: 10.1109/INDICON45594.2018.8987192
– ident: ref19
  doi: 10.1007/s10462-017-9567-1
– ident: ref31
  doi: 10.1007/978-3-031-21750-0_2
– ident: ref13
  doi: 10.1007/s10489-017-1085-y
– ident: ref42
  doi: 10.1109/MilCIS.2017.8190421
– ident: ref20
  doi: 10.1016/j.cose.2019.101681
– ident: ref39
  doi: 10.1109/MilCIS.2015.7348942
– ident: ref56
  doi: 10.1016/j.cose.2020.101752
– ident: ref34
  doi: 10.1109/ACCESS.2019.2925828
– year: 2006
  ident: ref38
  publication-title: Traffic Data from Kyoto University's Honeypots
– ident: ref26
  doi: 10.1007/s10586-021-03516-9
SSID ssj0000816957
Score 2.482494
Snippet The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Classification algorithms
Cloud computing
Computational modeling
Datasets
Deep learning
Design improvements
Feature extraction
Feature Selection
Firewalls (computing)
Hybrid systems
Improved Design for Cloud-IDS
Intrusion detection systems
Metaheuristics
Particle swarm optimization
Proposals
PSO-based Metaheuristic
Random Forest
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF9pDBZSqKQ_5wJEsyfoVH5cFtCDg0q7KzfJrVaRVdiV2VfHvmXHMKqhSe-k1dhLHM_F8Y42_j5BTpORqRBXLJgRdclgNSj1joowV9J8pG6LE08j3D3Iy5beP4rEn9YU1YR09cDdx59I2VgCqlRDbeNReM6mGofKWKT2MwuHqWzW6l0ylNbippRYq0wzVlT4fjcfwRQNUCx8wyDI4Ctb1QlFi7M8SK-_Q5s66XdqX33Y-7wWe613yKSNGOupGuke2YrtPPvZ4BD-T9ail3e5ADPQy1WRQAKPU0vF8sQ70psWjFWABaFyl2quWdlTlNJUM0MkLHtyiiAfXkH_T70kdB7uNMuc4_fm0-kXv72hS0XyaQTQ9INPrqx_jSZn1FEoPWdyqVD4wxyJzMSrHbc1tJWPUWAHBotVOaV-7AA2Be8al9MGLoJS1TAbdQNz_QrbbRRu_EqoAtkD2BpZ2AAF8bLhTjfCoM1HNgvcFGb5NrfGZbBw1L-YmJR2VNp09DNrDZHsU5Gxz07Lj2vh79wu02aYrEmWnC-A-JruP-Zf7FOQALd57Xy1hEZcFOXpzAZP_6mcDUAzgjq6FKki5cYs_xmqT1OW7sX77H2M9JB_wmd0G0BHZBteJxwCJVu4kef8rh84D-Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOPBcRdkE-cCRpWid2fAyFVUHsCgkqlpPlx0RbEWUrkQiWX8_YcasuSEhwy2OiOJpx_I09_j5CXnhKrqrMIa2ck2mBf4NUNqxMIUf7RmgH3O9GPj3jy1Xx7rw8jxNuYS8MAITiM8j8YVjLX0P7Q0z53JOnySnHIR6ThKlPO7G78WzjmpvkgJeIxSfkYHX2of7iFeVmXKYsrE0eRWLNqQ4ahJlXDM8YZhqFF63bG44Ca3-UWbmGOG8N3UZffddtuzf4nNwjatvssebkazb0JrM_f2N0_P_vuk_uRlxK6zGQHpAb0D0kd_bYCh-Roe7oOAcBjr4OlR8UIS_VdNFeDo6-7fwGDvQz3uxDhVdHR0J0GgoT6PLKbw-jHnUOmOXTj0GDx5vVkdmcfl73F_T0PQ1anesGx-xDsjp582mxTKNqQ2oxV-xTYR0zDJgBEKbQs0LnHED6OgsGWhoh7cw4vOEKywrOrbOlE0Jrxp2sEF08JpPusoMnhAoER5gjYjwZBBoWqsKIqrRezSJvnLUJmW-dp2ykNPfKGq0KqU0uVb1YYBwr73EVPZ6Ql7uHNiOjx9_NX_mo2Jl6Ou5wAT2oYu9WXFe6xNSLIwArQFrJuJi73Gom5BxKk5BD7_W9940-TsjxNshU_Hd8Uwj4EFTJWSkSku4C74-2jsF8ra1P_9H-iNz2p-OM0jGZYJTAM8RYvXkeO9IvFpYekQ
  priority: 102
  providerName: Unpaywall
Title An Improved Design for a Cloud Intrusion Detection System Using Hybrid Features Selection Approach with ML Classifier
URI https://ieeexplore.ieee.org/document/10162196
https://www.proquest.com/docview/2831529157
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10162196.pdf
https://doaj.org/article/6a8a567560754e9c93672d0ca3792e5b
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF3RcoAe-CzCUKI9cMSuk13veo8mUAVEIySIVE7WfkykisipRKyq_Hpm1psoBYG4RfFEXmtmvW8mM-8x9pooueqqhLwOweQS3wa5WYoqhxLtl9oGUDSNfD5Xs4X8eFFdpGH1OAsDALH5DAr6GP_LD2vfU6nslDJN3GHqgB3oWg3DWruCCilImEonZqFxaU6b6RQfoiCB8EJgYiFJo27v9Ikk_UlV5RbAvNd3V_bm2q5We2fN2UM2365yaDH5XvQbV_ifvxE4_vdjPGIPEurkzRAmj9kd6J6woz0uwqesbzo-VBgg8Hexr4MjoOWWT1frPvAPHY1noBfx4ib2b3V8oDvnse2Az25o-IsTpuwxh-dfosIOmTWJt5xT0Zeff-JRifNyiSfyMVucvf86neVJkyH3mAlucu2DcAKEA9BO2rG0pQIw1EUhwBqnjR-7gBeC9EIq5YOvgtbWChVMjdjhGTvs1h08Z1wj9MEMEKPFIYzwUEun68qTVkW5DN5nbLL1VesTYTnpZqzamLiUph0c3JKD2-TgjL3Z_ehq4Ov4t_lbCoKdKZFtxy_QYW3au62yta0wsVIIryQYb4TSk1B6K7SZQOUydkxO3rvf4N-MnWxjqk1vhh8twjmETGZc6Yzluzj7Y602ymXeWuuLv9zmJbtPZkNd6IQdYjTAK0RKGzeKFYZR3Ccjdncx_9x8-wWx8RGd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgOSwc-FxEYAEfOJJuWn_Fx1JYdaHthV1pb5ZjT6UVVboSjdDy65lx3KoLAnGLEkdxNOP4zWTmPcbeESVXrSoo6xhtKfFrUNqlUCVUOH5pfARN3cjzhZ5eyM-X6jI3q6deGABIxWcwoMP0Lz-uQ0epshOKNHGF6bvsnpJSqr5da5dSIQ0Jq0zmFhpW9mQ8meBrDEgifCAwtJCkUre3_ySa_qyrcgtiHnbttb_54Vervd3m9BFbbOfZF5l8G3SbZhB-_kbh-N8v8pg9zLiTj3tHecLuQPuUPdhjI3zGunHL-xwDRP4xVXZwhLTc88lq3UV-1lKDBtoRL25SBVfLe8JzngoP-PSG2r84ocoOo3j-NWns0LBxZi7nlPbl8xlPWpxXS9yTj9jF6afzybTMqgxlwFhwU5oQRSNANACmkX4ofaUBLNVRCPC2MTYMm4gXogxCah1iUNEY74WOtkb08JwdtOsWXjBuEPxgDIj-0iCQCFDLxtQqkFpFtYwhFGy0tZULmbKclDNWLoUulXW9gR0Z2GUDF-z97qbrnrHj38M_kBPshhLddjqBBnN59Trta68wtNIIsCTYYIU2o1gFL4wdgWoKdkRG3nteb9-CHW99yuVvw3eHgA5Bkx0qU7By52d_zNUnwcxbc335l8e8ZYfT8_nMzc4WX16x-3RLnyU6ZgfoGfAacdOmeZNWyy8eNRJF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOPBcRdkE-cCRpWid2fAyFVUHsCgkqlpPlx0RbEWUrkQiWX8_YcasuSEhwy2OiOJpx_I09_j5CXnhKrqrMIa2ck2mBf4NUNqxMIUf7RmgH3O9GPj3jy1Xx7rw8jxNuYS8MAITiM8j8YVjLX0P7Q0z53JOnySnHIR6ThKlPO7G78WzjmpvkgJeIxSfkYHX2of7iFeVmXKYsrE0eRWLNqQ4ahJlXDM8YZhqFF63bG44Ca3-UWbmGOG8N3UZffddtuzf4nNwjatvssebkazb0JrM_f2N0_P_vuk_uRlxK6zGQHpAb0D0kd_bYCh-Roe7oOAcBjr4OlR8UIS_VdNFeDo6-7fwGDvQz3uxDhVdHR0J0GgoT6PLKbw-jHnUOmOXTj0GDx5vVkdmcfl73F_T0PQ1anesGx-xDsjp582mxTKNqQ2oxV-xTYR0zDJgBEKbQs0LnHED6OgsGWhoh7cw4vOEKywrOrbOlE0Jrxp2sEF08JpPusoMnhAoER5gjYjwZBBoWqsKIqrRezSJvnLUJmW-dp2ykNPfKGq0KqU0uVb1YYBwr73EVPZ6Ql7uHNiOjx9_NX_mo2Jl6Ou5wAT2oYu9WXFe6xNSLIwArQFrJuJi73Gom5BxKk5BD7_W9940-TsjxNshU_Hd8Uwj4EFTJWSkSku4C74-2jsF8ra1P_9H-iNz2p-OM0jGZYJTAM8RYvXkeO9IvFpYekQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Design+for+a+Cloud+Intrusion+Detection+System+Using+Hybrid+Features+Selection+Approach+with+ML+Classifier&rft.jtitle=IEEE+access&rft.au=Bakro%2C+Mhamad&rft.au=Kumar%2C+Rakesh+Ranjan&rft.au=Alabrah%2C+Amerah&rft.au=Ashraf%2C+Zubair&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3289405&rft.externalDocID=10162196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon