Novel cell lines derived from adult human ventricular cardiomyocytes
Background. – We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. – Primary cells from human ventric...
Saved in:
Published in | Journal of molecular and cellular cardiology Vol. 39; no. 1; pp. 133 - 147 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2828 1095-8584 |
DOI | 10.1016/j.yjmcc.2005.03.003 |
Cover
Abstract | Background. –
We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures.
Methods and results. –
Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as α- and β-myosin heavy chain, α-cardiac actin, troponin I, desmoplakin, α actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel α1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells.
Conclusions. –
Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states. |
---|---|
AbstractList | Background. –
We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures.
Methods and results. –
Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as α- and β-myosin heavy chain, α-cardiac actin, troponin I, desmoplakin, α actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel α1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells.
Conclusions. –
Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states. Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states. Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states. |
Author | Palenzuela, Lluis Davidson, Mercy M. Isaac, Nithila D. Protas, Lev Walker, Winsome F. Hernandez, Evelyn Hirano, Michio Nesti, Claudia |
Author_xml | – sequence: 1 givenname: Mercy M. surname: Davidson fullname: Davidson, Mercy M. email: mmd2@columbia.edu organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 2 givenname: Claudia surname: Nesti fullname: Nesti, Claudia organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 3 givenname: Lluis surname: Palenzuela fullname: Palenzuela, Lluis organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 4 givenname: Winsome F. surname: Walker fullname: Walker, Winsome F. organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 5 givenname: Evelyn surname: Hernandez fullname: Hernandez, Evelyn organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 6 givenname: Lev surname: Protas fullname: Protas, Lev organization: Department of Pharmacology, Columbia University, New York, NY 10032, USA – sequence: 7 givenname: Michio surname: Hirano fullname: Hirano, Michio organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA – sequence: 8 givenname: Nithila D. surname: Isaac fullname: Isaac, Nithila D. organization: Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15913645$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQQC3Uim4LvwAJ5cQtYRzbiSPEAbXlQ6rKBc6WdzwRXpy42MlK-ffNskVIvezJl_dGM8-X7GyMIzH2hkPFgTfvd9WyGxCrGkBVICoA8YJtOHSq1ErLM7YBqOuy1rW-YJc57wCgk0K8ZBdcdVw0Um3YzX3cUyiQQiiCHykXjpLfkyv6FIfCujlMxa95sGOxp3FKHudgU4E2OR-HJeIyUX7FznsbMr1-eq_Yz8-3P66_lnffv3y7_nRXooRuKpteNth3VlkAlFb0bWsJhSahQLVc187S1rVbJWXdarHlXGthW4dq9QR34oq9O859SPHPTHkyg8-H1e1Icc6mabtW1lyt4NsncN4O5MxD8oNNi_l39wqII4Ap5pyo_4-AOdQ1O_O3rjnUNSDMWne1umcW-slOPq5hrA8n3I9Hl9ZAe0_JZPQ0IjmfCCfjoj_hf3jm4_pfHm34TctJ-xEKD6qU |
CitedBy_id | crossref_primary_10_1016_j_yjmcc_2021_12_007 crossref_primary_10_1016_j_cryobiol_2016_03_011 crossref_primary_10_1016_j_ejcb_2006_11_003 crossref_primary_10_1016_j_mito_2009_08_006 crossref_primary_10_1016_j_ebiom_2017_11_012 crossref_primary_10_3892_mmr_2025_13476 crossref_primary_10_1016_j_cellsig_2024_111320 crossref_primary_10_1007_s10741_019_09769_2 crossref_primary_10_1021_acsnano_2c05286 crossref_primary_10_1186_s11658_022_00395_9 crossref_primary_10_1080_21655979_2021_1971482 crossref_primary_10_1134_S1990519X24700305 crossref_primary_10_1038_s41598_019_55998_8 crossref_primary_10_1007_s10522_025_10189_z crossref_primary_10_1093_cvr_cvn327 crossref_primary_10_3390_ijms21176388 crossref_primary_10_1007_s00216_023_04596_9 crossref_primary_10_3390_ijms25052816 crossref_primary_10_1126_sciadv_adp6303 crossref_primary_10_1038_s41551_021_00827_5 crossref_primary_10_1016_j_bbadis_2017_12_025 crossref_primary_10_15252_embj_2020105604 crossref_primary_10_1161_CIRCRESAHA_120_316738 crossref_primary_10_1002_ctm2_574 crossref_primary_10_1073_pnas_1808734116 crossref_primary_10_3390_cells10123483 crossref_primary_10_3389_fgene_2023_1264382 crossref_primary_10_1002_sctm_18_0256 crossref_primary_10_3390_cancers17071059 crossref_primary_10_1002_ange_200804137 crossref_primary_10_3390_cells12202436 crossref_primary_10_1152_ajpcell_00491_2018 crossref_primary_10_1111_gtc_12189 crossref_primary_10_1016_j_hrthm_2025_03_1954 crossref_primary_10_1097_FJC_0000000000001428 crossref_primary_10_3389_fphys_2023_1257739 crossref_primary_10_1186_s12967_023_04537_1 crossref_primary_10_1016_j_phrs_2024_107468 crossref_primary_10_1002_jcsm_12749 crossref_primary_10_1016_j_bbrc_2014_06_023 crossref_primary_10_1038_s41418_017_0047_6 crossref_primary_10_14797_mdcvj_1295 crossref_primary_10_1016_j_bbamcr_2025_119900 crossref_primary_10_1371_journal_pone_0019724 crossref_primary_10_1161_CIRCULATIONAHA_117_030486 crossref_primary_10_1016_j_scitotenv_2023_166349 crossref_primary_10_1016_j_jmccpl_2023_100034 crossref_primary_10_1007_s10928_018_9578_9 crossref_primary_10_1161_RES_0000000000000097 crossref_primary_10_1007_s11033_022_07902_3 crossref_primary_10_1194_jlr_M800147_JLR200 crossref_primary_10_3390_biomedicines9091233 crossref_primary_10_1038_s41467_024_55557_4 crossref_primary_10_1038_s41598_020_75394_x crossref_primary_10_1161_HYPERTENSIONAHA_120_15587 crossref_primary_10_1089_scd_2018_0170 crossref_primary_10_1208_s12248_020_00542_0 crossref_primary_10_1096_fj_201700300R crossref_primary_10_3892_ijmm_2020_4463 crossref_primary_10_1016_j_ijcard_2012_06_006 crossref_primary_10_3389_fcvm_2022_1004024 crossref_primary_10_1177_0963689720972328 crossref_primary_10_1038_s44320_024_00064_3 crossref_primary_10_1371_journal_pone_0123385 crossref_primary_10_1007_s12012_024_09829_6 crossref_primary_10_3389_fimmu_2021_755862 crossref_primary_10_3390_cells11060967 crossref_primary_10_1074_jbc_M111_296947 crossref_primary_10_1128_AAC_02476_15 crossref_primary_10_1016_j_isci_2024_109219 crossref_primary_10_1126_scisignal_aad3373 crossref_primary_10_1016_j_biopha_2024_116779 crossref_primary_10_3390_biomedicines10010042 crossref_primary_10_1080_09205063_2013_789958 crossref_primary_10_3389_fmolb_2021_780865 crossref_primary_10_1038_s41419_019_1901_x crossref_primary_10_3390_ijms221910802 crossref_primary_10_1093_cvr_cvu065 crossref_primary_10_1002_jat_4500 crossref_primary_10_1002_sctm_18_0052 crossref_primary_10_1038_s44161_022_00148_z crossref_primary_10_1172_jci_insight_133675 crossref_primary_10_1016_j_cellsig_2024_111065 crossref_primary_10_1038_ncomms10787 crossref_primary_10_3390_molecules29040760 crossref_primary_10_3892_etm_2023_12024 crossref_primary_10_3390_ijms23105588 crossref_primary_10_1016_j_yjmcc_2018_12_016 crossref_primary_10_1016_j_yjmcc_2019_02_009 crossref_primary_10_1074_jbc_M116_736736 crossref_primary_10_1039_D0BM01428A crossref_primary_10_1002_jat_4613 crossref_primary_10_1523_JNEUROSCI_2417_11_2011 crossref_primary_10_1152_ajpheart_00250_2009 crossref_primary_10_1161_CIRCULATIONAHA_119_042178 crossref_primary_10_3390_ijms22041787 crossref_primary_10_1016_j_cels_2021_02_004 crossref_primary_10_1042_BCJ20190302 crossref_primary_10_1111_jcmm_70069 crossref_primary_10_1007_s40495_019_00198_1 crossref_primary_10_1177_1535370219851243 crossref_primary_10_3390_jcm7110410 crossref_primary_10_1016_j_ejmech_2016_04_058 crossref_primary_10_1007_s11886_021_01498_z crossref_primary_10_1016_j_ejmech_2018_09_024 crossref_primary_10_3389_fcell_2024_1501540 crossref_primary_10_1111_j_1440_1681_2010_05420_x crossref_primary_10_1007_s10237_017_0872_z crossref_primary_10_1021_acsabm_3c00621 crossref_primary_10_14814_phy2_15990 crossref_primary_10_1016_j_biopha_2022_113970 crossref_primary_10_1042_BSR20140155 crossref_primary_10_1016_j_phymed_2018_11_028 crossref_primary_10_1038_nrd3252 crossref_primary_10_1016_j_recesp_2020_08_030 crossref_primary_10_3390_jpm13081237 crossref_primary_10_3390_ijms222313072 crossref_primary_10_1093_nar_gkae1176 crossref_primary_10_1038_s41598_023_29964_4 crossref_primary_10_3389_fphar_2020_01284 crossref_primary_10_1007_s40883_018_0056_0 crossref_primary_10_1021_acs_jmedchem_5b00848 crossref_primary_10_1038_s41598_020_65830_3 crossref_primary_10_1007_s12010_024_05004_3 crossref_primary_10_3389_fcvm_2020_00043 crossref_primary_10_1016_j_jbc_2023_105211 crossref_primary_10_1080_20013078_2019_1565263 crossref_primary_10_1007_s11306_024_02201_3 crossref_primary_10_1042_BSR20191050 crossref_primary_10_18632_oncotarget_22681 crossref_primary_10_1016_j_biomaterials_2018_09_036 crossref_primary_10_1016_j_jmccpl_2024_100278 crossref_primary_10_1088_1748_6041_6_5_055001 crossref_primary_10_1016_j_yjmcc_2007_03_905 crossref_primary_10_14814_phy2_14400 crossref_primary_10_1002_jat_4719 crossref_primary_10_1038_s41598_022_05161_7 crossref_primary_10_1039_c0an00845a crossref_primary_10_1093_toxsci_kfw006 crossref_primary_10_1111_jcmm_14408 crossref_primary_10_1172_jci_insight_82922 crossref_primary_10_1007_s10495_020_01609_1 crossref_primary_10_1152_ajpheart_00024_2022 crossref_primary_10_1093_eurheartj_ehae782 crossref_primary_10_1016_j_toxlet_2014_08_007 crossref_primary_10_1016_j_dib_2016_04_061 crossref_primary_10_3389_fcvm_2018_00152 crossref_primary_10_1016_j_omtn_2022_07_007 crossref_primary_10_1016_j_rec_2020_08_012 crossref_primary_10_1155_2020_8141307 crossref_primary_10_1016_j_ebiom_2021_103456 crossref_primary_10_3389_fphys_2022_806366 crossref_primary_10_1002_anie_200804137 crossref_primary_10_1007_s11626_010_9368_1 crossref_primary_10_1038_s41375_019_0640_4 crossref_primary_10_1093_cvr_cvy075 crossref_primary_10_1021_cb200544u crossref_primary_10_1016_j_dmd_2025_100053 crossref_primary_10_1007_s00204_021_03204_y crossref_primary_10_1186_s12967_024_05192_w crossref_primary_10_1126_scitranslmed_3002473 crossref_primary_10_1523_JNEUROSCI_4936_13_2014 crossref_primary_10_1016_j_scitotenv_2025_179048 crossref_primary_10_1124_dmd_122_000928 crossref_primary_10_1186_1479_5876_10_120 crossref_primary_10_1007_s00204_022_03363_6 crossref_primary_10_1038_s41467_022_29733_3 crossref_primary_10_1016_j_heliyon_2024_e24719 crossref_primary_10_1093_cvr_cvq080 crossref_primary_10_1007_s00441_019_03126_3 crossref_primary_10_1242_dmm_020768 crossref_primary_10_1152_ajpheart_00056_2015 crossref_primary_10_1667_RADE_23_00103_1 crossref_primary_10_1074_jbc_M109_076984 crossref_primary_10_1111_mmi_14466 crossref_primary_10_1007_s40204_020_00137_0 crossref_primary_10_1016_j_bioactmat_2021_05_040 crossref_primary_10_15252_embj_2018100492 crossref_primary_10_1007_s00210_019_01795_z crossref_primary_10_1016_j_jcyt_2017_08_021 crossref_primary_10_1093_cvr_cvy134 crossref_primary_10_1007_s00395_016_0590_1 crossref_primary_10_1038_s41536_021_00140_4 crossref_primary_10_1016_j_metabol_2018_02_005 crossref_primary_10_1021_acs_jmedchem_7b00678 crossref_primary_10_1038_s41598_024_76066_w crossref_primary_10_1038_s41440_022_01111_y crossref_primary_10_1097_FJC_0b013e318283d845 crossref_primary_10_3390_membranes13040431 crossref_primary_10_1111_bph_14648 crossref_primary_10_1161_CIRCULATIONAHA_111_060889 crossref_primary_10_1172_jci_insight_129556 crossref_primary_10_1016_j_ejps_2023_106475 crossref_primary_10_1126_scisignal_2005966 crossref_primary_10_1088_1758_5090_ac1e78 crossref_primary_10_1093_cvr_cvs281 crossref_primary_10_3390_genes15060798 crossref_primary_10_1038_s41598_023_51073_5 crossref_primary_10_1161_CIRCRESAHA_123_323655 crossref_primary_10_18632_aging_103465 crossref_primary_10_3389_fgene_2020_00719 crossref_primary_10_1021_bi301313b crossref_primary_10_1074_jbc_M111_272146 crossref_primary_10_2119_molmed_2017_00091 crossref_primary_10_3892_etm_2017_5225 crossref_primary_10_1016_j_bbalip_2014_09_012 crossref_primary_10_1038_s41401_024_01397_3 crossref_primary_10_1016_j_taap_2022_115949 crossref_primary_10_1371_journal_pone_0137716 crossref_primary_10_1016_j_isci_2024_109510 crossref_primary_10_3390_ijms25063250 crossref_primary_10_1016_j_heliyon_2024_e26904 crossref_primary_10_1161_CIRCULATIONAHA_120_047420 crossref_primary_10_1016_j_yjmcc_2009_02_011 crossref_primary_10_1016_j_yexcr_2007_12_016 crossref_primary_10_1016_j_addr_2015_09_011 crossref_primary_10_1016_j_ijcard_2014_03_176 crossref_primary_10_1016_j_phymed_2022_154130 crossref_primary_10_1111_jcmm_17049 crossref_primary_10_1016_j_bbrc_2011_04_133 crossref_primary_10_3390_molecules25040836 crossref_primary_10_1074_mcp_O116_063487 crossref_primary_10_1152_ajpendo_00569_2010 crossref_primary_10_1016_j_taap_2011_08_020 crossref_primary_10_1007_s00109_008_0385_4 crossref_primary_10_1074_jbc_M109_000463 crossref_primary_10_18632_aging_205298 crossref_primary_10_1016_j_yjmcc_2020_12_007 crossref_primary_10_1186_1471_2164_15_155 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Ltd |
Copyright_xml | – notice: 2005 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.yjmcc.2005.03.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-8584 |
EndPage | 147 |
ExternalDocumentID | 15913645 10_1016_j_yjmcc_2005_03_003 S0022282805000763 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: 9951061T – fundername: NICHD NIH HHS grantid: HD32062 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADUVX AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HLW HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LX2 M29 M41 MO0 N9A O-L O9- OAUVE OA~ OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBG SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M XPP Z5R ZGI ZMT ZU3 ~G- AACTN AAIAV ABLVK ABYKQ AEHWI AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG SSU AAYXX ACLOT CITATION ~HD AFCTW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c409t-6f46cf9a5a00c4a3f77aec38e35057182daebd7b5442783b11883a7dc546c31d3 |
IEDL.DBID | AIKHN |
ISSN | 0022-2828 |
IngestDate | Sun Sep 28 02:45:36 EDT 2025 Wed Feb 19 01:40:06 EST 2025 Thu Apr 24 22:58:17 EDT 2025 Wed Oct 01 01:34:48 EDT 2025 Fri Feb 23 02:27:39 EST 2024 Tue Aug 26 17:10:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cardiomyocyte culture Connexin RNAi Myogenic markers Immortalization Dedifferentiation Myosin Cardiac transcription factors Desmin Gap junction Atrial granules |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-6f46cf9a5a00c4a3f77aec38e35057182daebd7b5442783b11883a7dc546c31d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15913645 |
PQID | 67974215 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_67974215 pubmed_primary_15913645 crossref_primary_10_1016_j_yjmcc_2005_03_003 crossref_citationtrail_10_1016_j_yjmcc_2005_03_003 elsevier_sciencedirect_doi_10_1016_j_yjmcc_2005_03_003 elsevier_clinicalkey_doi_10_1016_j_yjmcc_2005_03_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-07-01 |
PublicationDateYYYYMMDD | 2005-07-01 |
PublicationDate_xml | – month: 07 year: 2005 text: 2005-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular and cellular cardiology |
PublicationTitleAlternate | J Mol Cell Cardiol |
PublicationYear | 2005 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Marvin, Robinson, Hermsmeyer (bib5) 1979; 45 Campion (bib3) 1984; 87 Graef, Chen, Crabtree (bib39) 2001; 11 Claycomb, Lanson, Stallworth, Egeland, Delcaprio, Bahinski (bib14) 1998; 95 Juttermann, Li, Jaenisch (bib25) 1994; 91 Severs (bib49) 2000; 22 Salviati, Hernandez-Rosa, Walker, Sacconi, DiMauro, Schon (bib27) 2002; 363 Katz, Steinhelper, Delcarpio, Daud, Claycomb, Field (bib8) 1992; 262 Lloyd, Marvin (bib54) 1990; 22 Singer, Scearce, Tuck, Whichard, Denning, Haynes (bib18) 1989; 92 Artman (bib46) 1994 Chiu, Zibaitis, Kao (bib2) 1995; 60 Spurr (bib28) 1969; 26 Horsley, Friday, Matteson, Kegley, Gephart, Pavlath (bib40) 2001; 153 Morkin (bib32) 2000; 50 Van Kempen, Vermeulen, Moorman, Gros, Paul, Lamers (bib48) 1996; 32 Eppenberger-Eberhardt, Messerli, Eppenberger, Reinecke (bib53) 1993; 25 Nag, Ingland, Cheng (bib23) 1985; 21 Wang, Neckelmann, Mayne, Herskowitz, Srinivasan, Sell (bib11) 1991; 27 Protas, DiFrancesco, Robinson (bib30) 2001; 281 Claycomb (bib51) 1988; 255 Cozzarelli (bib26) 1977; 46 Schultheiss, Lin, Ishikawa, Zamir, Stoeckert, Holtzer (bib34) 1991; 114 Wang, Chang, Wang, Sutherland, Richardson, Small (bib42) 2001; 105 Murry, Wiseman, Schwartz, Hauschka (bib1) 1996; 98 Brunskill, Witte, Yutzey, Potter (bib10) 2001; 235 Nag (bib17) 1990 Polinger (bib16) 1970; 63 Weiss, Leinwand (bib31) 1996; 12 DeCaprio (bib29) 1999; 27 Furst, Osborn (bib33) 1989; 109 Delorme, Dahl, Jarry-Guichard, Briand, Willecke, Gros (bib50) 1997; 81 Libby (bib22) 1984; 16 Patient, McGhee (bib38) 2002; 12 Claycomb, Palazzo (bib4) 1980; 80 Mohamed, Holmes, Hartzell (bib21) 1983; 19 Bushdid, Osinska, Waclaw, Molkentin, Yutzey (bib41) 2003; 92 Rottbauer, Baker, Wo, Mohideen, Cantiello, Fishman (bib44) 2001; 1 Steinhelper, Lanson, Dresdner, Delcarpio, Wit, Claycomb (bib6) 1990; 259 Hannon (bib15) 2002; 418 Constantin, Cronier (bib47) 2000; 196 Janssen, Lehnart, Prestle, Hasenfuss (bib52) 1999; 31 Goldman, Wurzel (bib13) 1995; 31 Negishi, Kudo, Obinata, Kawashima, Hirano, Yanai (bib9) 2000; 268 Li, Mickle, Weisel, Carson, Omar, Tumiah (bib12) 1996; 32 Jaffredo, Chestier, Bachnou, Dieterlen-Lievre (bib7) 1991; 192 Azzazy, Christenson (bib45) 2003; 8 Franke, Stehr, Stumpp, Kuhn, Heid, Rackwitz (bib35) 1996; 60 Strutz, Okada, Lo, Danoff, Carone, Tomaszewski (bib37) 1995; 130 King, Attardi (bib20) 1989; 246 Walters, Wayman, Christian (bib43) 2001; 100 Eppenberger-Eberhardt, Flamme, Kurer, Eppenberger (bib36) 1990; 139 Bottenstein, Hayashi, Hutchings, Masui, Mather, McClure (bib24) 1979; 58 Litzkas, Jha, Ozer (bib19) 1984; 4 |
References_xml | – volume: 19 start-page: 471 year: 1983 end-page: 478 ident: bib21 article-title: A serum-free, chemically-defined medium for function and growth of primary neonatal rat heart cell cultures publication-title: In Vitro – volume: 63 start-page: 78 year: 1970 end-page: 82 ident: bib16 article-title: Separation of cell types in embryonic heart cell cultures publication-title: Exp. Cell Res. – volume: 92 start-page: 166 year: 1989 end-page: 170 ident: bib18 article-title: Removal of fibroblasts from human epithelial cell cultures with use of a complement fixing monoclonal antibody reactive with human fibroblasts and monocytes/macrophages publication-title: J. Invest. Dermatol. – volume: 235 start-page: 507 year: 2001 end-page: 520 ident: bib10 article-title: Novel cell lines promote the discovery of genes involved in early heart development publication-title: Dev. Biol. – year: 1994 ident: bib46 publication-title: Developmental changes in myocardial inotropic responsiveness – volume: 87 start-page: 225 year: 1984 end-page: 251 ident: bib3 article-title: The muscle satellite cell: a review publication-title: Int. Rev. Cytol. – volume: 22 start-page: 188 year: 2000 end-page: 199 ident: bib49 article-title: The cardiac muscle cell publication-title: Bioessays – volume: 418 start-page: 244 year: 2002 end-page: 251 ident: bib15 article-title: RNA interference publication-title: Nature – volume: 98 start-page: 2512 year: 1996 end-page: 2523 ident: bib1 article-title: Skeletal myoblast transplantation for repair of myocardial necrosis publication-title: J. Clin. Invest. – volume: 363 start-page: 321 year: 2002 end-page: 327 ident: bib27 article-title: Copper supplementation restores cytochrome publication-title: Biochem. J. – volume: 25 start-page: 753 year: 1993 end-page: 757 ident: bib53 article-title: New occurrence of atrial natriuretic factor and storage in secretorially active granules in adult rat ventricular cardiomyocytes in long-term culture publication-title: J. Mol. Cell. Cardiol. – volume: 95 start-page: 2979 year: 1998 end-page: 2984 ident: bib14 article-title: HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of adult cardiomyocyte publication-title: Proc. Natl. Acad. Sci. USA – volume: 81 start-page: 423 year: 1997 end-page: 437 ident: bib50 article-title: Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system publication-title: Circ. Res. – volume: 22 start-page: 333 year: 1990 end-page: 342 ident: bib54 article-title: Sympathetic innervation improves the contractile performance of neonatal cardiac ventricular myocytes in culture publication-title: J. Mol. Cell. Cardiol. – volume: 246 start-page: 500 year: 1989 end-page: 503 ident: bib20 article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation publication-title: Science – volume: 109 start-page: 517 year: 1989 end-page: 527 ident: bib33 article-title: Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly publication-title: J. Cell Biol. – volume: 27 start-page: 23 year: 1999 end-page: 28 ident: bib29 article-title: The role of the J domain of SV40 large T in cellular transformation publication-title: Biologicals – volume: 130 start-page: 393 year: 1995 end-page: 405 ident: bib37 article-title: Identification and characterization of a fibroblast marker: FSP1 publication-title: J. Cell Biol. – volume: 31 start-page: 731 year: 1995 end-page: 734 ident: bib13 article-title: Human fetal cardiocytes in enriched culture publication-title: In Vitro Cell. Dev. Biol. Anim. – volume: 12 start-page: 416 year: 2002 end-page: 422 ident: bib38 article-title: The GATA family (vertebrates and invertebrates) publication-title: Curr. Opin. Genet. Dev. – volume: 32 start-page: 886 year: 1996 end-page: 900 ident: bib48 article-title: Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart publication-title: Cardiovasc. Res. – volume: 16 start-page: 803 year: 1984 end-page: 811 ident: bib22 article-title: Long-term culture of contractile mammalian heart cells in a defined serum-free medium that limits non-muscle cell proliferation publication-title: J. Mol. Cell. Cardiol. – start-page: 4 year: 1990 end-page: 19 ident: bib17 article-title: Embryonic chick heart muscle cells publication-title: Cell culture techniques in heart and vessel research – volume: 281 start-page: H1252 year: 2001 end-page: H1259 ident: bib30 article-title: L-type but not T-type calcium current changes during postnatal development in rabbit sinoatrial node publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 114 start-page: 953 year: 1991 end-page: 966 ident: bib34 article-title: Desmin–vimentin intermediate filaments are dispensable for many aspects of myogenesis publication-title: J. Cell Biol. – volume: 192 start-page: 481 year: 1991 end-page: 491 ident: bib7 article-title: MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro publication-title: Exp. Cell Res. – volume: 58 start-page: 94 year: 1979 end-page: 109 ident: bib24 article-title: The growth of cells in serum-free hormone-supplemented media publication-title: Methods Enzymol. – volume: 11 start-page: 505 year: 2001 end-page: 512 ident: bib39 article-title: NFAT signaling in vertebrate development publication-title: Curr. Opin. Genet. Dev. – volume: 32 start-page: 362 year: 1996 end-page: 373 ident: bib12 article-title: Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging publication-title: Cardiovasc. Res. – volume: 12 start-page: 417 year: 1996 end-page: 439 ident: bib31 article-title: The mammalian myosin heavy chain gene family publication-title: Annu. Rev. Cell Dev. Biol. – volume: 60 start-page: 12 year: 1995 end-page: 18 ident: bib2 article-title: Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation publication-title: Ann. Thorac. Surg. – volume: 21 start-page: 553 year: 1985 end-page: 562 ident: bib23 article-title: Factors controlling embryonic heart cell proliferation in serum-free synthetic media publication-title: In Vitro Cell. Dev. Biol. – volume: 91 start-page: 11797 year: 1994 end-page: 11801 ident: bib25 article-title: Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation publication-title: Proc. Natl. Acad. Sci. USA – volume: 262 start-page: H1867 year: 1992 end-page: H1876 ident: bib8 article-title: Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes publication-title: Am. J. Physiol. – volume: 100 start-page: 263 year: 2001 end-page: 273 ident: bib43 article-title: Bone morphogenetic protein function is required for terminal differentiation of the heart but not for early expression of cardiac marker genes publication-title: Mech. Dev. – volume: 4 start-page: 2549 year: 1984 end-page: 2552 ident: bib19 article-title: Efficient transfer of cloned DNA into human diploid cells: protoplast fusion in suspension publication-title: Mol. Cell. Biol. – volume: 46 start-page: 641 year: 1977 end-page: 668 ident: bib26 article-title: The mechanism of action of inhibitors of DNA synthesis publication-title: Annu. Rev. Biochem. – volume: 50 start-page: 522 year: 2000 end-page: 531 ident: bib32 article-title: Control of cardiac myosin heavy chain gene expression publication-title: Microsc. Res. Tech. – volume: 27 start-page: 63 year: 1991 end-page: 74 ident: bib11 article-title: Establishment of a human fetal cardiac myocyte cell line publication-title: In Vitro Cell. Dev. Biol. – volume: 153 start-page: 329 year: 2001 end-page: 338 ident: bib40 article-title: Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway publication-title: J. Cell Biol. – volume: 268 start-page: 450 year: 2000 end-page: 455 ident: bib9 article-title: Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 T antigen gene transgenic mice publication-title: Biochem. Biophys. Res. Commun. – volume: 92 start-page: 1305 year: 2003 end-page: 1313 ident: bib41 article-title: NFATC3 and NFATC4 are required for cardiac development and mitochondrial function publication-title: Circ. Res. – volume: 105 start-page: 851 year: 2001 end-page: 862 ident: bib42 article-title: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor publication-title: Cell – volume: 259 start-page: H1826 year: 1990 end-page: H1834 ident: bib6 article-title: Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice publication-title: Am. J. Physiol. – volume: 255 start-page: 617 year: 1988 end-page: 620 ident: bib51 article-title: Atrial-natriuretic-factor mRNA is developmentally regulated in heart ventricles and actively expressed in cultured ventricular cardiac muscle cells of rat and human publication-title: Biochem. J. – volume: 45 start-page: 528 year: 1979 end-page: 540 ident: bib5 article-title: Correlation of function and morphology of neonatal rat and embryonic chick cultured cardiac and vascular muscle cells publication-title: Circ. Res. – volume: 60 start-page: 245 year: 1996 end-page: 250 ident: bib35 article-title: Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells publication-title: Differentiation – volume: 139 start-page: 269 year: 1990 end-page: 278 ident: bib36 article-title: Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes publication-title: Dev. Biol. – volume: 1 start-page: 265 year: 2001 end-page: 275 ident: bib44 article-title: Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit publication-title: Dev. Cell – volume: 31 start-page: 1419 year: 1999 end-page: 1427 ident: bib52 article-title: Preservation of contractile characteristics of human myocardium in multi-day cell culture publication-title: J. Mol. Cell. Cardiol. – volume: 8 start-page: 315 year: 2003 end-page: 320 ident: bib45 article-title: B-type natriuretic peptide: physiologic role and assay characteristics publication-title: Heart Fail. Rev. – volume: 80 start-page: 466 year: 1980 end-page: 482 ident: bib4 article-title: Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study publication-title: Dev. Biol. – volume: 26 start-page: 31 year: 1969 end-page: 43 ident: bib28 article-title: A low-viscosity epoxy resin embedding medium for electron microscopy publication-title: J. Ultrastruct. Res. – volume: 196 start-page: 1 year: 2000 end-page: 65 ident: bib47 article-title: Involvement of gap junctional communication in myogenesis publication-title: Int. Rev. Cytol. |
SSID | ssj0009433 |
Score | 2.3119 |
Snippet | Background. –
We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart... Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Antigens, Polyomavirus Transforming - genetics Atrial granules Biomarkers - metabolism Cardiac transcription factors Cardiomyocyte culture Cell Differentiation Cell Line Cell Line, Transformed Connexin Dedifferentiation Desmin Electrophysiology - methods Gap junction Gap Junctions - metabolism Gene Expression Heart Ventricles - cytology Humans Immortalization Mitochondria - metabolism Myocytes, Cardiac - cytology Myocytes, Cardiac - physiology Myofibrils - metabolism Myogenic markers Myosin Organ Specificity Reverse Transcriptase Polymerase Chain Reaction RNAi |
Title | Novel cell lines derived from adult human ventricular cardiomyocytes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022282805000763 https://dx.doi.org/10.1016/j.yjmcc.2005.03.003 https://www.ncbi.nlm.nih.gov/pubmed/15913645 https://www.proquest.com/docview/67974215 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-8584 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009433 issn: 0022-2828 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-8584 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009433 issn: 0022-2828 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1095-8584 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009433 issn: 0022-2828 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8584 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009433 issn: 0022-2828 databaseCode: AKRWK dateStart: 19700301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gngR39bnHjwaTbK7SXoUH1RLexCLvYV9BSyailahF3-7O5tNxUMreAqEDAmzm9lvXt8AnHCO2Stq3VRNVcAY09YOSh20CusNmUJKE2M3creXtPvsbsAHC3BZ98JgWaW3_ZVNd9ba3zn32jx_fXrCHl-MXsRZyF0-iS7CUkxbUdyApYvbTrv3w73LqonyWLiOAjX5kCvzmgxflPKxFSQ7pbMOqFkA1B1EN2uw6hEkuag-ch0WTLkBy12fI9-Eq97o0zwTjMgTxJDvRNtd9mk0wVYS4gg3iBvNR7DW0QUAxRtRrjD1ZTJSE4s-t6B_c_1w2Q78rIRAWQ9tHCQFS1TRElyEoWKCFmkqjKKZoeiBWCdCCyN1KjlzszWk9SsyKlKtuJWjkabb0ChHpdkFEotUCBHGiocWKyVMRjJWLFOp1JnJlG5CXCsoV55IHOdZPOd1xdgwd1rFEZc8DynyjzbhdCr0WvFozH-c1ZrP6xZRa9Rya-fniyVTsV-76G_B43p5c_t_4RKJ0ow-3vMktR6XxUVN2KlW_efzeSvCJO7ef1-6DyuOCNYV_x5AY_z2YQ4txBnLI1g8-4qO_EbGa-f-sfMNnxT7nw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gnoR39ZXc_Do0u0m2d0eRS1V254Uegt5LVRqK20V-u_NZLOKBxW8LjtsmGQn8_jmG4ALzrF6RV2YaqiOGGPG2UFlonbhoiFbKGUT7EbuD9LuE7sf8uEKXFe9MAirDLa_tOneWocnzaDN5utohD2-mL1I8pj7ehJdhTXGaTuvwdrV3UN38MW9y8qJ8ghcR4GKfMjDvJbPL1qH3AqSndKfLqifHFB_EXW2YSt4kOSqXOQOrNjJLqz3Q418D24G03c7JpiRJ-hDzolxp-zdGoKtJMQTbhA_mo8g1tEnAOWMaA9MfVlO9dJ5n_vw1Ll9vO5GYVZCpF2EtojSgqW6aEsu41gzSYssk1bT3FKMQFwQYaRVJlOc-dkaysUVOZWZ0dzJ0ZahB1CbTCf2CEgiMyllnGgeO18pZaqlEs1ynSmT21ybOiSVgoQOROI4z2IsKsTYs_BaxRGXXMQU-UfrcPkp9FryaPz-Oqs0L6oWUWfUhLPzv4uln2LfTtHfgo1qe4X7v3CL5MRO3-YizVzE5fyiOhyWu_61fN5uYRH3-L8fbcBG97HfE727wcMJbHpSWA8EPoXaYvZmz5y7s1Dn4Th_AOCZ-_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+cell+lines+derived+from+adult+human+ventricular+cardiomyocytes&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=DAVIDSON%2C+M&rft.au=NESTI%2C+C&rft.au=PALENZUELA%2C+L&rft.au=WALKER%2C+W&rft.date=2005-07-01&rft.issn=0022-2828&rft.volume=39&rft.issue=1&rft.spage=133&rft.epage=147&rft_id=info:doi/10.1016%2Fj.yjmcc.2005.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_yjmcc_2005_03_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2828&client=summon |