Efficient Management and Processing of Massive Insar Images Using an HPC-Based Cloud Platform

Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managin...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 1 - 12
Main Authors Wu, Zherong, Ma, Peifeng, Zhang, Xinyang, Ye, Guangen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2023.3349214

Cover

Abstract Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this paper, we introduce a parallel time-series InSAR processing platform that leverages High-Performance Computing (HPC) clusters for efficiently managing and processing large-scale SAR data, and incorporates Graphics Processing Unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust Distributed Scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. Additionally, it provides web-based 2D result visualization and 3D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis.
AbstractList Significant progress has occurred in interferometric synthetic aperture radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded synthetic aperture radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this article, we introduce a parallel time-series InSAR processing platform that leverages high-performance computing (HPC) clusters for efficiently managing and processing large-scale SAR data and incorporates graphics processing unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust distributed scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. In addition, it provides web-based two-dimensional (2-D) result visualization and 3-D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis.
Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this paper, we introduce a parallel time-series InSAR processing platform that leverages High-Performance Computing (HPC) clusters for efficiently managing and processing large-scale SAR data, and incorporates Graphics Processing Unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust Distributed Scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. Additionally, it provides web-based 2D result visualization and 3D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis.
Author Zhang, Xinyang
Wu, Zherong
Ye, Guangen
Ma, Peifeng
Author_xml – sequence: 1
  givenname: Zherong
  orcidid: 0000-0002-9536-1348
  surname: Wu
  fullname: Wu, Zherong
  organization: School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Peifeng
  orcidid: 0000-0002-1457-5388
  surname: Ma
  fullname: Ma, Peifeng
  organization: Department of Geography and Resource Management and Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong
– sequence: 3
  givenname: Xinyang
  surname: Zhang
  fullname: Zhang, Xinyang
  organization: Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong
– sequence: 4
  givenname: Guangen
  surname: Ye
  fullname: Ye, Guangen
  organization: Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong
BookMark eNqFkU1v1DAQhi1UJLaFXwCHSJyz-DvJsaxauqiIirZHZE2c8cqrrL3YWVD_Pd6mQqgcOHnkmecZ-fUpOQkxICFvGV0yRrsPn2_vzr_dLjnlYimE7DiTL8iCM8VqpoQ6IQvWia5mkspX5DTnLaWaN51YkO8XznnrMUzVFwiwwd2xhDBUNylazNmHTRVdaZbyJ1brkCFV612ZzNX9YxdCdXWzqj9CxqFajfFQ2BEmF9PuNXnpYMz45uk8I_eXF3erq_r666f16vy6tpJ2U920SgrOXc-waYS1zipowA5uEIiSCkcHKtu24U2vldW6BdoNWqpeuIEWUJyR9ewdImzNPvkdpAcTwZvHi5g2BtLk7YiGN0xryXRvBUjXY--QWdZzinxoqVXFJWfXIezh4ReM4x8ho-YYt9nmCVI2x7jNU9wFez9j-xR_HDBPZhsPKZRXG94xLVsqJStTYp6yKeac0P3jnr_yubt7Rlk_weRjmBL48T_su5n1iPjXNtGyRirxGwenrJc
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs17060999
crossref_primary_10_1109_JSTARS_2024_3507542
Cites_doi 10.1016/j.jag.2022.103076
10.1109/JSTARS.2014.2322671
10.1016/j.isprsjprs.2018.12.008
10.1007/10968987_3
10.1016/j.rse.2011.11.001
10.1088/0959-7174/14/2/008
10.3390/rs15071850
10.3389/feart.2019.00172
10.3390/app7121264
10.1007/s12145-023-00973-1
10.1029/2004JC002809
10.1109/TGRS.2011.2124465
10.1016/j.rse.2019.111282
10.1029/JB094iB07p09183
10.3390/rs13234756
10.1109/36.868878
10.1109/MCD.2006.1598076
10.3390/rs13112227
10.1029/97RG02669
10.1109/JPROC.2009.2038948
10.1117/12.2558091
10.1109/ICAIS50930.2021.9395977
10.1016/j.rse.2023.113545
10.1109/TGRS.2015.2496193
10.1016/j.rse.2023.113962
10.1016/j.isprsjprs.2021.08.009
10.17226/11148
10.1109/TGRS.2019.2924113
10.1016/j.isprsjprs.2022.11.015
10.1109/TGRS.2002.803792
10.2172/951297
10.1016/j.measurement.2015.07.024
10.1109/MWSYM.2017.8059054
10.1080/01431161.2013.862605
10.1016/j.isprsjprs.2020.09.012
10.1109/TCC.2015.2440267
10.1016/j.rse.2020.111664
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JSTARS.2023.3349214
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL(IEEE/IET Electronic Library )
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL(IEEE/IET Electronic Library )
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 12
ExternalDocumentID oai_doaj_org_article_27166416bc3a4fbebfe1c1b20e2d80c5
10.1109/jstars.2023.3349214
10_1109_JSTARS_2023_3349214
10381745
Genre orig-research
GrantInformation_xml – fundername: Areas of Excellence Scheme
  grantid: AoE/E-603/18
– fundername: CUHK Direct Grant for Research
  grantid: 4052294
– fundername: National Natural Science Foundation of China
  grantid: 41971278
– fundername: Hong Kong Research Grants Council
  grantid: 14223422; 14201923
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-7854322fb1e773ccfc5a7acdfd3ee403f0d0488727b65c668a09d645b3fd03223
IEDL.DBID UNPAY
ISSN 1939-1404
2151-1535
IngestDate Fri Oct 03 12:52:52 EDT 2025
Tue Aug 19 22:16:24 EDT 2025
Fri Jul 25 10:42:47 EDT 2025
Wed Oct 01 03:51:35 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Wed Aug 27 02:24:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-7854322fb1e773ccfc5a7acdfd3ee403f0d0488727b65c668a09d645b3fd03223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9536-1348
0000-0002-1457-5388
0000-0001-5273-5381
0009-0007-4381-779X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4609443/4609444/10381745.pdf
PQID 2916480441
PQPubID 75722
PageCount 12
ParticipantIDs crossref_primary_10_1109_JSTARS_2023_3349214
unpaywall_primary_10_1109_jstars_2023_3349214
ieee_primary_10381745
crossref_citationtrail_10_1109_JSTARS_2023_3349214
proquest_journals_2916480441
doaj_primary_oai_doaj_org_article_27166416bc3a4fbebfe1c1b20e2d80c5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Henderson (ref2) 1998; 2
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Fu (ref5) 2019
ref28
ref27
ref29
ref8
ref7
Jakaria (ref34) 2020
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref12
  doi: 10.1016/j.jag.2022.103076
– ident: ref13
  doi: 10.1109/JSTARS.2014.2322671
– ident: ref27
  doi: 10.1016/j.isprsjprs.2018.12.008
– ident: ref38
  doi: 10.1007/10968987_3
– year: 2020
  ident: ref34
  article-title: Smart weather forecasting using machine learning: A case study in Tennessee
– ident: ref11
  doi: 10.1016/j.rse.2011.11.001
– ident: ref4
  doi: 10.1088/0959-7174/14/2/008
– ident: ref29
  doi: 10.3390/rs15071850
– ident: ref16
  doi: 10.3389/feart.2019.00172
– ident: ref20
  doi: 10.3390/app7121264
– ident: ref17
  doi: 10.1007/s12145-023-00973-1
– ident: ref3
  doi: 10.1029/2004JC002809
– ident: ref25
  doi: 10.1109/TGRS.2011.2124465
– ident: ref39
  doi: 10.1016/j.rse.2019.111282
– ident: ref22
  doi: 10.1029/JB094iB07p09183
– ident: ref28
  doi: 10.3390/rs13234756
– ident: ref24
  doi: 10.1109/36.868878
– ident: ref33
  doi: 10.1109/MCD.2006.1598076
– ident: ref7
  doi: 10.3390/rs13112227
– ident: ref18
  doi: 10.1029/97RG02669
– ident: ref1
  doi: 10.1109/JPROC.2009.2038948
– ident: ref31
  doi: 10.1117/12.2558091
– ident: ref32
  doi: 10.1109/ICAIS50930.2021.9395977
– year: 2019
  ident: ref5
  article-title: Translating SAR to optical images for assisted interpretation
– ident: ref10
  doi: 10.1016/j.rse.2023.113545
– ident: ref26
  doi: 10.1109/TGRS.2015.2496193
– ident: ref40
  doi: 10.1016/j.rse.2023.113962
– ident: ref21
  doi: 10.1016/j.isprsjprs.2021.08.009
– ident: ref35
  doi: 10.17226/11148
– ident: ref14
  doi: 10.1109/TGRS.2019.2924113
– ident: ref6
  doi: 10.1016/j.isprsjprs.2022.11.015
– ident: ref23
  doi: 10.1109/TGRS.2002.803792
– volume: 2
  year: 1998
  ident: ref2
  article-title: Principles and applications of imaging radar
  publication-title: Man. Remote Sens.
– ident: ref37
  doi: 10.2172/951297
– ident: ref8
  doi: 10.1016/j.measurement.2015.07.024
– ident: ref30
  doi: 10.1109/MWSYM.2017.8059054
– ident: ref9
  doi: 10.1080/01431161.2013.862605
– ident: ref15
  doi: 10.1016/j.isprsjprs.2020.09.012
– ident: ref36
  doi: 10.1109/TCC.2015.2440267
– ident: ref19
  doi: 10.1016/j.rse.2020.111664
SSID ssj0062793
Score 2.3925931
Snippet Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This...
Significant progress has occurred in interferometric synthetic aperture radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acceleration
Algorithms
Big Data
Cloud computing
Compression
Computation
Data compression
Deformation
Graphics
Graphics processing units
High-performance computing
High-performance computing (HPC)
Image coding
Interferometric synthetic aperture radar
large-scale data processing
Pipelining (computers)
Radar
SAR (radar)
Satellites
Surface treatment
Synthetic aperture radar
Time series
time-series insar
time-series interferometric synthetic aperture radar (InSAR)
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKPoitlY8bSUPPpo2m6_dfbwerVdBkdZCXyTk80G2e6V3h_S_7ySbO-8Q7Iuv2cnuMDPZ-SVMfoPQRxqcBRRdE2mNI8IzSRpLPfHWVY5TF1jmKfj6TU2vxZcbebPR6ivVhA30wIPhThgAegWowTpuRLTBxlC5yjIamG-oy-yltGlXm6nhH6wYhF3hGKpoewJBPr68Ok6two954uOrxFYeynT9pb_KFtR8vuzvzMNv03UbWef8FXpZ4CIeD2ruoWeh30e7n3M73ofX6OdZZoCAxIH_1LFg03tcLgBAYsKzCA_nqUwdX_RX40t8cQuSc5yrBUAYT79PyClkM48n3WwJczuzSFj2AF2fn_2YTElpmEAcbNMWpG6kgAUabRXqmjsXnTS1cT56HoKgPFKfFixAFqukU6oxtPVKSMujpzCRv0E7_awPbxHmrQiMmtrLxohaBqvSjVerfOUiV96MEFuZT7vCJp6aWnQ67ypoqweb62RzXWw-Qp_Wk-4GMo1_i58mv6xFExN2HoD40CU-9FPxMUIHyasb30uchALGD1du1mXZzjUDsCwaChBxhMja9X_p-guA-_18S9d3_0PX9-gFvFMMJzyHaGdxvwxHgHkW9kMO70dhFvpv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEL(IEEE/IET Electronic Library )
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQXnkWkLZUPHHHqxI8kx3bVskWiQkClXlDkVw4QstUmEWp_fceOd-mCQL1FyYziaMaez87MNwi9pc5oQNEFEVoZwm0uSKmpJVabzDBqXB54Cj6ey_kF_3ApLmOxeqiFcc6F5DOX-svwL98uzOiPyg6zwCfHxRbaKko5FWutll2ZF4FhFwBJRTxnTKQYymh1CD5-9PlL6juFp8zT8WV8IwwFtv7YXmUDaT4auyt1_Uu17Z2gc_oUna-GO-Wa_EjHQafm5g8mx3t_zzP0JMJPfDT5y3P0wHUv0MP3ob3v9Uv07SQwSoAW_p0Xg1VncSwogECHFw087H3aOz7rerXEZz9Bssch-wCE8fzTjBxDdLR41i5G0G3V4LHxDro4Pfk6m5PYgIEY2PYNpCgFhwnf6MwVBTOmMUIVytjGMuc4ZQ21fgEACKSlMFKWilZWcqFZYykosldou1t07jXCrOIup6qwolS8EE5LX0Grpc1Mw6RVCcpX9qhNZCf3TTLaOuxSaFVPRqy9EetoxAS9WytdTeQc_xc_9oZei3pm7XADjFLHiVrnsIGUgFK1YYo32unGZSbTOXW5LakRCdrxhrzzvsmGCdpf-U0dl4G-zgF885IC5EwQWfvSX2P9DhuBZb8x1t1_vGYPPQYxPh0C7aPtYTm6NwCLBn0QpsMtv1EGDQ
  priority: 102
  providerName: IEEE
Title Efficient Management and Processing of Massive Insar Images Using an HPC-Based Cloud Platform
URI https://ieeexplore.ieee.org/document/10381745
https://www.proquest.com/docview/2916480441
https://ieeexplore.ieee.org/ielx7/4609443/4609444/10381745.pdf
https://doaj.org/article/27166416bc3a4fbebfe1c1b20e2d80c5
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEL(IEEE/IET Electronic Library )
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXrkMERuUHHnHrxJckj1210SExTRuVxgOKfIsEhLRaU8H49Rw7bllBQoKn3I4VW8f2-Y59_B2EXlFnNKDonAitDOE2E6TQ1BKrTWoYNS4LPAXvTuVszt9eisu44BbOwjjnQvCZG_nbsJf_yTXf8zGX4IlwFq98nAZyOS5GS1vfRntSABYfoL356dnkQ7-VXBLPHeOzy4FZIzC0RaQdSmk5_gzg68rzdWdsxDxFX8p3TFNg8I8pV3bQ5911u1TX31TT3DBExw9QtWlCH3_yZbTu9Mj8-I3d8f_b-BDdjxgVT_pO9Qjdcu1jdOdNyAF8_QR9PAq0E2Ct8K_gGaxai-OpA7CGeFHDx5WPjccn7cXkHJ98BckVDiEKIIxnZ1NyCCbU4mmzWEPZRnUeQO-j-fHR--mMxCwNxIBv2JG8EBxmhVqnLs-ZMbURKlfG1pY5xymrqfWzBOAkLYWRslC0tJILzWpLoSB7igbtonXPEGYldxlVuRWF4rlwWvpjtlra1NRMWpWgbKOgykQKc59Jo6mCK0PLCmazyflF5bVaRa0m6PW20LJn8Pi7-KHX_FbU02-HF6ClKo7mKgMvUwKU1YYpXmuna5eaVGfUZbagRiRo32v2xv96PSboYNORqjhXrKoMEDovKODSBJFt5_qjrn2H3anr83-Uf4HuwSPvV5AO0KC7WruXgKk6PQxrEcNw_HEYB9FPysQX3Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCJVLebUipYAPHEnqxI8kx3bVsgvtCkEr9YIsv3KAkK02iVD59Yyd7NIFgbhFyYziaMaez87MNwi9Js5oQNF5zLUyMbMZjwtNbGy1SQ0lxmWBp-B8LqaX7N0VvxqL1UMtjHMuJJ-5xF-Gf_l2YXp_VHaYBj45xu-ie5wxxodyrdXCK7I8cOwCJCljzxozkgylpDwELz_6-CnxvcIT6gn5UrYRiAJf_9hgZQNrbvfNtbr5rur6Vtg5fYjmqwEP2SZfk77TifnxG5fjf3_RI7QzAlB8NHjMY3THNU_Q_behwe_NU_T5JHBKgBb-lRmDVWPxWFIAoQ4vKnjY-sR3PGtatcSzbyDZ4pB_AMJ4-mESH0N8tHhSL3rQrVXn0fEuujw9uZhM47EFQ2xg49fFecEZTPlKpy7PqTGV4SpXxlaWOscIrYj1SwCAIC24EaJQpLSCcU0rS0CR7qGtZtG4ZwjTkrmMqNzyQrGcOy18Da0WNjUVFVZFKFvZQ5qRn9y3yahl2KeQUg5GlN6IcjRihN6sla4Heo5_ix97Q69FPbd2uAFGkeNUlRlsIQXgVG2oYpV2unKpSXVGXGYLYniEdr0hb71vsGGEDlZ-I8eFoJUZwG9WEACdEYrXvvTHWL_AVmDZbox1_y-veYW2pxfnZ_JsNn__HD0AFTYcCR2grW7ZuxcAkjr9MkyNn5oVCVo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE2IvXIcWGMgPPOLWiS9JHrtqo0NimjYqjQcU-RZpENJqTQXj13PsuGUFCQmecjtWbB3b5zv28XcQek2d0YCicyK0MoTbTJBCU0usNqlh1Lgs8BS8P5XTGX93KS7jgls4C-OcC8Fnbuhvw17-lWu-5yMuwRPhLF75KA3kclwMF7a-i3akACw-QDuz07Pxx34ruSSeO8ZnlwOzRmBoi0g7lNJy9BnA17Xn687YkHmKvpRvmabA4B9Trmyhz_urdqFuvqmmuWWIjh-iat2EPv7ky3DV6aH58Ru74_-38RF6EDEqHved6jG649on6N7bkAP45in6dBRoJ8Ba4V_BM1i1FsdTB2AN8byGj0sfG49P2ovxOT75CpJLHEIUQBhPzybkEEyoxZNmvoKyjeo8gN5Ds-OjD5MpiVkaiAHfsCN5ITjMCrVOXZ4zY2ojVK6MrS1zjlNWU-tnCcBJWgojZaFoaSUXmtWWQkH2DA3aeev2EWYldxlVuRWF4rlwWvpjtlra1NRMWpWgbK2gykQKc59Jo6mCK0PLCmaz8flF5bVaRa0m6M2m0KJn8Pi7-KHX_EbU02-HF6ClKo7mKgMvUwKU1YYpXmuna5eaVGfUZbagRiRoz2v21v96PSboYN2RqjhXLKsMEDovKODSBJFN5_qjrn2H3arr83-Uf4F24ZH3K0gHaNBdr9xLwFSdfhUHzk-9uxXn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Management+and+Processing+of+Massive+InSAR+Images+Using+an+HPC-Based+Cloud+Platform&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wu%2C+Zherong&rft.au=Ma%2C+Peifeng&rft.au=Zhang%2C+Xinyang&rft.au=Ye%2C+Guangen&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=2866&rft_id=info:doi/10.1109%2FJSTARS.2023.3349214&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon