Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries
Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in c...
Saved in:
Published in | IEEE access Vol. 13; pp. 11463 - 11478 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3497656 |
Cover
Abstract | Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management. |
---|---|
AbstractList | Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management. Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared [Formula Omitted]. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an [Formula Omitted] value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management. Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared <tex-math notation="LaTeX">$R^{2}$ </tex-math>. In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an <tex-math notation="LaTeX">$R^{2}$ </tex-math> value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management. |
Author | Jafari, Sadiqa Choi, Wonil Kim, Jisoo Byun, Yung-Cheol |
Author_xml | – sequence: 1 givenname: Sadiqa orcidid: 0000-0001-9308-1062 surname: Jafari fullname: Jafari, Sadiqa organization: Department of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju-si, South Korea – sequence: 2 givenname: Jisoo orcidid: 0000-0002-1954-8805 surname: Kim fullname: Kim, Jisoo organization: Department of Computer Engineering, Faculty of Software (Artificial Intelligence Major), College of Engineering, Jeju National University, Jeju-si, South Korea – sequence: 3 givenname: Wonil surname: Choi fullname: Choi, Wonil organization: Nanoom Energy Company Ltd., Cheomdan-ro, Jeju-si, Jeju-do, South Korea – sequence: 4 givenname: Yung-Cheol orcidid: 0000-0003-1107-9941 surname: Byun fullname: Byun, Yung-Cheol email: ycb@jejunu.ac.kr organization: Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju-si, South Korea |
BookMark | eNp9UU1v1DAUjFCRKEt_ARwscc4SfyXOsay2dKVFIBa4Wnb8vOtVagfbOfTGT8dtilRxwBf7Pc_MG715XV344KGq3uJmjXHTf7jebLaHw5o0hK0p67uWty-qS4LbvqacthfP3q-qq5TOTTmitHh3Wf3e-QzHqLLzR_R5HrMb1T1E9BXiAFOOwSPlDTrM0xRiRj9hyCGib4UCKbnya0u59SflByiwrDKgYNEtqDGf0DZld1e0C855tHf55Oa7elfKjypniA7Sm-qlVWOCq6d7Vf242X7f3Nb7L592m-t9PbCmz3Xbckx6KpjRjSB86DTHBjDXwgitGdWGKi6IglYIoyzWjbK61RhbK3oDlK6q3aJrgjrLKRZf8V4G5eRjI8SjVDG7YQRpxWAsJ4Ypwso-e9V0PSkzmdBEU-BF6_2iNcXwa4aU5TnM0Rf7kuLiAhNWvK6qfkENMaQUwcrB5cdl5KjcKHEjH_KTS37yIT_5lF_h0n-4fx3_n_VuYTkAeMboOOGU0T9tN6qK |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_physchem5010012 |
Cites_doi | 10.3390/en15124399 10.1016/j.est.2021.103846 10.1016/j.rser.2021.111903 10.1109/LES.2021.3078443 10.1016/j.est.2023.107218 10.1002/ente.202301065 10.1016/j.ress.2018.02.022 10.3390/en17051250 10.1016/j.jpowsour.2020.228069 10.1109/ICCIA54998.2022.9737186 10.1109/TTE.2020.2983846 10.1016/j.seta.2021.101234 10.1016/j.apenergy.2022.119787 10.1109/MIE.2013.2250351 10.1016/j.apenergy.2016.08.138 10.1016/j.est.2024.113176 10.1109/TIE.2023.3247735 10.1002/er.3598 10.1002/er.7292 10.1109/TII.2019.2941747 10.1016/j.energy.2019.06.128 10.1016/j.rser.2019.109254 10.1016/j.est.2022.104646 10.1109/TIE.2018.2880703 10.1109/TII.2023.3240920 10.1016/j.jclepro.2018.09.065 10.1016/j.geits.2024.100165 10.1038/s41467-020-15235-7 10.1016/j.est.2021.102372 10.1016/j.apenergy.2021.116637 10.1038/s42256-020-0156-7 10.1109/CoDIT58514.2023.10284459 10.1016/j.jpowsour.2023.233541 10.1016/j.joule.2019.11.018 10.1109/TIE.2017.2782224 10.1109/TIE.2018.2842782 10.1016/j.est.2020.101741 10.1109/TVT.2011.2168987 10.1016/j.energy.2021.120205 10.1109/ACCESS.2021.3111927 10.1109/TIE.2018.2813964 10.1016/j.jclepro.2020.120813 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3497656 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 11478 |
ExternalDocumentID | oai_doaj_org_article_f8cdf52d4a244979a079225c48b2b3e5 10_1109_ACCESS_2024_3497656 10752534 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Korea government (MSIT) grantid: RS-2024-00405278 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-665129384db0825c7b51de15b8d8bb43bd3a582ae688daf1b0afb6b11ff89de33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:02 EDT 2025 Mon Jun 30 12:59:16 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Tue Jul 01 03:02:57 EDT 2025 Wed Aug 27 01:55:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-665129384db0825c7b51de15b8d8bb43bd3a582ae688daf1b0afb6b11ff89de33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1107-9941 0000-0001-9308-1062 0000-0002-1954-8805 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10752534 |
PQID | 3158212429 |
PQPubID | 4845423 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8cdf52d4a244979a079225c48b2b3e5 crossref_citationtrail_10_1109_ACCESS_2024_3497656 crossref_primary_10_1109_ACCESS_2024_3497656 ieee_primary_10752534 proquest_journals_3158212429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Saha (ref36) 2007 ref40 |
References_xml | – ident: ref41 doi: 10.3390/en15124399 – ident: ref24 doi: 10.1016/j.est.2021.103846 – ident: ref14 doi: 10.1016/j.rser.2021.111903 – ident: ref17 doi: 10.1109/LES.2021.3078443 – ident: ref40 doi: 10.1016/j.est.2023.107218 – ident: ref43 doi: 10.1002/ente.202301065 – ident: ref27 doi: 10.1016/j.ress.2018.02.022 – ident: ref28 doi: 10.3390/en17051250 – ident: ref25 doi: 10.1016/j.jpowsour.2020.228069 – ident: ref3 doi: 10.1109/ICCIA54998.2022.9737186 – ident: ref4 doi: 10.1109/TTE.2020.2983846 – ident: ref19 doi: 10.1016/j.seta.2021.101234 – ident: ref35 doi: 10.1016/j.apenergy.2022.119787 – volume-title: NASA AMES prognostics data repository year: 2007 ident: ref36 article-title: Battery data set – ident: ref16 doi: 10.1109/MIE.2013.2250351 – ident: ref18 doi: 10.1016/j.apenergy.2016.08.138 – ident: ref8 doi: 10.1016/j.est.2024.113176 – ident: ref37 doi: 10.1109/TIE.2023.3247735 – ident: ref29 doi: 10.1002/er.3598 – ident: ref38 doi: 10.1002/er.7292 – ident: ref30 doi: 10.1109/TII.2019.2941747 – ident: ref32 doi: 10.1016/j.energy.2019.06.128 – ident: ref34 doi: 10.1016/j.rser.2019.109254 – ident: ref15 doi: 10.1016/j.est.2022.104646 – ident: ref11 doi: 10.1109/TIE.2018.2880703 – ident: ref42 doi: 10.1109/TII.2023.3240920 – ident: ref33 doi: 10.1016/j.jclepro.2018.09.065 – ident: ref1 doi: 10.1016/j.geits.2024.100165 – ident: ref5 doi: 10.1038/s41467-020-15235-7 – ident: ref23 doi: 10.1016/j.est.2021.102372 – ident: ref6 doi: 10.1016/j.apenergy.2021.116637 – ident: ref9 doi: 10.1038/s42256-020-0156-7 – ident: ref39 doi: 10.1109/CoDIT58514.2023.10284459 – ident: ref22 doi: 10.1016/j.jpowsour.2023.233541 – ident: ref2 doi: 10.1016/j.joule.2019.11.018 – ident: ref7 doi: 10.1109/TIE.2017.2782224 – ident: ref20 doi: 10.1109/TIE.2018.2842782 – ident: ref26 doi: 10.1016/j.est.2020.101741 – ident: ref13 doi: 10.1109/TVT.2011.2168987 – ident: ref10 doi: 10.1016/j.energy.2021.120205 – ident: ref21 doi: 10.1109/ACCESS.2021.3111927 – ident: ref12 doi: 10.1109/TIE.2018.2813964 – ident: ref31 doi: 10.1016/j.jclepro.2020.120813 |
SSID | ssj0000816957 |
Score | 2.3635316 |
Snippet | Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11463 |
SubjectTerms | Algorithms Batteries battery performance Electric vehicles Ensemble learning Evaluation Lithium-ion batteries Lithium-ion battery Machine learning Measurement Multilayer perceptrons optimization algorithms Prediction algorithms Predictive maintenance Predictive models Radio frequency Random forests Root-mean-square errors SOH Support vector machines Temperature distribution Temperature measurement |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPIpY-pAPHAmNHT-PZbVViwAhRFFvlie26Uoli9rtnZ_O-NEqEhJcODpy4sQz9sw4M99HyGvQSSZl8k93yBRmXnfeQsSFJzDA8CwokQucP35Sp-fi_YW8mFF95ZywCg9cJ-4omTEkyYPwaIistr7XFnVwFAY4DLGgl_a2nwVTZQ82TFmpG8wQ6-3R8XKJX4QBIRdvB3yQypTVM1NUEPsbxcof-3IxNidPyOPmJdLj-nZPyYM4PSOPZtiBz8mvswb0gC1aymivPLrP9HPNVLneTNRPgWbWTvSw6bdyOk-_xO818XWi6K3S1XRZMgBo8TnpJtFalkRXuPJrUSNdT_TDenu5vv3RnWGzAnJifL1Lzk9WX5enXaNT6EYM4radUsW4GxEgx4WjBslCZBJMMABigDB4abiPypjgE4PeJ1DAWErGhjgML8jOtJniS0I5ClhIE4NBQUBIlkkT-Kh1kMA5yAXhdzPrxoY1nikvrlyJOXrrqjhcFodr4liQN_c3_axQG3_v_i6L7L5rxskuF1B7XNMe9y_tWZDdLPDZeFpyOYgF2b_TANcW9Y0bWK4qRp_GvvofY--RhzyTCZfznH2ys72-jQfo4WzhsCjzb2M59sY priority: 102 providerName: Directory of Open Access Journals |
Title | Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries |
URI | https://ieeexplore.ieee.org/document/10752534 https://www.proquest.com/docview/3158212429 https://doaj.org/article/f8cdf52d4a244979a079225c48b2b3e5 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoT3DgWUSgVD5wZEPWa6_tY4lStQgqhCjqzfL4QSPKBpXNhRM_nfEjUQQCcVuvbK1XM7a_Gc98Q8gLkFHEXqVLd0glzKxsrIaAC4-jgWFb3_OU4PzuvD-94G8uxWVNVs-5MCGEHHwWpukx3-X7lVsnVxmucCmY6Pge2UM9K8laW4dKqiChhazMQu1Mvzqez_En0AZkfNpxPHdTleqd0yeT9NeqKn9sxfl8OblHzjczK2ElX6brEabux2-kjf899fvkbkWa9LioxgNyKwwPyZ0d_sFH5OdZJYvAFs2puNcWITh9X6JdblYDtYOnqfInonT6KXv46YfwuQTPDhQRL10MVzmKgGbcSleRltQmusDdoyRG0uVA3y7Hq-X6a3OGzULqiTb6Abk4WXycnza1JEPj0BAcm77PAEFxD8m2dBJE60MrQHkFwDvwnRWK2dAr5W1sYWYj9NC2MSrtQ9c9JvvDaghPCGWoJFyo4JVwHHzUrVCeOSm9AMZATAjbiMq4yleeymZcm2y3zLQp8jVJvqbKd0Jebgd9K3Qd_-7-OunAtmvi2s4vUHamLl0TlfNRMM8tQiEttZ1Jjbug4woYdAEnepDkvfO9IuoJOdyolKkbw3fTtSkzGXGRfvqXYc_IbZZqDGc3zyHZH2_W4TkCnxGOssPgKKv9L8SSAgU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHKAHnkUECvjAkQ1Zr71rH0uUKoE0QqhFvVmetd1GlE1VNhdO_HTGj0QRCMRtvbK1Xs3Y_mY88w0hb6DxwtcyXLpDKGFmmsIocLjwOBoYprQ1DwnOJ4t6esY_nIvznKwec2GcczH4zA3DY7zLt6t2HVxluMIbwUTFb5M7As0KmdK1ti6VUENCiSZzC5Uj9e5oPMbfQCuQ8WHF8eQNdap3zp9I05_rqvyxGccT5vgBWWzmlgJLvg7XPQzbH7_RNv735B-S-xlr0qOkHI_ILdc9Jvs7DIRPyM9ZpovAFo3JuFcGQTj9lOJdblYdNZ2lofYn4nT6Jfr46Wd3kcJnO4qYl066yxhHQCNypStPU3ITneD-kVIj6bKj82V_uVx_K2bYTLSeaKUfkLPjyel4WuSiDEWLpmBf1HWECJJbCNZl24AorSsFSCsBeAW2MkIy42oprfEljIyHGsrSe6msq6qnZK9bde4ZoQzVhAvprBQtB-tVKaRlbdNYAYyBGBC2EZVuM2N5KJxxpaPlMlI6yVcH-eos3wF5ux10nQg7_t39fdCBbdfAth1foOx0Xrzay9Z6wSw3CIZUo8yoUbgPtlwCg8rhRA-CvHe-l0Q9IIcbldJ5a_iuqzLkJiMyUs__Muw1uTs9PZnr-Wzx8QW5x0LF4ej0OSR7_c3avUQY1MOrqPy_AGAbBGM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Multilayer+Perceptron+and+Support+Vector+Regression+for+Enhanced+State+of+Health+Estimation+in+Lithium-Ion+Batteries&rft.jtitle=IEEE+access&rft.au=Jafari%2C+Sadiqa&rft.au=Kim%2C+Jisoo&rft.au=Choi%2C+Wonil&rft.au=Byun%2C+Yung-Cheol&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=11463&rft.epage=11478&rft_id=info:doi/10.1109%2FACCESS.2024.3497656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3497656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |