An Improved Design for a Cloud Intrusion Detection System Using Hybrid Features Selection Approach with ML Classifier
The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both indiv...
Saved in:
| Published in | IEEE access Vol. 11; p. 1 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3289405 |
Cover
| Abstract | The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both individuals and organizations to implement a robust intrusion detection system (IDS) capable of monitoring packets in the network, distinguishing between benign and malicious behavior, and detecting the type of attacks. IDS based on ML are efficient and precise in spotting network threats. Yet, for large dimensional data sizes, the performance of these systems decreases. Thus, it is critical to building a suitable feature selection approach that selects necessary features without having an impact on the classification process or causing information loss. Furthermore, training ML models on unbalanced datasets show a rising false positive rate (FPR) and a lowering detection rate (DR). In this paper, we present an improved cloud IDS designed by incorporating the synthetic minority over-sampling technique (SMOTE) to address the imbalanced data issue, and for feature selection, we propose to use a hybrid approach that includes three techniques: information gain (IG), chi-square (CS), and particle swarm optimization (PSO). Finally, the random forest (RF) model is utilized for detecting and classifying various types of attacks. The suggested system has been verified by the UNSW-NB15 and Kyoto datasets, achieving accuracies of over 98% and 99% in the multi-class classification scenario, respectively. It was noticed that an intrusion detection system with fewer informative features would operate more effectively. The simulation results significantly outperform other methodologies proposed in the related work in terms of different evaluation metrics. |
|---|---|
| AbstractList | The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both individuals and organizations to implement a robust intrusion detection system (IDS) capable of monitoring packets in the network, distinguishing between benign and malicious behavior, and detecting the type of attacks. IDS based on ML are efficient and precise in spotting network threats. Yet, for large dimensional data sizes, the performance of these systems decreases. Thus, it is critical to building a suitable feature selection approach that selects necessary features without having an impact on the classification process or causing information loss. Furthermore, training ML models on unbalanced datasets show a rising false positive rate (FPR) and a lowering detection rate (DR). In this paper, we present an improved cloud IDS designed by incorporating the synthetic minority over-sampling technique (SMOTE) to address the imbalanced data issue, and for feature selection, we propose to use a hybrid approach that includes three techniques: information gain (IG), chi-square (CS), and particle swarm optimization (PSO). Finally, the random forest (RF) model is utilized for detecting and classifying various types of attacks. The suggested system has been verified by the UNSW-NB15 and Kyoto datasets, achieving accuracies of over 98% and 99% in the multi-class classification scenario, respectively. It was noticed that an intrusion detection system with fewer informative features would operate more effectively. The simulation results significantly outperform other methodologies proposed in the related work in terms of different evaluation metrics. |
| Author | Bakro, Mhamad Shameem, Mohammad Kumar, Rakesh Ranjan Abdelsalam, Ahmed Ahmed, Md Nadeem Alabrah, Amerah Ashraf, Zubair |
| Author_xml | – sequence: 1 givenname: Mhamad orcidid: 0000-0003-1446-5127 surname: Bakro fullname: Bakro, Mhamad organization: Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India – sequence: 2 givenname: Rakesh Ranjan surname: Kumar fullname: Kumar, Rakesh Ranjan organization: Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India – sequence: 3 givenname: Amerah surname: Alabrah fullname: Alabrah, Amerah organization: College of Computer and Information Sciences, King Saud University, Saudi Arabia – sequence: 4 givenname: Zubair orcidid: 0000-0001-7122-2856 surname: Ashraf fullname: Ashraf, Zubair organization: Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, India – sequence: 5 givenname: Md Nadeem surname: Ahmed fullname: Ahmed, Md Nadeem organization: AIT-CSE, Chandigarh University, Punjab, India – sequence: 6 givenname: Mohammad orcidid: 0000-0002-6055-5345 surname: Shameem fullname: Shameem, Mohammad organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India – sequence: 7 givenname: Ahmed orcidid: 0000-0002-9090-8236 surname: Abdelsalam fullname: Abdelsalam, Ahmed organization: Department of Software Engineering, LUT University, Finland |
| BookMark | eNqFkcFuGyEQhldVKjVN8wTtAalnu7AssBytbdJYctSDmzOahbGDtd51gW3ktw_uWlWUHMqF0cz838D8H4uLfuixKD4zOmeM6m-LprlZr-clLfmcl7WuqHhXXJZM6hkXXF68iD8U1zHuaD51Tgl1WYyLniz3hzD8QUe-Y_TbnmyGQIA03TA6suxTGKMf-lxMaNMpWh9jwj15iL7fkrtjG7wjtwhpDBjJGrtz2-KQsWAfyZNPj-R-lYkQo994DJ-K9xvoIl6f76vi4fbmV3M3W_38sWwWq5mtqE4zZR1vOfIWUbUVsAqoRNRlfj5H0K3SlrUuF1xleSWldVY4pQC4dLqWjF8Vy4nrBtiZQ_B7CEczgDd_E0PYGgjJ2w6NhBqEVEJSJSrUVnOpSkctcKVLFG1mVRNr7A9wfIKu-wdk1JycMGAtxmhOTpizE1n2dZLlZfweMSazG8bQ51-bsuZMlJoJlbv41GXDEGPAzRv25PJrtn6lsj7BafkpgO_-o_0yaT0ivpjGZMm05M_K7rYo |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_electronics13091678 crossref_primary_10_3390_app14167426 crossref_primary_10_1007_s42979_024_03402_2 crossref_primary_10_1016_j_aej_2023_11_078 crossref_primary_10_1016_j_aej_2024_10_100 crossref_primary_10_1007_s10586_024_04388_5 crossref_primary_10_56294_dm2025699 crossref_primary_10_1038_s41598_025_91663_z crossref_primary_10_1186_s13677_024_00707_8 crossref_primary_10_1109_ACCESS_2024_3390844 crossref_primary_10_1007_s42044_025_00249_5 crossref_primary_10_1016_j_compeleceng_2024_109863 crossref_primary_10_1155_2024_5522431 crossref_primary_10_1007_s11276_024_03815_0 crossref_primary_10_1109_ACCESS_2024_3353055 crossref_primary_10_3390_en16166082 crossref_primary_10_1007_s42979_023_02311_0 crossref_primary_10_1109_TCE_2024_3458810 |
| Cites_doi | 10.1109/ACCESS.2019.2899721 10.3390/sym12061046 10.1007/978-3-319-99807-7_20 10.1186/s40537-020-00379-6 10.3390/en12071223 10.1002/ett.4150 10.1080/17517575.2021.1889037 10.1093/comjnl/bxx101 10.1109/TBDATA.2017.2715166 10.1016/j.comnet.2021.108708 10.5120/ijca2017915495 10.1016/j.asoc.2020.106557 10.1016/j.jpdc.2019.12.008 10.1145/1978672.1978676 10.1016/j.asoc.2019.105936 10.3390/s19112528 10.1016/j.future.2021.03.024 10.1016/j.cose.2019.05.016 10.1109/ISEASP.2017.7976995 10.1016/j.eswa.2015.07.015 10.1016/j.knosys.2021.107132 10.1016/j.cose.2014.06.006 10.1109/ACCESS.2018.2875045 10.3390/electronics12112427 10.1007/s10489-021-02968-1 10.1007/978-981-16-9260-4_6 10.1109/ACCESS.2019.2895334 10.1007/978-981-16-0695-3_35 10.1109/ACCESS.2019.2928048 10.1016/j.cose.2017.06.005 10.1016/j.comnet.2021.107840 10.1016/j.eswa.2022.116545 10.1007/978-981-13-1813-9_28 10.1007/s10586-020-03222-y 10.1109/ACCESS.2019.2943249 10.1080/19393555.2015.1125974 10.1109/ISIE.2017.8001537 10.1016/j.cose.2020.102164 10.1007/s10586-019-03008-x 10.1002/ett.4014 10.1016/j.knosys.2017.03.012 10.1155/2022/2019485 10.1109/ACCESS.2020.2973730 10.1016/j.comnet.2020.107183 10.1016/j.comnet.2018.02.028 10.2139/ssrn.4115147 10.1109/INDICON45594.2018.8987192 10.1007/s10462-017-9567-1 10.1007/978-3-031-21750-0_2 10.1007/s10489-017-1085-y 10.1109/MilCIS.2017.8190421 10.1016/j.cose.2019.101681 10.1109/MilCIS.2015.7348942 10.1016/j.cose.2020.101752 10.1109/ACCESS.2019.2925828 10.1007/s10586-021-03516-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3289405 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall Acceso a contenido Full Text - Doaj |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_6a8a567560754e9c93672d0ca3792e5b 10.1109/access.2023.3289405 10_1109_ACCESS_2023_3289405 10162196 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-7cd3b3e3bee7b4a14a06ee920083ea9b79c1bd4a1d4c3466cdc5d77aa36d98613 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:32:44 EDT 2025 Tue Aug 19 18:57:21 EDT 2025 Mon Jun 30 06:54:04 EDT 2025 Wed Oct 01 03:26:53 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Wed Aug 27 02:56:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-7cd3b3e3bee7b4a14a06ee920083ea9b79c1bd4a1d4c3466cdc5d77aa36d98613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6055-5345 0000-0001-7122-2856 0000-0002-9090-8236 0000-0003-1446-5127 0000-0003-1602-0770 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10162196 |
| PQID | 2831529157 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2831529157 ieee_primary_10162196 crossref_citationtrail_10_1109_ACCESS_2023_3289405 doaj_primary_oai_doaj_org_article_6a8a567560754e9c93672d0ca3792e5b unpaywall_primary_10_1109_access_2023_3289405 crossref_primary_10_1109_ACCESS_2023_3289405 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 (ref6) 2023 (ref38) 2006 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 khan (ref51) 2018; 941 ref49 ref8 ref7 ref9 (ref37) 2015 ref3 ref40 ref35 (ref4) 2020 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref26 (ref5) 2023 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – volume: 941 start-page: 69 year: 2018 ident: ref51 article-title: Analysis on improving the performance of machine learning models using feature selection technique publication-title: Proc Int Conf Intell Syst Design Appl – ident: ref16 doi: 10.1109/ACCESS.2019.2899721 – ident: ref23 doi: 10.3390/sym12061046 – ident: ref47 doi: 10.1007/978-3-319-99807-7_20 – ident: ref21 doi: 10.1186/s40537-020-00379-6 – ident: ref52 doi: 10.3390/en12071223 – ident: ref11 doi: 10.1002/ett.4150 – ident: ref7 doi: 10.1080/17517575.2021.1889037 – ident: ref62 doi: 10.1093/comjnl/bxx101 – ident: ref45 doi: 10.1109/TBDATA.2017.2715166 – ident: ref35 doi: 10.1016/j.comnet.2021.108708 – ident: ref29 doi: 10.5120/ijca2017915495 – ident: ref8 doi: 10.1016/j.asoc.2020.106557 – ident: ref53 doi: 10.1016/j.jpdc.2019.12.008 – ident: ref40 doi: 10.1145/1978672.1978676 – year: 2023 ident: ref5 publication-title: Digital Technology Market Research Services |Juniper Research – ident: ref32 doi: 10.1016/j.asoc.2019.105936 – ident: ref14 doi: 10.3390/s19112528 – ident: ref57 doi: 10.1016/j.future.2021.03.024 – ident: ref18 doi: 10.1016/j.cose.2019.05.016 – ident: ref46 doi: 10.1109/ISEASP.2017.7976995 – ident: ref60 doi: 10.1016/j.eswa.2015.07.015 – ident: ref25 doi: 10.1016/j.knosys.2021.107132 – ident: ref59 doi: 10.1016/j.cose.2014.06.006 – ident: ref49 doi: 10.1109/ACCESS.2018.2875045 – ident: ref9 doi: 10.3390/electronics12112427 – ident: ref30 doi: 10.1007/s10489-021-02968-1 – ident: ref10 doi: 10.1007/978-981-16-9260-4_6 – ident: ref17 doi: 10.1109/ACCESS.2019.2895334 – ident: ref3 doi: 10.1007/978-981-16-0695-3_35 – ident: ref15 doi: 10.1109/ACCESS.2019.2928048 – ident: ref36 doi: 10.1016/j.cose.2017.06.005 – year: 2023 ident: ref6 publication-title: Cyber Security Market Size Share & Trends Report 2030 – ident: ref12 doi: 10.1016/j.comnet.2021.107840 – ident: ref27 doi: 10.1016/j.eswa.2022.116545 – ident: ref50 doi: 10.1007/978-981-13-1813-9_28 – ident: ref28 doi: 10.1007/s10586-020-03222-y – ident: ref61 doi: 10.1109/ACCESS.2019.2943249 – ident: ref41 doi: 10.1080/19393555.2015.1125974 – year: 2020 ident: ref4 publication-title: Malware Statistics & Trends Report |AV-TEST – ident: ref44 doi: 10.1109/ISIE.2017.8001537 – year: 2015 ident: ref37 publication-title: The UNSW-NB15 Dataset |UNSW Research – ident: ref58 doi: 10.1016/j.cose.2020.102164 – ident: ref22 doi: 10.1007/s10586-019-03008-x – ident: ref55 doi: 10.1002/ett.4014 – ident: ref43 doi: 10.1016/j.knosys.2017.03.012 – ident: ref1 doi: 10.1155/2022/2019485 – ident: ref24 doi: 10.1109/ACCESS.2020.2973730 – ident: ref54 doi: 10.1016/j.comnet.2020.107183 – ident: ref48 doi: 10.1016/j.comnet.2018.02.028 – ident: ref33 doi: 10.2139/ssrn.4115147 – ident: ref2 doi: 10.1109/INDICON45594.2018.8987192 – ident: ref19 doi: 10.1007/s10462-017-9567-1 – ident: ref31 doi: 10.1007/978-3-031-21750-0_2 – ident: ref13 doi: 10.1007/s10489-017-1085-y – ident: ref42 doi: 10.1109/MilCIS.2017.8190421 – ident: ref20 doi: 10.1016/j.cose.2019.101681 – ident: ref39 doi: 10.1109/MilCIS.2015.7348942 – ident: ref56 doi: 10.1016/j.cose.2020.101752 – ident: ref34 doi: 10.1109/ACCESS.2019.2925828 – year: 2006 ident: ref38 publication-title: Traffic Data from Kyoto University's Honeypots – ident: ref26 doi: 10.1007/s10586-021-03516-9 |
| SSID | ssj0000816957 |
| Score | 2.482494 |
| Snippet | The focus of cloud computing nowadays has been reshaping the digital epoch, in which clients now face serious concerns about the security and privacy of their... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Classification Classification algorithms Cloud computing Computational modeling Datasets Deep learning Design improvements Feature extraction Feature Selection Firewalls (computing) Hybrid systems Improved Design for Cloud-IDS Intrusion detection systems Metaheuristics Particle swarm optimization Proposals PSO-based Metaheuristic Random Forest |
| SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF9pDBZSqKQ_5wJEsyfoVH5cFtCDg0q7KzfJrVaRVdiV2VfHvmXHMKqhSe-k1dhLHM_F8Y42_j5BTpORqRBXLJgRdclgNSj1joowV9J8pG6LE08j3D3Iy5beP4rEn9YU1YR09cDdx59I2VgCqlRDbeNReM6mGofKWKT2MwuHqWzW6l0ylNbippRYq0wzVlT4fjcfwRQNUCx8wyDI4Ctb1QlFi7M8SK-_Q5s66XdqX33Y-7wWe613yKSNGOupGuke2YrtPPvZ4BD-T9ail3e5ADPQy1WRQAKPU0vF8sQ70psWjFWABaFyl2quWdlTlNJUM0MkLHtyiiAfXkH_T70kdB7uNMuc4_fm0-kXv72hS0XyaQTQ9INPrqx_jSZn1FEoPWdyqVD4wxyJzMSrHbc1tJWPUWAHBotVOaV-7AA2Be8al9MGLoJS1TAbdQNz_QrbbRRu_EqoAtkD2BpZ2AAF8bLhTjfCoM1HNgvcFGb5NrfGZbBw1L-YmJR2VNp09DNrDZHsU5Gxz07Lj2vh79wu02aYrEmWnC-A-JruP-Zf7FOQALd57Xy1hEZcFOXpzAZP_6mcDUAzgjq6FKki5cYs_xmqT1OW7sX77H2M9JB_wmd0G0BHZBteJxwCJVu4kef8rh84D-Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOPBcRdkE-cCRpWid2fAyFVUHsCgkqlpPlx0RbEWUrkQiWX8_YcasuSEhwy2OiOJpx_I09_j5CXnhKrqrMIa2ck2mBf4NUNqxMIUf7RmgH3O9GPj3jy1Xx7rw8jxNuYS8MAITiM8j8YVjLX0P7Q0z53JOnySnHIR6ThKlPO7G78WzjmpvkgJeIxSfkYHX2of7iFeVmXKYsrE0eRWLNqQ4ahJlXDM8YZhqFF63bG44Ca3-UWbmGOG8N3UZffddtuzf4nNwjatvssebkazb0JrM_f2N0_P_vuk_uRlxK6zGQHpAb0D0kd_bYCh-Roe7oOAcBjr4OlR8UIS_VdNFeDo6-7fwGDvQz3uxDhVdHR0J0GgoT6PLKbw-jHnUOmOXTj0GDx5vVkdmcfl73F_T0PQ1anesGx-xDsjp582mxTKNqQ2oxV-xTYR0zDJgBEKbQs0LnHED6OgsGWhoh7cw4vOEKywrOrbOlE0Jrxp2sEF08JpPusoMnhAoER5gjYjwZBBoWqsKIqrRezSJvnLUJmW-dp2ykNPfKGq0KqU0uVb1YYBwr73EVPZ6Ql7uHNiOjx9_NX_mo2Jl6Ou5wAT2oYu9WXFe6xNSLIwArQFrJuJi73Gom5BxKk5BD7_W9940-TsjxNshU_Hd8Uwj4EFTJWSkSku4C74-2jsF8ra1P_9H-iNz2p-OM0jGZYJTAM8RYvXkeO9IvFpYekQ priority: 102 providerName: Unpaywall |
| Title | An Improved Design for a Cloud Intrusion Detection System Using Hybrid Features Selection Approach with ML Classifier |
| URI | https://ieeexplore.ieee.org/document/10162196 https://www.proquest.com/docview/2831529157 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10162196.pdf https://doaj.org/article/6a8a567560754e9c93672d0ca3792e5b |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF3RcoAe-CzCUKI9cMSuk13veo8mUAVEIySIVE7WfkykisipRKyq_Hpm1psoBYG4RfFEXmtmvW8mM-8x9pooueqqhLwOweQS3wa5WYoqhxLtl9oGUDSNfD5Xs4X8eFFdpGH1OAsDALH5DAr6GP_LD2vfU6nslDJN3GHqgB3oWg3DWruCCilImEonZqFxaU6b6RQfoiCB8EJgYiFJo27v9Ikk_UlV5RbAvNd3V_bm2q5We2fN2UM2365yaDH5XvQbV_ifvxE4_vdjPGIPEurkzRAmj9kd6J6woz0uwqesbzo-VBgg8Hexr4MjoOWWT1frPvAPHY1noBfx4ib2b3V8oDvnse2Az25o-IsTpuwxh-dfosIOmTWJt5xT0Zeff-JRifNyiSfyMVucvf86neVJkyH3mAlucu2DcAKEA9BO2rG0pQIw1EUhwBqnjR-7gBeC9EIq5YOvgtbWChVMjdjhGTvs1h08Z1wj9MEMEKPFIYzwUEun68qTVkW5DN5nbLL1VesTYTnpZqzamLiUph0c3JKD2-TgjL3Z_ehq4Ov4t_lbCoKdKZFtxy_QYW3au62yta0wsVIIryQYb4TSk1B6K7SZQOUydkxO3rvf4N-MnWxjqk1vhh8twjmETGZc6Yzluzj7Y602ymXeWuuLv9zmJbtPZkNd6IQdYjTAK0RKGzeKFYZR3Ccjdncx_9x8-wWx8RGd |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgOSwc-FxEYAEfOJJuWn_Fx1JYdaHthV1pb5ZjT6UVVboSjdDy65lx3KoLAnGLEkdxNOP4zWTmPcbeESVXrSoo6xhtKfFrUNqlUCVUOH5pfARN3cjzhZ5eyM-X6jI3q6deGABIxWcwoMP0Lz-uQ0epshOKNHGF6bvsnpJSqr5da5dSIQ0Jq0zmFhpW9mQ8meBrDEgifCAwtJCkUre3_ySa_qyrcgtiHnbttb_54Vervd3m9BFbbOfZF5l8G3SbZhB-_kbh-N8v8pg9zLiTj3tHecLuQPuUPdhjI3zGunHL-xwDRP4xVXZwhLTc88lq3UV-1lKDBtoRL25SBVfLe8JzngoP-PSG2r84ocoOo3j-NWns0LBxZi7nlPbl8xlPWpxXS9yTj9jF6afzybTMqgxlwFhwU5oQRSNANACmkX4ofaUBLNVRCPC2MTYMm4gXogxCah1iUNEY74WOtkb08JwdtOsWXjBuEPxgDIj-0iCQCFDLxtQqkFpFtYwhFGy0tZULmbKclDNWLoUulXW9gR0Z2GUDF-z97qbrnrHj38M_kBPshhLddjqBBnN59Trta68wtNIIsCTYYIU2o1gFL4wdgWoKdkRG3nteb9-CHW99yuVvw3eHgA5Bkx0qU7By52d_zNUnwcxbc335l8e8ZYfT8_nMzc4WX16x-3RLnyU6ZgfoGfAacdOmeZNWyy8eNRJF |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOPBcRdkE-cCRpWid2fAyFVUHsCgkqlpPlx0RbEWUrkQiWX8_YcasuSEhwy2OiOJpx_I09_j5CXnhKrqrMIa2ck2mBf4NUNqxMIUf7RmgH3O9GPj3jy1Xx7rw8jxNuYS8MAITiM8j8YVjLX0P7Q0z53JOnySnHIR6ThKlPO7G78WzjmpvkgJeIxSfkYHX2of7iFeVmXKYsrE0eRWLNqQ4ahJlXDM8YZhqFF63bG44Ca3-UWbmGOG8N3UZffddtuzf4nNwjatvssebkazb0JrM_f2N0_P_vuk_uRlxK6zGQHpAb0D0kd_bYCh-Roe7oOAcBjr4OlR8UIS_VdNFeDo6-7fwGDvQz3uxDhVdHR0J0GgoT6PLKbw-jHnUOmOXTj0GDx5vVkdmcfl73F_T0PQ1anesGx-xDsjp582mxTKNqQ2oxV-xTYR0zDJgBEKbQs0LnHED6OgsGWhoh7cw4vOEKywrOrbOlE0Jrxp2sEF08JpPusoMnhAoER5gjYjwZBBoWqsKIqrRezSJvnLUJmW-dp2ykNPfKGq0KqU0uVb1YYBwr73EVPZ6Ql7uHNiOjx9_NX_mo2Jl6Ou5wAT2oYu9WXFe6xNSLIwArQFrJuJi73Gom5BxKk5BD7_W9940-TsjxNshU_Hd8Uwj4EFTJWSkSku4C74-2jsF8ra1P_9H-iNz2p-OM0jGZYJTAM8RYvXkeO9IvFpYekQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Design+for+a+Cloud+Intrusion+Detection+System+Using+Hybrid+Features+Selection+Approach+with+ML+Classifier&rft.jtitle=IEEE+access&rft.au=Bakro%2C+Mhamad&rft.au=Kumar%2C+Rakesh+Ranjan&rft.au=Alabrah%2C+Amerah&rft.au=Ashraf%2C+Zubair&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3289405&rft.externalDocID=10162196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |