Novel cell lines derived from adult human ventricular cardiomyocytes

Background. – We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. – Primary cells from human ventric...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular and cellular cardiology Vol. 39; no. 1; pp. 133 - 147
Main Authors Davidson, Mercy M., Nesti, Claudia, Palenzuela, Lluis, Walker, Winsome F., Hernandez, Evelyn, Protas, Lev, Hirano, Michio, Isaac, Nithila D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2005
Subjects
Online AccessGet full text
ISSN0022-2828
1095-8584
DOI10.1016/j.yjmcc.2005.03.003

Cover

Abstract Background. – We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. – Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as α- and β-myosin heavy chain, α-cardiac actin, troponin I, desmoplakin, α actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel α1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. Conclusions. – Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.
AbstractList Background. – We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. – Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as α- and β-myosin heavy chain, α-cardiac actin, troponin I, desmoplakin, α actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel α1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. Conclusions. – Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.
Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.
Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart tissue, using a novel method that may be applicable to many post-mitotic primary cultures. Methods and results. - Primary cells from human ventricular tissue, were fused with SV40 transformed, uridine auxotroph human fibroblasts, devoid of mitochondrial DNA. This was followed by selection in uridine-free medium to eliminate unfused fibroblasts. The fused cells were subcloned and screened for cell type-specific markers. Four clones (AC1, AC10, AC12, AC16) that express markers characteristic of cardiomyocytes were studied. Clones were homogeneous morphologically, and expressed transcription factors (GATA4, MYCD, NFATc4), contractile proteins such as alpha- and beta-myosin heavy chain, alpha-cardiac actin, troponin I, desmoplakin, alpha actinin, the muscle-specific intermediate filament protein, desmin, the cardiomyocyte-specific peptide hormones, BNP, the L-type calcium channel alpha1C subunit and gap junction proteins, connexin-43 and connexin-40. Furthermore, dye-coupling studies confirmed the presence of functional gap junctions. EM ultra structural analysis revealed the presence of myofibrils in the subsarcolemmal region, indicating a precontractile developmental stage. When grown in mitogen-depleted medium, the AC cells stopped proliferating and formed a multinucleated syncytium. When the SV40 oncogene was silenced using the RNAi technique, AC16 cells switched from a proliferating to a more differentiated quiescent state, with the formation of multinucleated syncyntium. Concurrently, the cells expressed BMP2, an important signaling molecule for induction of cardiac-specific markers, that was not expressed by the proliferating cells. The presence of the combination of transcription factors in addition to muscle-specific markers is a good indication for the presence of a cardiac transcription program in these cells. CONCLUSIONS. - Based on the expression of myogenic markers and a fully functional respiratory chain, the AC cells have retained the nuclear DNA and the mitochondrial DNA of the primary cardiomyocytes. They can be frozen and thawed repeatedly and can differentiate when grown in mitogen-free medium. These cell lines are potentially useful in vitro models to study developmental regulation of cardiomyocytes in normal and pathological states.
Author Palenzuela, Lluis
Davidson, Mercy M.
Isaac, Nithila D.
Protas, Lev
Walker, Winsome F.
Hernandez, Evelyn
Hirano, Michio
Nesti, Claudia
Author_xml – sequence: 1
  givenname: Mercy M.
  surname: Davidson
  fullname: Davidson, Mercy M.
  email: mmd2@columbia.edu
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 2
  givenname: Claudia
  surname: Nesti
  fullname: Nesti, Claudia
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 3
  givenname: Lluis
  surname: Palenzuela
  fullname: Palenzuela, Lluis
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 4
  givenname: Winsome F.
  surname: Walker
  fullname: Walker, Winsome F.
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 5
  givenname: Evelyn
  surname: Hernandez
  fullname: Hernandez, Evelyn
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 6
  givenname: Lev
  surname: Protas
  fullname: Protas, Lev
  organization: Department of Pharmacology, Columbia University, New York, NY 10032, USA
– sequence: 7
  givenname: Michio
  surname: Hirano
  fullname: Hirano, Michio
  organization: Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, New York, NY 10032, USA
– sequence: 8
  givenname: Nithila D.
  surname: Isaac
  fullname: Isaac, Nithila D.
  organization: Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15913645$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQQC3Uim4LvwAJ5cQtYRzbiSPEAbXlQ6rKBc6WdzwRXpy42MlK-ffNskVIvezJl_dGM8-X7GyMIzH2hkPFgTfvd9WyGxCrGkBVICoA8YJtOHSq1ErLM7YBqOuy1rW-YJc57wCgk0K8ZBdcdVw0Um3YzX3cUyiQQiiCHykXjpLfkyv6FIfCujlMxa95sGOxp3FKHudgU4E2OR-HJeIyUX7FznsbMr1-eq_Yz8-3P66_lnffv3y7_nRXooRuKpteNth3VlkAlFb0bWsJhSahQLVc187S1rVbJWXdarHlXGthW4dq9QR34oq9O859SPHPTHkyg8-H1e1Icc6mabtW1lyt4NsncN4O5MxD8oNNi_l39wqII4Ap5pyo_4-AOdQ1O_O3rjnUNSDMWne1umcW-slOPq5hrA8n3I9Hl9ZAe0_JZPQ0IjmfCCfjoj_hf3jm4_pfHm34TctJ-xEKD6qU
CitedBy_id crossref_primary_10_1016_j_yjmcc_2021_12_007
crossref_primary_10_1016_j_cryobiol_2016_03_011
crossref_primary_10_1016_j_ejcb_2006_11_003
crossref_primary_10_1016_j_mito_2009_08_006
crossref_primary_10_1016_j_ebiom_2017_11_012
crossref_primary_10_3892_mmr_2025_13476
crossref_primary_10_1016_j_cellsig_2024_111320
crossref_primary_10_1007_s10741_019_09769_2
crossref_primary_10_1021_acsnano_2c05286
crossref_primary_10_1186_s11658_022_00395_9
crossref_primary_10_1080_21655979_2021_1971482
crossref_primary_10_1134_S1990519X24700305
crossref_primary_10_1038_s41598_019_55998_8
crossref_primary_10_1007_s10522_025_10189_z
crossref_primary_10_1093_cvr_cvn327
crossref_primary_10_3390_ijms21176388
crossref_primary_10_1007_s00216_023_04596_9
crossref_primary_10_3390_ijms25052816
crossref_primary_10_1126_sciadv_adp6303
crossref_primary_10_1038_s41551_021_00827_5
crossref_primary_10_1016_j_bbadis_2017_12_025
crossref_primary_10_15252_embj_2020105604
crossref_primary_10_1161_CIRCRESAHA_120_316738
crossref_primary_10_1002_ctm2_574
crossref_primary_10_1073_pnas_1808734116
crossref_primary_10_3390_cells10123483
crossref_primary_10_3389_fgene_2023_1264382
crossref_primary_10_1002_sctm_18_0256
crossref_primary_10_3390_cancers17071059
crossref_primary_10_1002_ange_200804137
crossref_primary_10_3390_cells12202436
crossref_primary_10_1152_ajpcell_00491_2018
crossref_primary_10_1111_gtc_12189
crossref_primary_10_1016_j_hrthm_2025_03_1954
crossref_primary_10_1097_FJC_0000000000001428
crossref_primary_10_3389_fphys_2023_1257739
crossref_primary_10_1186_s12967_023_04537_1
crossref_primary_10_1016_j_phrs_2024_107468
crossref_primary_10_1002_jcsm_12749
crossref_primary_10_1016_j_bbrc_2014_06_023
crossref_primary_10_1038_s41418_017_0047_6
crossref_primary_10_14797_mdcvj_1295
crossref_primary_10_1016_j_bbamcr_2025_119900
crossref_primary_10_1371_journal_pone_0019724
crossref_primary_10_1161_CIRCULATIONAHA_117_030486
crossref_primary_10_1016_j_scitotenv_2023_166349
crossref_primary_10_1016_j_jmccpl_2023_100034
crossref_primary_10_1007_s10928_018_9578_9
crossref_primary_10_1161_RES_0000000000000097
crossref_primary_10_1007_s11033_022_07902_3
crossref_primary_10_1194_jlr_M800147_JLR200
crossref_primary_10_3390_biomedicines9091233
crossref_primary_10_1038_s41467_024_55557_4
crossref_primary_10_1038_s41598_020_75394_x
crossref_primary_10_1161_HYPERTENSIONAHA_120_15587
crossref_primary_10_1089_scd_2018_0170
crossref_primary_10_1208_s12248_020_00542_0
crossref_primary_10_1096_fj_201700300R
crossref_primary_10_3892_ijmm_2020_4463
crossref_primary_10_1016_j_ijcard_2012_06_006
crossref_primary_10_3389_fcvm_2022_1004024
crossref_primary_10_1177_0963689720972328
crossref_primary_10_1038_s44320_024_00064_3
crossref_primary_10_1371_journal_pone_0123385
crossref_primary_10_1007_s12012_024_09829_6
crossref_primary_10_3389_fimmu_2021_755862
crossref_primary_10_3390_cells11060967
crossref_primary_10_1074_jbc_M111_296947
crossref_primary_10_1128_AAC_02476_15
crossref_primary_10_1016_j_isci_2024_109219
crossref_primary_10_1126_scisignal_aad3373
crossref_primary_10_1016_j_biopha_2024_116779
crossref_primary_10_3390_biomedicines10010042
crossref_primary_10_1080_09205063_2013_789958
crossref_primary_10_3389_fmolb_2021_780865
crossref_primary_10_1038_s41419_019_1901_x
crossref_primary_10_3390_ijms221910802
crossref_primary_10_1093_cvr_cvu065
crossref_primary_10_1002_jat_4500
crossref_primary_10_1002_sctm_18_0052
crossref_primary_10_1038_s44161_022_00148_z
crossref_primary_10_1172_jci_insight_133675
crossref_primary_10_1016_j_cellsig_2024_111065
crossref_primary_10_1038_ncomms10787
crossref_primary_10_3390_molecules29040760
crossref_primary_10_3892_etm_2023_12024
crossref_primary_10_3390_ijms23105588
crossref_primary_10_1016_j_yjmcc_2018_12_016
crossref_primary_10_1016_j_yjmcc_2019_02_009
crossref_primary_10_1074_jbc_M116_736736
crossref_primary_10_1039_D0BM01428A
crossref_primary_10_1002_jat_4613
crossref_primary_10_1523_JNEUROSCI_2417_11_2011
crossref_primary_10_1152_ajpheart_00250_2009
crossref_primary_10_1161_CIRCULATIONAHA_119_042178
crossref_primary_10_3390_ijms22041787
crossref_primary_10_1016_j_cels_2021_02_004
crossref_primary_10_1042_BCJ20190302
crossref_primary_10_1111_jcmm_70069
crossref_primary_10_1007_s40495_019_00198_1
crossref_primary_10_1177_1535370219851243
crossref_primary_10_3390_jcm7110410
crossref_primary_10_1016_j_ejmech_2016_04_058
crossref_primary_10_1007_s11886_021_01498_z
crossref_primary_10_1016_j_ejmech_2018_09_024
crossref_primary_10_3389_fcell_2024_1501540
crossref_primary_10_1111_j_1440_1681_2010_05420_x
crossref_primary_10_1007_s10237_017_0872_z
crossref_primary_10_1021_acsabm_3c00621
crossref_primary_10_14814_phy2_15990
crossref_primary_10_1016_j_biopha_2022_113970
crossref_primary_10_1042_BSR20140155
crossref_primary_10_1016_j_phymed_2018_11_028
crossref_primary_10_1038_nrd3252
crossref_primary_10_1016_j_recesp_2020_08_030
crossref_primary_10_3390_jpm13081237
crossref_primary_10_3390_ijms222313072
crossref_primary_10_1093_nar_gkae1176
crossref_primary_10_1038_s41598_023_29964_4
crossref_primary_10_3389_fphar_2020_01284
crossref_primary_10_1007_s40883_018_0056_0
crossref_primary_10_1021_acs_jmedchem_5b00848
crossref_primary_10_1038_s41598_020_65830_3
crossref_primary_10_1007_s12010_024_05004_3
crossref_primary_10_3389_fcvm_2020_00043
crossref_primary_10_1016_j_jbc_2023_105211
crossref_primary_10_1080_20013078_2019_1565263
crossref_primary_10_1007_s11306_024_02201_3
crossref_primary_10_1042_BSR20191050
crossref_primary_10_18632_oncotarget_22681
crossref_primary_10_1016_j_biomaterials_2018_09_036
crossref_primary_10_1016_j_jmccpl_2024_100278
crossref_primary_10_1088_1748_6041_6_5_055001
crossref_primary_10_1016_j_yjmcc_2007_03_905
crossref_primary_10_14814_phy2_14400
crossref_primary_10_1002_jat_4719
crossref_primary_10_1038_s41598_022_05161_7
crossref_primary_10_1039_c0an00845a
crossref_primary_10_1093_toxsci_kfw006
crossref_primary_10_1111_jcmm_14408
crossref_primary_10_1172_jci_insight_82922
crossref_primary_10_1007_s10495_020_01609_1
crossref_primary_10_1152_ajpheart_00024_2022
crossref_primary_10_1093_eurheartj_ehae782
crossref_primary_10_1016_j_toxlet_2014_08_007
crossref_primary_10_1016_j_dib_2016_04_061
crossref_primary_10_3389_fcvm_2018_00152
crossref_primary_10_1016_j_omtn_2022_07_007
crossref_primary_10_1016_j_rec_2020_08_012
crossref_primary_10_1155_2020_8141307
crossref_primary_10_1016_j_ebiom_2021_103456
crossref_primary_10_3389_fphys_2022_806366
crossref_primary_10_1002_anie_200804137
crossref_primary_10_1007_s11626_010_9368_1
crossref_primary_10_1038_s41375_019_0640_4
crossref_primary_10_1093_cvr_cvy075
crossref_primary_10_1021_cb200544u
crossref_primary_10_1016_j_dmd_2025_100053
crossref_primary_10_1007_s00204_021_03204_y
crossref_primary_10_1186_s12967_024_05192_w
crossref_primary_10_1126_scitranslmed_3002473
crossref_primary_10_1523_JNEUROSCI_4936_13_2014
crossref_primary_10_1016_j_scitotenv_2025_179048
crossref_primary_10_1124_dmd_122_000928
crossref_primary_10_1186_1479_5876_10_120
crossref_primary_10_1007_s00204_022_03363_6
crossref_primary_10_1038_s41467_022_29733_3
crossref_primary_10_1016_j_heliyon_2024_e24719
crossref_primary_10_1093_cvr_cvq080
crossref_primary_10_1007_s00441_019_03126_3
crossref_primary_10_1242_dmm_020768
crossref_primary_10_1152_ajpheart_00056_2015
crossref_primary_10_1667_RADE_23_00103_1
crossref_primary_10_1074_jbc_M109_076984
crossref_primary_10_1111_mmi_14466
crossref_primary_10_1007_s40204_020_00137_0
crossref_primary_10_1016_j_bioactmat_2021_05_040
crossref_primary_10_15252_embj_2018100492
crossref_primary_10_1007_s00210_019_01795_z
crossref_primary_10_1016_j_jcyt_2017_08_021
crossref_primary_10_1093_cvr_cvy134
crossref_primary_10_1007_s00395_016_0590_1
crossref_primary_10_1038_s41536_021_00140_4
crossref_primary_10_1016_j_metabol_2018_02_005
crossref_primary_10_1021_acs_jmedchem_7b00678
crossref_primary_10_1038_s41598_024_76066_w
crossref_primary_10_1038_s41440_022_01111_y
crossref_primary_10_1097_FJC_0b013e318283d845
crossref_primary_10_3390_membranes13040431
crossref_primary_10_1111_bph_14648
crossref_primary_10_1161_CIRCULATIONAHA_111_060889
crossref_primary_10_1172_jci_insight_129556
crossref_primary_10_1016_j_ejps_2023_106475
crossref_primary_10_1126_scisignal_2005966
crossref_primary_10_1088_1758_5090_ac1e78
crossref_primary_10_1093_cvr_cvs281
crossref_primary_10_3390_genes15060798
crossref_primary_10_1038_s41598_023_51073_5
crossref_primary_10_1161_CIRCRESAHA_123_323655
crossref_primary_10_18632_aging_103465
crossref_primary_10_3389_fgene_2020_00719
crossref_primary_10_1021_bi301313b
crossref_primary_10_1074_jbc_M111_272146
crossref_primary_10_2119_molmed_2017_00091
crossref_primary_10_3892_etm_2017_5225
crossref_primary_10_1016_j_bbalip_2014_09_012
crossref_primary_10_1038_s41401_024_01397_3
crossref_primary_10_1016_j_taap_2022_115949
crossref_primary_10_1371_journal_pone_0137716
crossref_primary_10_1016_j_isci_2024_109510
crossref_primary_10_3390_ijms25063250
crossref_primary_10_1016_j_heliyon_2024_e26904
crossref_primary_10_1161_CIRCULATIONAHA_120_047420
crossref_primary_10_1016_j_yjmcc_2009_02_011
crossref_primary_10_1016_j_yexcr_2007_12_016
crossref_primary_10_1016_j_addr_2015_09_011
crossref_primary_10_1016_j_ijcard_2014_03_176
crossref_primary_10_1016_j_phymed_2022_154130
crossref_primary_10_1111_jcmm_17049
crossref_primary_10_1016_j_bbrc_2011_04_133
crossref_primary_10_3390_molecules25040836
crossref_primary_10_1074_mcp_O116_063487
crossref_primary_10_1152_ajpendo_00569_2010
crossref_primary_10_1016_j_taap_2011_08_020
crossref_primary_10_1007_s00109_008_0385_4
crossref_primary_10_1074_jbc_M109_000463
crossref_primary_10_18632_aging_205298
crossref_primary_10_1016_j_yjmcc_2020_12_007
crossref_primary_10_1186_1471_2164_15_155
ContentType Journal Article
Copyright 2005 Elsevier Ltd
Copyright_xml – notice: 2005 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.yjmcc.2005.03.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-8584
EndPage 147
ExternalDocumentID 15913645
10_1016_j_yjmcc_2005_03_003
S0022282805000763
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: 9951061T
– fundername: NICHD NIH HHS
  grantid: HD32062
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LX2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OL0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AEHWI
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
SSU
AAYXX
ACLOT
CITATION
~HD
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c409t-6f46cf9a5a00c4a3f77aec38e35057182daebd7b5442783b11883a7dc546c31d3
IEDL.DBID AIKHN
ISSN 0022-2828
IngestDate Sun Sep 28 02:45:36 EDT 2025
Wed Feb 19 01:40:06 EST 2025
Thu Apr 24 22:58:17 EDT 2025
Wed Oct 01 01:34:48 EDT 2025
Fri Feb 23 02:27:39 EST 2024
Tue Aug 26 17:10:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cardiomyocyte culture
Connexin
RNAi
Myogenic markers
Immortalization
Dedifferentiation
Myosin
Cardiac transcription factors
Desmin
Gap junction
Atrial granules
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-6f46cf9a5a00c4a3f77aec38e35057182daebd7b5442783b11883a7dc546c31d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15913645
PQID 67974215
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_67974215
pubmed_primary_15913645
crossref_primary_10_1016_j_yjmcc_2005_03_003
crossref_citationtrail_10_1016_j_yjmcc_2005_03_003
elsevier_sciencedirect_doi_10_1016_j_yjmcc_2005_03_003
elsevier_clinicalkey_doi_10_1016_j_yjmcc_2005_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-07-01
PublicationDateYYYYMMDD 2005-07-01
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular and cellular cardiology
PublicationTitleAlternate J Mol Cell Cardiol
PublicationYear 2005
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Marvin, Robinson, Hermsmeyer (bib5) 1979; 45
Campion (bib3) 1984; 87
Graef, Chen, Crabtree (bib39) 2001; 11
Claycomb, Lanson, Stallworth, Egeland, Delcaprio, Bahinski (bib14) 1998; 95
Juttermann, Li, Jaenisch (bib25) 1994; 91
Severs (bib49) 2000; 22
Salviati, Hernandez-Rosa, Walker, Sacconi, DiMauro, Schon (bib27) 2002; 363
Katz, Steinhelper, Delcarpio, Daud, Claycomb, Field (bib8) 1992; 262
Lloyd, Marvin (bib54) 1990; 22
Singer, Scearce, Tuck, Whichard, Denning, Haynes (bib18) 1989; 92
Artman (bib46) 1994
Chiu, Zibaitis, Kao (bib2) 1995; 60
Spurr (bib28) 1969; 26
Horsley, Friday, Matteson, Kegley, Gephart, Pavlath (bib40) 2001; 153
Morkin (bib32) 2000; 50
Van Kempen, Vermeulen, Moorman, Gros, Paul, Lamers (bib48) 1996; 32
Eppenberger-Eberhardt, Messerli, Eppenberger, Reinecke (bib53) 1993; 25
Nag, Ingland, Cheng (bib23) 1985; 21
Wang, Neckelmann, Mayne, Herskowitz, Srinivasan, Sell (bib11) 1991; 27
Protas, DiFrancesco, Robinson (bib30) 2001; 281
Claycomb (bib51) 1988; 255
Cozzarelli (bib26) 1977; 46
Schultheiss, Lin, Ishikawa, Zamir, Stoeckert, Holtzer (bib34) 1991; 114
Wang, Chang, Wang, Sutherland, Richardson, Small (bib42) 2001; 105
Murry, Wiseman, Schwartz, Hauschka (bib1) 1996; 98
Brunskill, Witte, Yutzey, Potter (bib10) 2001; 235
Nag (bib17) 1990
Polinger (bib16) 1970; 63
Weiss, Leinwand (bib31) 1996; 12
DeCaprio (bib29) 1999; 27
Furst, Osborn (bib33) 1989; 109
Delorme, Dahl, Jarry-Guichard, Briand, Willecke, Gros (bib50) 1997; 81
Libby (bib22) 1984; 16
Patient, McGhee (bib38) 2002; 12
Claycomb, Palazzo (bib4) 1980; 80
Mohamed, Holmes, Hartzell (bib21) 1983; 19
Bushdid, Osinska, Waclaw, Molkentin, Yutzey (bib41) 2003; 92
Rottbauer, Baker, Wo, Mohideen, Cantiello, Fishman (bib44) 2001; 1
Steinhelper, Lanson, Dresdner, Delcarpio, Wit, Claycomb (bib6) 1990; 259
Hannon (bib15) 2002; 418
Constantin, Cronier (bib47) 2000; 196
Janssen, Lehnart, Prestle, Hasenfuss (bib52) 1999; 31
Goldman, Wurzel (bib13) 1995; 31
Negishi, Kudo, Obinata, Kawashima, Hirano, Yanai (bib9) 2000; 268
Li, Mickle, Weisel, Carson, Omar, Tumiah (bib12) 1996; 32
Jaffredo, Chestier, Bachnou, Dieterlen-Lievre (bib7) 1991; 192
Azzazy, Christenson (bib45) 2003; 8
Franke, Stehr, Stumpp, Kuhn, Heid, Rackwitz (bib35) 1996; 60
Strutz, Okada, Lo, Danoff, Carone, Tomaszewski (bib37) 1995; 130
King, Attardi (bib20) 1989; 246
Walters, Wayman, Christian (bib43) 2001; 100
Eppenberger-Eberhardt, Flamme, Kurer, Eppenberger (bib36) 1990; 139
Bottenstein, Hayashi, Hutchings, Masui, Mather, McClure (bib24) 1979; 58
Litzkas, Jha, Ozer (bib19) 1984; 4
References_xml – volume: 19
  start-page: 471
  year: 1983
  end-page: 478
  ident: bib21
  article-title: A serum-free, chemically-defined medium for function and growth of primary neonatal rat heart cell cultures
  publication-title: In Vitro
– volume: 63
  start-page: 78
  year: 1970
  end-page: 82
  ident: bib16
  article-title: Separation of cell types in embryonic heart cell cultures
  publication-title: Exp. Cell Res.
– volume: 92
  start-page: 166
  year: 1989
  end-page: 170
  ident: bib18
  article-title: Removal of fibroblasts from human epithelial cell cultures with use of a complement fixing monoclonal antibody reactive with human fibroblasts and monocytes/macrophages
  publication-title: J. Invest. Dermatol.
– volume: 235
  start-page: 507
  year: 2001
  end-page: 520
  ident: bib10
  article-title: Novel cell lines promote the discovery of genes involved in early heart development
  publication-title: Dev. Biol.
– year: 1994
  ident: bib46
  publication-title: Developmental changes in myocardial inotropic responsiveness
– volume: 87
  start-page: 225
  year: 1984
  end-page: 251
  ident: bib3
  article-title: The muscle satellite cell: a review
  publication-title: Int. Rev. Cytol.
– volume: 22
  start-page: 188
  year: 2000
  end-page: 199
  ident: bib49
  article-title: The cardiac muscle cell
  publication-title: Bioessays
– volume: 418
  start-page: 244
  year: 2002
  end-page: 251
  ident: bib15
  article-title: RNA interference
  publication-title: Nature
– volume: 98
  start-page: 2512
  year: 1996
  end-page: 2523
  ident: bib1
  article-title: Skeletal myoblast transplantation for repair of myocardial necrosis
  publication-title: J. Clin. Invest.
– volume: 363
  start-page: 321
  year: 2002
  end-page: 327
  ident: bib27
  article-title: Copper supplementation restores cytochrome
  publication-title: Biochem. J.
– volume: 25
  start-page: 753
  year: 1993
  end-page: 757
  ident: bib53
  article-title: New occurrence of atrial natriuretic factor and storage in secretorially active granules in adult rat ventricular cardiomyocytes in long-term culture
  publication-title: J. Mol. Cell. Cardiol.
– volume: 95
  start-page: 2979
  year: 1998
  end-page: 2984
  ident: bib14
  article-title: HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of adult cardiomyocyte
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 81
  start-page: 423
  year: 1997
  end-page: 437
  ident: bib50
  article-title: Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system
  publication-title: Circ. Res.
– volume: 22
  start-page: 333
  year: 1990
  end-page: 342
  ident: bib54
  article-title: Sympathetic innervation improves the contractile performance of neonatal cardiac ventricular myocytes in culture
  publication-title: J. Mol. Cell. Cardiol.
– volume: 246
  start-page: 500
  year: 1989
  end-page: 503
  ident: bib20
  article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation
  publication-title: Science
– volume: 109
  start-page: 517
  year: 1989
  end-page: 527
  ident: bib33
  article-title: Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly
  publication-title: J. Cell Biol.
– volume: 27
  start-page: 23
  year: 1999
  end-page: 28
  ident: bib29
  article-title: The role of the J domain of SV40 large T in cellular transformation
  publication-title: Biologicals
– volume: 130
  start-page: 393
  year: 1995
  end-page: 405
  ident: bib37
  article-title: Identification and characterization of a fibroblast marker: FSP1
  publication-title: J. Cell Biol.
– volume: 31
  start-page: 731
  year: 1995
  end-page: 734
  ident: bib13
  article-title: Human fetal cardiocytes in enriched culture
  publication-title: In Vitro Cell. Dev. Biol. Anim.
– volume: 12
  start-page: 416
  year: 2002
  end-page: 422
  ident: bib38
  article-title: The GATA family (vertebrates and invertebrates)
  publication-title: Curr. Opin. Genet. Dev.
– volume: 32
  start-page: 886
  year: 1996
  end-page: 900
  ident: bib48
  article-title: Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart
  publication-title: Cardiovasc. Res.
– volume: 16
  start-page: 803
  year: 1984
  end-page: 811
  ident: bib22
  article-title: Long-term culture of contractile mammalian heart cells in a defined serum-free medium that limits non-muscle cell proliferation
  publication-title: J. Mol. Cell. Cardiol.
– start-page: 4
  year: 1990
  end-page: 19
  ident: bib17
  article-title: Embryonic chick heart muscle cells
  publication-title: Cell culture techniques in heart and vessel research
– volume: 281
  start-page: H1252
  year: 2001
  end-page: H1259
  ident: bib30
  article-title: L-type but not T-type calcium current changes during postnatal development in rabbit sinoatrial node
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 114
  start-page: 953
  year: 1991
  end-page: 966
  ident: bib34
  article-title: Desmin–vimentin intermediate filaments are dispensable for many aspects of myogenesis
  publication-title: J. Cell Biol.
– volume: 192
  start-page: 481
  year: 1991
  end-page: 491
  ident: bib7
  article-title: MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro
  publication-title: Exp. Cell Res.
– volume: 58
  start-page: 94
  year: 1979
  end-page: 109
  ident: bib24
  article-title: The growth of cells in serum-free hormone-supplemented media
  publication-title: Methods Enzymol.
– volume: 11
  start-page: 505
  year: 2001
  end-page: 512
  ident: bib39
  article-title: NFAT signaling in vertebrate development
  publication-title: Curr. Opin. Genet. Dev.
– volume: 32
  start-page: 362
  year: 1996
  end-page: 373
  ident: bib12
  article-title: Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging
  publication-title: Cardiovasc. Res.
– volume: 12
  start-page: 417
  year: 1996
  end-page: 439
  ident: bib31
  article-title: The mammalian myosin heavy chain gene family
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 60
  start-page: 12
  year: 1995
  end-page: 18
  ident: bib2
  article-title: Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation
  publication-title: Ann. Thorac. Surg.
– volume: 21
  start-page: 553
  year: 1985
  end-page: 562
  ident: bib23
  article-title: Factors controlling embryonic heart cell proliferation in serum-free synthetic media
  publication-title: In Vitro Cell. Dev. Biol.
– volume: 91
  start-page: 11797
  year: 1994
  end-page: 11801
  ident: bib25
  article-title: Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 262
  start-page: H1867
  year: 1992
  end-page: H1876
  ident: bib8
  article-title: Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes
  publication-title: Am. J. Physiol.
– volume: 100
  start-page: 263
  year: 2001
  end-page: 273
  ident: bib43
  article-title: Bone morphogenetic protein function is required for terminal differentiation of the heart but not for early expression of cardiac marker genes
  publication-title: Mech. Dev.
– volume: 4
  start-page: 2549
  year: 1984
  end-page: 2552
  ident: bib19
  article-title: Efficient transfer of cloned DNA into human diploid cells: protoplast fusion in suspension
  publication-title: Mol. Cell. Biol.
– volume: 46
  start-page: 641
  year: 1977
  end-page: 668
  ident: bib26
  article-title: The mechanism of action of inhibitors of DNA synthesis
  publication-title: Annu. Rev. Biochem.
– volume: 50
  start-page: 522
  year: 2000
  end-page: 531
  ident: bib32
  article-title: Control of cardiac myosin heavy chain gene expression
  publication-title: Microsc. Res. Tech.
– volume: 27
  start-page: 63
  year: 1991
  end-page: 74
  ident: bib11
  article-title: Establishment of a human fetal cardiac myocyte cell line
  publication-title: In Vitro Cell. Dev. Biol.
– volume: 153
  start-page: 329
  year: 2001
  end-page: 338
  ident: bib40
  article-title: Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway
  publication-title: J. Cell Biol.
– volume: 268
  start-page: 450
  year: 2000
  end-page: 455
  ident: bib9
  article-title: Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 T antigen gene transgenic mice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 92
  start-page: 1305
  year: 2003
  end-page: 1313
  ident: bib41
  article-title: NFATC3 and NFATC4 are required for cardiac development and mitochondrial function
  publication-title: Circ. Res.
– volume: 105
  start-page: 851
  year: 2001
  end-page: 862
  ident: bib42
  article-title: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor
  publication-title: Cell
– volume: 259
  start-page: H1826
  year: 1990
  end-page: H1834
  ident: bib6
  article-title: Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice
  publication-title: Am. J. Physiol.
– volume: 255
  start-page: 617
  year: 1988
  end-page: 620
  ident: bib51
  article-title: Atrial-natriuretic-factor mRNA is developmentally regulated in heart ventricles and actively expressed in cultured ventricular cardiac muscle cells of rat and human
  publication-title: Biochem. J.
– volume: 45
  start-page: 528
  year: 1979
  end-page: 540
  ident: bib5
  article-title: Correlation of function and morphology of neonatal rat and embryonic chick cultured cardiac and vascular muscle cells
  publication-title: Circ. Res.
– volume: 60
  start-page: 245
  year: 1996
  end-page: 250
  ident: bib35
  article-title: Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells
  publication-title: Differentiation
– volume: 139
  start-page: 269
  year: 1990
  end-page: 278
  ident: bib36
  article-title: Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes
  publication-title: Dev. Biol.
– volume: 1
  start-page: 265
  year: 2001
  end-page: 275
  ident: bib44
  article-title: Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit
  publication-title: Dev. Cell
– volume: 31
  start-page: 1419
  year: 1999
  end-page: 1427
  ident: bib52
  article-title: Preservation of contractile characteristics of human myocardium in multi-day cell culture
  publication-title: J. Mol. Cell. Cardiol.
– volume: 8
  start-page: 315
  year: 2003
  end-page: 320
  ident: bib45
  article-title: B-type natriuretic peptide: physiologic role and assay characteristics
  publication-title: Heart Fail. Rev.
– volume: 80
  start-page: 466
  year: 1980
  end-page: 482
  ident: bib4
  article-title: Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study
  publication-title: Dev. Biol.
– volume: 26
  start-page: 31
  year: 1969
  end-page: 43
  ident: bib28
  article-title: A low-viscosity epoxy resin embedding medium for electron microscopy
  publication-title: J. Ultrastruct. Res.
– volume: 196
  start-page: 1
  year: 2000
  end-page: 65
  ident: bib47
  article-title: Involvement of gap junctional communication in myogenesis
  publication-title: Int. Rev. Cytol.
SSID ssj0009433
Score 2.3119
Snippet Background. – We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart...
Background. - We have established proliferating human cardiomyocyte cell lines derived from non-proliferating primary cultures of adult ventricular heart...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Antigens, Polyomavirus Transforming - genetics
Atrial granules
Biomarkers - metabolism
Cardiac transcription factors
Cardiomyocyte culture
Cell Differentiation
Cell Line
Cell Line, Transformed
Connexin
Dedifferentiation
Desmin
Electrophysiology - methods
Gap junction
Gap Junctions - metabolism
Gene Expression
Heart Ventricles - cytology
Humans
Immortalization
Mitochondria - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Myofibrils - metabolism
Myogenic markers
Myosin
Organ Specificity
Reverse Transcriptase Polymerase Chain Reaction
RNAi
Title Novel cell lines derived from adult human ventricular cardiomyocytes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022282805000763
https://dx.doi.org/10.1016/j.yjmcc.2005.03.003
https://www.ncbi.nlm.nih.gov/pubmed/15913645
https://www.proquest.com/docview/67974215
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: AKRWK
  dateStart: 19700301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gngR39bnHjwaTbK7SXoUH1RLexCLvYV9BSyailahF3-7O5tNxUMreAqEDAmzm9lvXt8AnHCO2Stq3VRNVcAY09YOSh20CusNmUJKE2M3creXtPvsbsAHC3BZ98JgWaW3_ZVNd9ba3zn32jx_fXrCHl-MXsRZyF0-iS7CUkxbUdyApYvbTrv3w73LqonyWLiOAjX5kCvzmgxflPKxFSQ7pbMOqFkA1B1EN2uw6hEkuag-ch0WTLkBy12fI9-Eq97o0zwTjMgTxJDvRNtd9mk0wVYS4gg3iBvNR7DW0QUAxRtRrjD1ZTJSE4s-t6B_c_1w2Q78rIRAWQ9tHCQFS1TRElyEoWKCFmkqjKKZoeiBWCdCCyN1KjlzszWk9SsyKlKtuJWjkabb0ChHpdkFEotUCBHGiocWKyVMRjJWLFOp1JnJlG5CXCsoV55IHOdZPOd1xdgwd1rFEZc8DynyjzbhdCr0WvFozH-c1ZrP6xZRa9Rya-fniyVTsV-76G_B43p5c_t_4RKJ0ow-3vMktR6XxUVN2KlW_efzeSvCJO7ef1-6DyuOCNYV_x5AY_z2YQ4txBnLI1g8-4qO_EbGa-f-sfMNnxT7nw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gnoR39ZXc_Do0u0m2d0eRS1V254Uegt5LVRqK20V-u_NZLOKBxW8LjtsmGQn8_jmG4ALzrF6RV2YaqiOGGPG2UFlonbhoiFbKGUT7EbuD9LuE7sf8uEKXFe9MAirDLa_tOneWocnzaDN5utohD2-mL1I8pj7ehJdhTXGaTuvwdrV3UN38MW9y8qJ8ghcR4GKfMjDvJbPL1qH3AqSndKfLqifHFB_EXW2YSt4kOSqXOQOrNjJLqz3Q418D24G03c7JpiRJ-hDzolxp-zdGoKtJMQTbhA_mo8g1tEnAOWMaA9MfVlO9dJ5n_vw1Ll9vO5GYVZCpF2EtojSgqW6aEsu41gzSYssk1bT3FKMQFwQYaRVJlOc-dkaysUVOZWZ0dzJ0ZahB1CbTCf2CEgiMyllnGgeO18pZaqlEs1ynSmT21ybOiSVgoQOROI4z2IsKsTYs_BaxRGXXMQU-UfrcPkp9FryaPz-Oqs0L6oWUWfUhLPzv4uln2LfTtHfgo1qe4X7v3CL5MRO3-YizVzE5fyiOhyWu_61fN5uYRH3-L8fbcBG97HfE727wcMJbHpSWA8EPoXaYvZmz5y7s1Dn4Th_AOCZ-_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+cell+lines+derived+from+adult+human+ventricular+cardiomyocytes&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=DAVIDSON%2C+M&rft.au=NESTI%2C+C&rft.au=PALENZUELA%2C+L&rft.au=WALKER%2C+W&rft.date=2005-07-01&rft.issn=0022-2828&rft.volume=39&rft.issue=1&rft.spage=133&rft.epage=147&rft_id=info:doi/10.1016%2Fj.yjmcc.2005.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_yjmcc_2005_03_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2828&client=summon