Efficient Management and Processing of Massive Insar Images Using an HPC-Based Cloud Platform
Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managin...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 1 - 12 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2023.3349214 |
Cover
| Abstract | Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this paper, we introduce a parallel time-series InSAR processing platform that leverages High-Performance Computing (HPC) clusters for efficiently managing and processing large-scale SAR data, and incorporates Graphics Processing Unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust Distributed Scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. Additionally, it provides web-based 2D result visualization and 3D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis. |
|---|---|
| AbstractList | Significant progress has occurred in interferometric synthetic aperture radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded synthetic aperture radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this article, we introduce a parallel time-series InSAR processing platform that leverages high-performance computing (HPC) clusters for efficiently managing and processing large-scale SAR data and incorporates graphics processing unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust distributed scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. In addition, it provides web-based two-dimensional (2-D) result visualization and 3-D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis. Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded Synthetic Aperture Radar (SAR) data availability and improved data quality. However, effectively managing and processing SAR big data presents substantial challenges for algorithms and pipelines, especially in large-scale contexts. In this paper, we introduce a parallel time-series InSAR processing platform that leverages High-Performance Computing (HPC) clusters for efficiently managing and processing large-scale SAR data, and incorporates Graphics Processing Unit (GPU) acceleration to significantly enhance the speed and efficiency of specific InSAR processing algorithms. Our approach encompasses high-quality data compression, integration of classic InSAR models, and the introduction of a robust Distributed Scatterer InSAR method for time-series processing. The platform efficiently handles massive data, featuring a parallel optimization tool for acceleration. Additionally, it provides web-based 2D result visualization and 3D outcome representation for comprehensive user understanding. To illustrate our platform's capabilities, we applied it to 40 Sentinel-1 SAR data scenes from Tibet (2017-2019). Our data compression technique notably reduces data size, reducing mask data by 87.5% and coherence data to 25% of its original size. Leveraging HPC and GPU, we achieved a 50% reduction in registration computation time. This study offers valuable insights and a comprehensive platform for InSAR practitioners, facilitating calculations and enhancing comprehension of surface deformation processes. Our system's improved processing efficiency, coupled with a variety of InSAR methods, makes it an alternative choice for InSAR data handling and analysis. |
| Author | Zhang, Xinyang Wu, Zherong Ye, Guangen Ma, Peifeng |
| Author_xml | – sequence: 1 givenname: Zherong orcidid: 0000-0002-9536-1348 surname: Wu fullname: Wu, Zherong organization: School of Integrative Plant Science, Cornell University, Ithaca, NY, USA – sequence: 2 givenname: Peifeng orcidid: 0000-0002-1457-5388 surname: Ma fullname: Ma, Peifeng organization: Department of Geography and Resource Management and Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong – sequence: 3 givenname: Xinyang surname: Zhang fullname: Zhang, Xinyang organization: Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong – sequence: 4 givenname: Guangen surname: Ye fullname: Ye, Guangen organization: Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong |
| BookMark | eNqFkU1v1DAQhi1UJLaFXwCHSJyz-DvJsaxauqiIirZHZE2c8cqrrL3YWVD_Pd6mQqgcOHnkmecZ-fUpOQkxICFvGV0yRrsPn2_vzr_dLjnlYimE7DiTL8iCM8VqpoQ6IQvWia5mkspX5DTnLaWaN51YkO8XznnrMUzVFwiwwd2xhDBUNylazNmHTRVdaZbyJ1brkCFV612ZzNX9YxdCdXWzqj9CxqFajfFQ2BEmF9PuNXnpYMz45uk8I_eXF3erq_r666f16vy6tpJ2U920SgrOXc-waYS1zipowA5uEIiSCkcHKtu24U2vldW6BdoNWqpeuIEWUJyR9ewdImzNPvkdpAcTwZvHi5g2BtLk7YiGN0xryXRvBUjXY--QWdZzinxoqVXFJWfXIezh4ReM4x8ho-YYt9nmCVI2x7jNU9wFez9j-xR_HDBPZhsPKZRXG94xLVsqJStTYp6yKeac0P3jnr_yubt7Rlk_weRjmBL48T_su5n1iPjXNtGyRirxGwenrJc |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs17060999 crossref_primary_10_1109_JSTARS_2024_3507542 |
| Cites_doi | 10.1016/j.jag.2022.103076 10.1109/JSTARS.2014.2322671 10.1016/j.isprsjprs.2018.12.008 10.1007/10968987_3 10.1016/j.rse.2011.11.001 10.1088/0959-7174/14/2/008 10.3390/rs15071850 10.3389/feart.2019.00172 10.3390/app7121264 10.1007/s12145-023-00973-1 10.1029/2004JC002809 10.1109/TGRS.2011.2124465 10.1016/j.rse.2019.111282 10.1029/JB094iB07p09183 10.3390/rs13234756 10.1109/36.868878 10.1109/MCD.2006.1598076 10.3390/rs13112227 10.1029/97RG02669 10.1109/JPROC.2009.2038948 10.1117/12.2558091 10.1109/ICAIS50930.2021.9395977 10.1016/j.rse.2023.113545 10.1109/TGRS.2015.2496193 10.1016/j.rse.2023.113962 10.1016/j.isprsjprs.2021.08.009 10.17226/11148 10.1109/TGRS.2019.2924113 10.1016/j.isprsjprs.2022.11.015 10.1109/TGRS.2002.803792 10.2172/951297 10.1016/j.measurement.2015.07.024 10.1109/MWSYM.2017.8059054 10.1080/01431161.2013.862605 10.1016/j.isprsjprs.2020.09.012 10.1109/TCC.2015.2440267 10.1016/j.rse.2020.111664 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY DOA |
| DOI | 10.1109/JSTARS.2023.3349214 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL(IEEE/IET Electronic Library ) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall Acceso a contenido Full Text - Doaj |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL(IEEE/IET Electronic Library ) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_27166416bc3a4fbebfe1c1b20e2d80c5 10.1109/jstars.2023.3349214 10_1109_JSTARS_2023_3349214 10381745 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Areas of Excellence Scheme grantid: AoE/E-603/18 – fundername: CUHK Direct Grant for Research grantid: 4052294 – fundername: National Natural Science Foundation of China grantid: 41971278 – fundername: Hong Kong Research Grants Council grantid: 14223422; 14201923 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-7854322fb1e773ccfc5a7acdfd3ee403f0d0488727b65c668a09d645b3fd03223 |
| IEDL.DBID | UNPAY |
| ISSN | 1939-1404 2151-1535 |
| IngestDate | Fri Oct 03 12:52:52 EDT 2025 Tue Aug 19 22:16:24 EDT 2025 Fri Jul 25 10:42:47 EDT 2025 Wed Oct 01 03:51:35 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Aug 27 02:24:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-7854322fb1e773ccfc5a7acdfd3ee403f0d0488727b65c668a09d645b3fd03223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9536-1348 0000-0002-1457-5388 0000-0001-5273-5381 0009-0007-4381-779X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4609443/4609444/10381745.pdf |
| PQID | 2916480441 |
| PQPubID | 75722 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2023_3349214 unpaywall_primary_10_1109_jstars_2023_3349214 ieee_primary_10381745 crossref_citationtrail_10_1109_JSTARS_2023_3349214 proquest_journals_2916480441 doaj_primary_oai_doaj_org_article_27166416bc3a4fbebfe1c1b20e2d80c5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Henderson (ref2) 1998; 2 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Fu (ref5) 2019 ref28 ref27 ref29 ref8 ref7 Jakaria (ref34) 2020 ref9 ref4 ref3 ref6 ref40 |
| References_xml | – ident: ref12 doi: 10.1016/j.jag.2022.103076 – ident: ref13 doi: 10.1109/JSTARS.2014.2322671 – ident: ref27 doi: 10.1016/j.isprsjprs.2018.12.008 – ident: ref38 doi: 10.1007/10968987_3 – year: 2020 ident: ref34 article-title: Smart weather forecasting using machine learning: A case study in Tennessee – ident: ref11 doi: 10.1016/j.rse.2011.11.001 – ident: ref4 doi: 10.1088/0959-7174/14/2/008 – ident: ref29 doi: 10.3390/rs15071850 – ident: ref16 doi: 10.3389/feart.2019.00172 – ident: ref20 doi: 10.3390/app7121264 – ident: ref17 doi: 10.1007/s12145-023-00973-1 – ident: ref3 doi: 10.1029/2004JC002809 – ident: ref25 doi: 10.1109/TGRS.2011.2124465 – ident: ref39 doi: 10.1016/j.rse.2019.111282 – ident: ref22 doi: 10.1029/JB094iB07p09183 – ident: ref28 doi: 10.3390/rs13234756 – ident: ref24 doi: 10.1109/36.868878 – ident: ref33 doi: 10.1109/MCD.2006.1598076 – ident: ref7 doi: 10.3390/rs13112227 – ident: ref18 doi: 10.1029/97RG02669 – ident: ref1 doi: 10.1109/JPROC.2009.2038948 – ident: ref31 doi: 10.1117/12.2558091 – ident: ref32 doi: 10.1109/ICAIS50930.2021.9395977 – year: 2019 ident: ref5 article-title: Translating SAR to optical images for assisted interpretation – ident: ref10 doi: 10.1016/j.rse.2023.113545 – ident: ref26 doi: 10.1109/TGRS.2015.2496193 – ident: ref40 doi: 10.1016/j.rse.2023.113962 – ident: ref21 doi: 10.1016/j.isprsjprs.2021.08.009 – ident: ref35 doi: 10.17226/11148 – ident: ref14 doi: 10.1109/TGRS.2019.2924113 – ident: ref6 doi: 10.1016/j.isprsjprs.2022.11.015 – ident: ref23 doi: 10.1109/TGRS.2002.803792 – volume: 2 year: 1998 ident: ref2 article-title: Principles and applications of imaging radar publication-title: Man. Remote Sens. – ident: ref37 doi: 10.2172/951297 – ident: ref8 doi: 10.1016/j.measurement.2015.07.024 – ident: ref30 doi: 10.1109/MWSYM.2017.8059054 – ident: ref9 doi: 10.1080/01431161.2013.862605 – ident: ref15 doi: 10.1016/j.isprsjprs.2020.09.012 – ident: ref36 doi: 10.1109/TCC.2015.2440267 – ident: ref19 doi: 10.1016/j.rse.2020.111664 |
| SSID | ssj0062793 |
| Score | 2.3925931 |
| Snippet | Significant progress has occurred in Interferometric Synthetic Aperture Radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This... Significant progress has occurred in interferometric synthetic aperture radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Acceleration Algorithms Big Data Cloud computing Compression Computation Data compression Deformation Graphics Graphics processing units High-performance computing High-performance computing (HPC) Image coding Interferometric synthetic aperture radar large-scale data processing Pipelining (computers) Radar SAR (radar) Satellites Surface treatment Synthetic aperture radar Time series time-series insar time-series interferometric synthetic aperture radar (InSAR) |
| SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKPoitlY8bSUPPpo2m6_dfbwerVdBkdZCXyTk80G2e6V3h_S_7ySbO-8Q7Iuv2cnuMDPZ-SVMfoPQRxqcBRRdE2mNI8IzSRpLPfHWVY5TF1jmKfj6TU2vxZcbebPR6ivVhA30wIPhThgAegWowTpuRLTBxlC5yjIamG-oy-yltGlXm6nhH6wYhF3hGKpoewJBPr68Ok6two954uOrxFYeynT9pb_KFtR8vuzvzMNv03UbWef8FXpZ4CIeD2ruoWeh30e7n3M73ofX6OdZZoCAxIH_1LFg03tcLgBAYsKzCA_nqUwdX_RX40t8cQuSc5yrBUAYT79PyClkM48n3WwJczuzSFj2AF2fn_2YTElpmEAcbNMWpG6kgAUabRXqmjsXnTS1cT56HoKgPFKfFixAFqukU6oxtPVKSMujpzCRv0E7_awPbxHmrQiMmtrLxohaBqvSjVerfOUiV96MEFuZT7vCJp6aWnQ67ypoqweb62RzXWw-Qp_Wk-4GMo1_i58mv6xFExN2HoD40CU-9FPxMUIHyasb30uchALGD1du1mXZzjUDsCwaChBxhMja9X_p-guA-_18S9d3_0PX9-gFvFMMJzyHaGdxvwxHgHkW9kMO70dhFvpv priority: 102 providerName: Directory of Open Access Journals – databaseName: IEL(IEEE/IET Electronic Library ) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQXnkWkLZUPHHHqxI8kx3bVskWiQkClXlDkVw4QstUmEWp_fceOd-mCQL1FyYziaMaez87MNwi9pc5oQNEFEVoZwm0uSKmpJVabzDBqXB54Cj6ey_kF_3ApLmOxeqiFcc6F5DOX-svwL98uzOiPyg6zwCfHxRbaKko5FWutll2ZF4FhFwBJRTxnTKQYymh1CD5-9PlL6juFp8zT8WV8IwwFtv7YXmUDaT4auyt1_Uu17Z2gc_oUna-GO-Wa_EjHQafm5g8mx3t_zzP0JMJPfDT5y3P0wHUv0MP3ob3v9Uv07SQwSoAW_p0Xg1VncSwogECHFw087H3aOz7rerXEZz9Bssch-wCE8fzTjBxDdLR41i5G0G3V4LHxDro4Pfk6m5PYgIEY2PYNpCgFhwnf6MwVBTOmMUIVytjGMuc4ZQ21fgEACKSlMFKWilZWcqFZYykosldou1t07jXCrOIup6qwolS8EE5LX0Grpc1Mw6RVCcpX9qhNZCf3TTLaOuxSaFVPRqy9EetoxAS9WytdTeQc_xc_9oZei3pm7XADjFLHiVrnsIGUgFK1YYo32unGZSbTOXW5LakRCdrxhrzzvsmGCdpf-U0dl4G-zgF885IC5EwQWfvSX2P9DhuBZb8x1t1_vGYPPQYxPh0C7aPtYTm6NwCLBn0QpsMtv1EGDQ priority: 102 providerName: IEEE |
| Title | Efficient Management and Processing of Massive Insar Images Using an HPC-Based Cloud Platform |
| URI | https://ieeexplore.ieee.org/document/10381745 https://www.proquest.com/docview/2916480441 https://ieeexplore.ieee.org/ielx7/4609443/4609444/10381745.pdf https://doaj.org/article/27166416bc3a4fbebfe1c1b20e2d80c5 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEL(IEEE/IET Electronic Library ) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXrkMERuUHHnHrxJckj1210SExTRuVxgOKfIsEhLRaU8H49Rw7bllBQoKn3I4VW8f2-Y59_B2EXlFnNKDonAitDOE2E6TQ1BKrTWoYNS4LPAXvTuVszt9eisu44BbOwjjnQvCZG_nbsJf_yTXf8zGX4IlwFq98nAZyOS5GS1vfRntSABYfoL356dnkQ7-VXBLPHeOzy4FZIzC0RaQdSmk5_gzg68rzdWdsxDxFX8p3TFNg8I8pV3bQ5911u1TX31TT3DBExw9QtWlCH3_yZbTu9Mj8-I3d8f_b-BDdjxgVT_pO9Qjdcu1jdOdNyAF8_QR9PAq0E2Ct8K_gGaxai-OpA7CGeFHDx5WPjccn7cXkHJ98BckVDiEKIIxnZ1NyCCbU4mmzWEPZRnUeQO-j-fHR--mMxCwNxIBv2JG8EBxmhVqnLs-ZMbURKlfG1pY5xymrqfWzBOAkLYWRslC0tJILzWpLoSB7igbtonXPEGYldxlVuRWF4rlwWvpjtlra1NRMWpWgbKOgykQKc59Jo6mCK0PLCmazyflF5bVaRa0m6PW20LJn8Pi7-KHX_FbU02-HF6ClKo7mKgMvUwKU1YYpXmuna5eaVGfUZbagRiRo32v2xv96PSboYNORqjhXrKoMEDovKODSBJFt5_qjrn2H3anr83-Uf4HuwSPvV5AO0KC7WruXgKk6PQxrEcNw_HEYB9FPysQX3Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCJVLebUipYAPHEnqxI8kx3bVsgvtCkEr9YIsv3KAkK02iVD59Yyd7NIFgbhFyYziaMaez87MNwi9Js5oQNF5zLUyMbMZjwtNbGy1SQ0lxmWBp-B8LqaX7N0VvxqL1UMtjHMuJJ-5xF-Gf_l2YXp_VHaYBj45xu-ie5wxxodyrdXCK7I8cOwCJCljzxozkgylpDwELz_6-CnxvcIT6gn5UrYRiAJf_9hgZQNrbvfNtbr5rur6Vtg5fYjmqwEP2SZfk77TifnxG5fjf3_RI7QzAlB8NHjMY3THNU_Q_behwe_NU_T5JHBKgBb-lRmDVWPxWFIAoQ4vKnjY-sR3PGtatcSzbyDZ4pB_AMJ4-mESH0N8tHhSL3rQrVXn0fEuujw9uZhM47EFQ2xg49fFecEZTPlKpy7PqTGV4SpXxlaWOscIrYj1SwCAIC24EaJQpLSCcU0rS0CR7qGtZtG4ZwjTkrmMqNzyQrGcOy18Da0WNjUVFVZFKFvZQ5qRn9y3yahl2KeQUg5GlN6IcjRihN6sla4Heo5_ix97Q69FPbd2uAFGkeNUlRlsIQXgVG2oYpV2unKpSXVGXGYLYniEdr0hb71vsGGEDlZ-I8eFoJUZwG9WEACdEYrXvvTHWL_AVmDZbox1_y-veYW2pxfnZ_JsNn__HD0AFTYcCR2grW7ZuxcAkjr9MkyNn5oVCVo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE2IvXIcWGMgPPOLWiS9JHrtqo0NimjYqjQcU-RZpENJqTQXj13PsuGUFCQmecjtWbB3b5zv28XcQek2d0YCicyK0MoTbTJBCU0usNqlh1Lgs8BS8P5XTGX93KS7jgls4C-OcC8Fnbuhvw17-lWu-5yMuwRPhLF75KA3kclwMF7a-i3akACw-QDuz07Pxx34ruSSeO8ZnlwOzRmBoi0g7lNJy9BnA17Xn687YkHmKvpRvmabA4B9Trmyhz_urdqFuvqmmuWWIjh-iat2EPv7ky3DV6aH58Ru74_-38RF6EDEqHved6jG649on6N7bkAP45in6dBRoJ8Ba4V_BM1i1FsdTB2AN8byGj0sfG49P2ovxOT75CpJLHEIUQBhPzybkEEyoxZNmvoKyjeo8gN5Ds-OjD5MpiVkaiAHfsCN5ITjMCrVOXZ4zY2ojVK6MrS1zjlNWU-tnCcBJWgojZaFoaSUXmtWWQkH2DA3aeev2EWYldxlVuRWF4rlwWvpjtlra1NRMWpWgbK2gykQKc59Jo6mCK0PLCmaz8flF5bVaRa0m6M2m0KJn8Pi7-KHX_EbU02-HF6ClKo7mKgMvUwKU1YYpXmuna5eaVGfUZbagRiRoz2v21v96PSboYN2RqjhXLKsMEDovKODSBJFN5_qjrn2H3arr83-Uf4F24ZH3K0gHaNBdr9xLwFSdfhUHzk-9uxXn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Management+and+Processing+of+Massive+InSAR+Images+Using+an+HPC-Based+Cloud+Platform&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wu%2C+Zherong&rft.au=Ma%2C+Peifeng&rft.au=Zhang%2C+Xinyang&rft.au=Ye%2C+Guangen&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=2866&rft_id=info:doi/10.1109%2FJSTARS.2023.3349214&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |