Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries

Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 11463 - 11478
Main Authors Jafari, Sadiqa, Kim, Jisoo, Choi, Wonil, Byun, Yung-Cheol
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3497656

Cover

Abstract Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management.
AbstractList Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management.
Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared [Formula Omitted]. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an [Formula Omitted] value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management.
Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <tex-math notation="LaTeX">$R^{2}$ </tex-math>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <tex-math notation="LaTeX">$R^{2}$ </tex-math> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management.
Author Jafari, Sadiqa
Choi, Wonil
Kim, Jisoo
Byun, Yung-Cheol
Author_xml – sequence: 1
  givenname: Sadiqa
  orcidid: 0000-0001-9308-1062
  surname: Jafari
  fullname: Jafari, Sadiqa
  organization: Department of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju-si, South Korea
– sequence: 2
  givenname: Jisoo
  orcidid: 0000-0002-1954-8805
  surname: Kim
  fullname: Kim, Jisoo
  organization: Department of Computer Engineering, Faculty of Software (Artificial Intelligence Major), College of Engineering, Jeju National University, Jeju-si, South Korea
– sequence: 3
  givenname: Wonil
  surname: Choi
  fullname: Choi, Wonil
  organization: Nanoom Energy Company Ltd., Cheomdan-ro, Jeju-si, Jeju-do, South Korea
– sequence: 4
  givenname: Yung-Cheol
  orcidid: 0000-0003-1107-9941
  surname: Byun
  fullname: Byun, Yung-Cheol
  email: ycb@jejunu.ac.kr
  organization: Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju-si, South Korea
BookMark eNp9UU1v1DAUjFCRKEt_ARwscc4SfyXOsay2dKVFIBa4Wnb8vOtVagfbOfTGT8dtilRxwBf7Pc_MG715XV344KGq3uJmjXHTf7jebLaHw5o0hK0p67uWty-qS4LbvqacthfP3q-qq5TOTTmitHh3Wf3e-QzHqLLzR_R5HrMb1T1E9BXiAFOOwSPlDTrM0xRiRj9hyCGib4UCKbnya0u59SflByiwrDKgYNEtqDGf0DZld1e0C855tHf55Oa7elfKjypniA7Sm-qlVWOCq6d7Vf242X7f3Nb7L592m-t9PbCmz3Xbckx6KpjRjSB86DTHBjDXwgitGdWGKi6IglYIoyzWjbK61RhbK3oDlK6q3aJrgjrLKRZf8V4G5eRjI8SjVDG7YQRpxWAsJ4Ypwso-e9V0PSkzmdBEU-BF6_2iNcXwa4aU5TnM0Rf7kuLiAhNWvK6qfkENMaQUwcrB5cdl5KjcKHEjH_KTS37yIT_5lF_h0n-4fx3_n_VuYTkAeMboOOGU0T9tN6qK
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_physchem5010012
Cites_doi 10.3390/en15124399
10.1016/j.est.2021.103846
10.1016/j.rser.2021.111903
10.1109/LES.2021.3078443
10.1016/j.est.2023.107218
10.1002/ente.202301065
10.1016/j.ress.2018.02.022
10.3390/en17051250
10.1016/j.jpowsour.2020.228069
10.1109/ICCIA54998.2022.9737186
10.1109/TTE.2020.2983846
10.1016/j.seta.2021.101234
10.1016/j.apenergy.2022.119787
10.1109/MIE.2013.2250351
10.1016/j.apenergy.2016.08.138
10.1016/j.est.2024.113176
10.1109/TIE.2023.3247735
10.1002/er.3598
10.1002/er.7292
10.1109/TII.2019.2941747
10.1016/j.energy.2019.06.128
10.1016/j.rser.2019.109254
10.1016/j.est.2022.104646
10.1109/TIE.2018.2880703
10.1109/TII.2023.3240920
10.1016/j.jclepro.2018.09.065
10.1016/j.geits.2024.100165
10.1038/s41467-020-15235-7
10.1016/j.est.2021.102372
10.1016/j.apenergy.2021.116637
10.1038/s42256-020-0156-7
10.1109/CoDIT58514.2023.10284459
10.1016/j.jpowsour.2023.233541
10.1016/j.joule.2019.11.018
10.1109/TIE.2017.2782224
10.1109/TIE.2018.2842782
10.1016/j.est.2020.101741
10.1109/TVT.2011.2168987
10.1016/j.energy.2021.120205
10.1109/ACCESS.2021.3111927
10.1109/TIE.2018.2813964
10.1016/j.jclepro.2020.120813
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3497656
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 11478
ExternalDocumentID oai_doaj_org_article_f8cdf52d4a244979a079225c48b2b3e5
10_1109_ACCESS_2024_3497656
10752534
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Korea government (MSIT)
  grantid: RS-2024-00405278
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-665129384db0825c7b51de15b8d8bb43bd3a582ae688daf1b0afb6b11ff89de33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:02 EDT 2025
Mon Jun 30 12:59:16 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Tue Jul 01 03:02:57 EDT 2025
Wed Aug 27 01:55:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-665129384db0825c7b51de15b8d8bb43bd3a582ae688daf1b0afb6b11ff89de33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1107-9941
0000-0001-9308-1062
0000-0002-1954-8805
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10752534
PQID 3158212429
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_f8cdf52d4a244979a079225c48b2b3e5
crossref_citationtrail_10_1109_ACCESS_2024_3497656
crossref_primary_10_1109_ACCESS_2024_3497656
ieee_primary_10752534
proquest_journals_3158212429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Saha (ref36) 2007
ref40
References_xml – ident: ref41
  doi: 10.3390/en15124399
– ident: ref24
  doi: 10.1016/j.est.2021.103846
– ident: ref14
  doi: 10.1016/j.rser.2021.111903
– ident: ref17
  doi: 10.1109/LES.2021.3078443
– ident: ref40
  doi: 10.1016/j.est.2023.107218
– ident: ref43
  doi: 10.1002/ente.202301065
– ident: ref27
  doi: 10.1016/j.ress.2018.02.022
– ident: ref28
  doi: 10.3390/en17051250
– ident: ref25
  doi: 10.1016/j.jpowsour.2020.228069
– ident: ref3
  doi: 10.1109/ICCIA54998.2022.9737186
– ident: ref4
  doi: 10.1109/TTE.2020.2983846
– ident: ref19
  doi: 10.1016/j.seta.2021.101234
– ident: ref35
  doi: 10.1016/j.apenergy.2022.119787
– volume-title: NASA AMES prognostics data repository
  year: 2007
  ident: ref36
  article-title: Battery data set
– ident: ref16
  doi: 10.1109/MIE.2013.2250351
– ident: ref18
  doi: 10.1016/j.apenergy.2016.08.138
– ident: ref8
  doi: 10.1016/j.est.2024.113176
– ident: ref37
  doi: 10.1109/TIE.2023.3247735
– ident: ref29
  doi: 10.1002/er.3598
– ident: ref38
  doi: 10.1002/er.7292
– ident: ref30
  doi: 10.1109/TII.2019.2941747
– ident: ref32
  doi: 10.1016/j.energy.2019.06.128
– ident: ref34
  doi: 10.1016/j.rser.2019.109254
– ident: ref15
  doi: 10.1016/j.est.2022.104646
– ident: ref11
  doi: 10.1109/TIE.2018.2880703
– ident: ref42
  doi: 10.1109/TII.2023.3240920
– ident: ref33
  doi: 10.1016/j.jclepro.2018.09.065
– ident: ref1
  doi: 10.1016/j.geits.2024.100165
– ident: ref5
  doi: 10.1038/s41467-020-15235-7
– ident: ref23
  doi: 10.1016/j.est.2021.102372
– ident: ref6
  doi: 10.1016/j.apenergy.2021.116637
– ident: ref9
  doi: 10.1038/s42256-020-0156-7
– ident: ref39
  doi: 10.1109/CoDIT58514.2023.10284459
– ident: ref22
  doi: 10.1016/j.jpowsour.2023.233541
– ident: ref2
  doi: 10.1016/j.joule.2019.11.018
– ident: ref7
  doi: 10.1109/TIE.2017.2782224
– ident: ref20
  doi: 10.1109/TIE.2018.2842782
– ident: ref26
  doi: 10.1016/j.est.2020.101741
– ident: ref13
  doi: 10.1109/TVT.2011.2168987
– ident: ref10
  doi: 10.1016/j.energy.2021.120205
– ident: ref21
  doi: 10.1109/ACCESS.2021.3111927
– ident: ref12
  doi: 10.1109/TIE.2018.2813964
– ident: ref31
  doi: 10.1016/j.jclepro.2020.120813
SSID ssj0000816957
Score 2.3635316
Snippet Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11463
SubjectTerms Algorithms
Batteries
battery performance
Electric vehicles
Ensemble learning
Evaluation
Lithium-ion batteries
Lithium-ion battery
Machine learning
Measurement
Multilayer perceptrons
optimization algorithms
Prediction algorithms
Predictive maintenance
Predictive models
Radio frequency
Random forests
Root-mean-square errors
SOH
Support vector machines
Temperature distribution
Temperature measurement
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPIpY-pAPHAmNHT-PZbVViwAhRFFvlie26Uoli9rtnZ_O-NEqEhJcODpy4sQz9sw4M99HyGvQSSZl8k93yBRmXnfeQsSFJzDA8CwokQucP35Sp-fi_YW8mFF95ZywCg9cJ-4omTEkyYPwaIistr7XFnVwFAY4DLGgl_a2nwVTZQ82TFmpG8wQ6-3R8XKJX4QBIRdvB3yQypTVM1NUEPsbxcof-3IxNidPyOPmJdLj-nZPyYM4PSOPZtiBz8mvswb0gC1aymivPLrP9HPNVLneTNRPgWbWTvSw6bdyOk-_xO818XWi6K3S1XRZMgBo8TnpJtFalkRXuPJrUSNdT_TDenu5vv3RnWGzAnJifL1Lzk9WX5enXaNT6EYM4radUsW4GxEgx4WjBslCZBJMMABigDB4abiPypjgE4PeJ1DAWErGhjgML8jOtJniS0I5ClhIE4NBQUBIlkkT-Kh1kMA5yAXhdzPrxoY1nikvrlyJOXrrqjhcFodr4liQN_c3_axQG3_v_i6L7L5rxskuF1B7XNMe9y_tWZDdLPDZeFpyOYgF2b_TANcW9Y0bWK4qRp_GvvofY--RhzyTCZfznH2ys72-jQfo4WzhsCjzb2M59sY
  priority: 102
  providerName: Directory of Open Access Journals
Title Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries
URI https://ieeexplore.ieee.org/document/10752534
https://www.proquest.com/docview/3158212429
https://doaj.org/article/f8cdf52d4a244979a079225c48b2b3e5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoT3DgWUSgVD5wZEPWa6_tY4lStQgqhCjqzfL4QSPKBpXNhRM_nfEjUQQCcVuvbK1XM7a_Gc98Q8gLkFHEXqVLd0glzKxsrIaAC4-jgWFb3_OU4PzuvD-94G8uxWVNVs-5MCGEHHwWpukx3-X7lVsnVxmucCmY6Pge2UM9K8laW4dKqiChhazMQu1Mvzqez_En0AZkfNpxPHdTleqd0yeT9NeqKn9sxfl8OblHzjczK2ElX6brEabux2-kjf899fvkbkWa9LioxgNyKwwPyZ0d_sFH5OdZJYvAFs2puNcWITh9X6JdblYDtYOnqfInonT6KXv46YfwuQTPDhQRL10MVzmKgGbcSleRltQmusDdoyRG0uVA3y7Hq-X6a3OGzULqiTb6Abk4WXycnza1JEPj0BAcm77PAEFxD8m2dBJE60MrQHkFwDvwnRWK2dAr5W1sYWYj9NC2MSrtQ9c9JvvDaghPCGWoJFyo4JVwHHzUrVCeOSm9AMZATAjbiMq4yleeymZcm2y3zLQp8jVJvqbKd0Jebgd9K3Qd_-7-OunAtmvi2s4vUHamLl0TlfNRMM8tQiEttZ1Jjbug4woYdAEnepDkvfO9IuoJOdyolKkbw3fTtSkzGXGRfvqXYc_IbZZqDGc3zyHZH2_W4TkCnxGOssPgKKv9L8SSAgU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHKAHnkUECvjAkQ1Zr71rH0uUKoE0QqhFvVmetd1GlE1VNhdO_HTGj0QRCMRtvbK1Xs3Y_mY88w0hb6DxwtcyXLpDKGFmmsIocLjwOBoYprQ1DwnOJ4t6esY_nIvznKwec2GcczH4zA3DY7zLt6t2HVxluMIbwUTFb5M7As0KmdK1ti6VUENCiSZzC5Uj9e5oPMbfQCuQ8WHF8eQNdap3zp9I05_rqvyxGccT5vgBWWzmlgJLvg7XPQzbH7_RNv735B-S-xlr0qOkHI_ILdc9Jvs7DIRPyM9ZpovAFo3JuFcGQTj9lOJdblYdNZ2lofYn4nT6Jfr46Wd3kcJnO4qYl066yxhHQCNypStPU3ITneD-kVIj6bKj82V_uVx_K2bYTLSeaKUfkLPjyel4WuSiDEWLpmBf1HWECJJbCNZl24AorSsFSCsBeAW2MkIy42oprfEljIyHGsrSe6msq6qnZK9bde4ZoQzVhAvprBQtB-tVKaRlbdNYAYyBGBC2EZVuM2N5KJxxpaPlMlI6yVcH-eos3wF5ux10nQg7_t39fdCBbdfAth1foOx0Xrzay9Z6wSw3CIZUo8yoUbgPtlwCg8rhRA-CvHe-l0Q9IIcbldJ5a_iuqzLkJiMyUs__Muw1uTs9PZnr-Wzx8QW5x0LF4ej0OSR7_c3avUQY1MOrqPy_AGAbBGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Multilayer+Perceptron+and+Support+Vector+Regression+for+Enhanced+State+of+Health+Estimation+in+Lithium-Ion+Batteries&rft.jtitle=IEEE+access&rft.au=Jafari%2C+Sadiqa&rft.au=Kim%2C+Jisoo&rft.au=Choi%2C+Wonil&rft.au=Byun%2C+Yung-Cheol&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=11463&rft.epage=11478&rft_id=info:doi/10.1109%2FACCESS.2024.3497656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3497656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon