M-FSDistill: A Feature Map Knowledge Distillation Algorithm for SAR Ship Detection

Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 13217 - 13231
Main Authors Wang, Guohui, Qin, Rui, Xia, Ying
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2024.3426288

Cover

Abstract Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such as reduced convolutional layers and pruning, can easily lead to missed detections in models. Researchers have introduced knowledge distillation algorithms to address the issue of poor performance of lightweight models. However, the improvement effect of algorithms is limited due to shortcomings such as noise interference in the background and improper distillation strategies, especially for small ship detection with complex backgrounds. Aiming to address the limited performance improvement of distillation algorithms and missing detections of small ships in distillation models, we propose a multiscale feature enhancement and foreground-scene feature distillation algorithm for SAR ship detection. Specifically, in order to improve distillation efficiency, the feature learning distillation module is proposed to improve the quality of distillation knowledge by separating foreground and scene distillation. Then, the ship feature representation enhancement module utilizes a feature map decoupling and attention-based multiscale fusion algorithm to enhance student model's learning of small ship features and reduce missing detection. To validate the performance of the proposed method, we conducted experiments on SAR ship detection dataset (SSDD) and high-resolution SAR images dataset (HRSID) datasets and compared with several advanced methods. The results indicate that the models using our algorithm achieved significant improvements in average precision (AP). For instance, on the SSDD dataset, RetinaNet, Cascade R-CNN, and RepPoints based on ResNet18 achieved AP scores of 95.5%, 95.4%, and 95.9% respectively, surpassing the baseline by 3.9%, 3.1%, and 1.9%.
AbstractList Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such as reduced convolutional layers and pruning, can easily lead to missed detections in models. Researchers have introduced knowledge distillation algorithms to address the issue of poor performance of lightweight models. However, the improvement effect of algorithms is limited due to shortcomings such as noise interference in the background and improper distillation strategies, especially for small ship detection with complex backgrounds. Aiming to address the limited performance improvement of distillation algorithms and missing detections of small ships in distillation models, we propose a multiscale feature enhancement and foreground-scene feature distillation algorithm for SAR ship detection. Specifically, in order to improve distillation efficiency, the feature learning distillation module is proposed to improve the quality of distillation knowledge by separating foreground and scene distillation. Then, the ship feature representation enhancement module utilizes a feature map decoupling and attention-based multiscale fusion algorithm to enhance student model's learning of small ship features and reduce missing detection. To validate the performance of the proposed method, we conducted experiments on SAR ship detection dataset (SSDD) and high-resolution SAR images dataset (HRSID) datasets and compared with several advanced methods. The results indicate that the models using our algorithm achieved significant improvements in average precision (AP). For instance, on the SSDD dataset, RetinaNet, Cascade R-CNN, and RepPoints based on ResNet18 achieved AP scores of 95.5%, 95.4%, and 95.9% respectively, surpassing the baseline by 3.9%, 3.1%, and 1.9%.
Author Wang, Guohui
Xia, Ying
Qin, Rui
Author_xml – sequence: 1
  givenname: Guohui
  orcidid: 0009-0000-9094-3878
  surname: Wang
  fullname: Wang, Guohui
  email: 1361783422@qq.com
  organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0003-1123-0090
  surname: Qin
  fullname: Qin, Rui
  email: qinrui@cqupt.edu.cn
  organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0002-7407-6126
  surname: Xia
  fullname: Xia, Ying
  email: xiaying@cqupt.edu.cn
  organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China
BookMark eNqFkc1q3DAURkVJoZO0T9AuBF17on9b3Zkk06RNKIzTtdDYVxMNiuXKGkLevp54KCVddCW4fOeI-91TdNLHHhD6SMmSUqLPvzX39bpZMsLEkgumWFW9QQtGJS2o5PIELajmuqCCiHfodBx3hChWar5A67ti1Vz6MfsQvuAar8DmfQJ8Zwf8vY9PAbot4GPAZh97XIdtTD4_PGIXE27qNW4e_IAvIUN7CLxHb50NI3w4vmfo5-rq_uK6uP3x9eaivi1aQXQulCxZKbQW3UbrTUWkU5I5pQR01FUlsAq41ERRoSwFXjHgDjrupiSUrab8DN3M3i7anRmSf7Tp2UTrzcsgpq2xKfs2gKm05MQBgN0IAcxp2012JoVyrKTWTS4xu_b9YJ-fbAh_hJSYQ8dmN2abRnPo2Bw7nrDPMzak-GsPYza7uE_9tLXhpNKaVoSUU4rPqTbFcUzg_nHP93vt1q-o1ueXC-RkffgP-2lm_bTzX79JzZQQ_DcSd6fl
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs16224340
Cites_doi 10.1109/CVPR52729.2023.00596
10.1109/ICCV.2019.00975
10.1007/s40747-023-01240-y
10.1109/CVPR52729.2023.01889
10.1109/LGRS.2023.3302412
10.3390/rs13183690
10.1109/CVPR52688.2022.00460
10.1016/j.patrec.2021.11.027
10.1109/CVPR.2018.00644
10.1109/ACCESS.2020.3005861
10.1109/ICCVW.2019.00246
10.1109/RadarConf2351548.2023.10149726
10.1109/JSTARS.2022.3180159
10.1109/ACCESS.2022.3154474
10.1109/TGRS.2019.2931308
10.1109/LGRS.2018.2882551
10.1109/ICAIIC57133.2023.10067131
10.3390/rs14051149
10.1109/CVPR.2014.81
10.1145/3434581.3434613
10.3390/s22093447
10.1109/LGRS.2020.3038901
10.1109/BIGSARDATA53212.2021.9574162
10.1109/JSTARS.2023.3244616
10.3390/rs14010180
10.1109/TGRS.2022.3186155
10.1109/JSTARS.2021.3120009
10.1109/JMASS.2022.3203214
10.1109/JSTARS.2022.3150910
10.1109/JSTARS.2020.3041783
10.1109/ICCV48922.2021.00526
10.1109/CVPR42600.2020.00978
10.1109/TGRS.2017.2763089
10.3390/rs9080860
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JSTARS.2024.3426288
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 13231
ExternalDocumentID oai_doaj_org_article_89530feeeab44e2f9ad8e32546f271af
10.1109/jstars.2024.3426288
10_1109_JSTARS_2024_3426288
10592644
Genre orig-research
GrantInformation_xml – fundername: Project of Key Laboratory of Tourism Multisource Data Perception and Decision
– fundername: Ministry of Culture and Tourism, China
  grantid: E020H202300
– fundername: Chongqing Municipal Education Commission Key Cooperation Projects, China
  grantid: HZ2021008
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-657274994db99b805f652f664ed1f87e28e35906146a1e382e3fed3f805e7c913
IEDL.DBID RIE
ISSN 1939-1404
2151-1535
IngestDate Fri Oct 03 12:44:50 EDT 2025
Sun Sep 07 10:55:26 EDT 2025
Fri Jul 25 18:54:50 EDT 2025
Wed Oct 01 03:51:39 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed Aug 27 02:35:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-657274994db99b805f652f664ed1f87e28e35906146a1e382e3fed3f805e7c913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-9094-3878
0000-0002-7407-6126
0000-0003-1123-0090
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10592644
PQID 3089918007
PQPubID 75722
PageCount 15
ParticipantIDs unpaywall_primary_10_1109_jstars_2024_3426288
crossref_primary_10_1109_JSTARS_2024_3426288
ieee_primary_10592644
proquest_journals_3089918007
crossref_citationtrail_10_1109_JSTARS_2024_3426288
doaj_primary_oai_doaj_org_article_89530feeeab44e2f9ad8e32546f271af
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Chen (ref22) 2017
ref2
ref1
ref39
ref16
ref38
ref19
ref18
Xiao (ref36) 2021
ref24
Zhou (ref6) 2021; 10
ref23
ref26
ref25
Zhang (ref41) 2020
ref20
ref21
Ross (ref15) 2017
ref28
ref27
ref8
ref7
ref9
ref4
ref3
Cao (ref42) 2022
Ren (ref17) 2015; 28
ref5
Chen (ref29) 2019
ref40
References_xml – ident: ref14
  doi: 10.1109/CVPR52729.2023.00596
– volume: 10
  start-page: 531
  issue: 4
  year: 2021
  ident: ref6
  article-title: SAR image ship detection based on multi-scale feature fusion and feature channel relationship calibration
  publication-title: J. Radars
– ident: ref18
  doi: 10.1109/ICCV.2019.00975
– ident: ref40
  doi: 10.1007/s40747-023-01240-y
– ident: ref28
  doi: 10.1109/CVPR52729.2023.01889
– start-page: 15394
  year: 2022
  ident: ref42
  article-title: PKD: General distillation framework for object detectors via Pearson correlation coefficient
  publication-title: in Proc. 36th Int. Conf. Neural Inf. Process. Syst.
– year: 2019
  ident: ref29
  article-title: MMdetection: Open MMLab detection toolbox and benchmark
– ident: ref25
  doi: 10.1109/LGRS.2023.3302412
– ident: ref30
  doi: 10.3390/rs13183690
– ident: ref23
  doi: 10.1109/CVPR52688.2022.00460
– ident: ref27
  doi: 10.1016/j.patrec.2021.11.027
– ident: ref32
  doi: 10.1109/CVPR.2018.00644
– ident: ref31
  doi: 10.1109/ACCESS.2020.3005861
– start-page: 2980
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref15
  article-title: Focal loss for dense object detection
– start-page: 742
  year: 2017
  ident: ref22
  article-title: Learning efficient object detection models with knowledge distillation
  publication-title: in Proc. 31st Int. Conf. Neural Inf. Process. Syst.
– ident: ref24
  doi: 10.1109/ICCVW.2019.00246
– ident: ref3
  doi: 10.1109/RadarConf2351548.2023.10149726
– ident: ref9
  doi: 10.1109/JSTARS.2022.3180159
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Inf. Sci., Comput. Technol. Transp.
  year: 2021
  ident: ref36
  article-title: Lightweight SAR image target detection algorithm based on YOLO-V5
– ident: ref34
  doi: 10.1109/ACCESS.2022.3154474
– ident: ref2
  doi: 10.1109/TGRS.2019.2931308
– ident: ref20
  doi: 10.1109/LGRS.2018.2882551
– ident: ref8
  doi: 10.1109/ICAIIC57133.2023.10067131
– ident: ref35
  doi: 10.3390/rs14051149
– ident: ref16
  doi: 10.1109/CVPR.2014.81
– ident: ref12
  doi: 10.1145/3434581.3434613
– ident: ref37
  doi: 10.3390/s22093447
– ident: ref38
  doi: 10.1109/LGRS.2020.3038901
– ident: ref39
  doi: 10.1109/BIGSARDATA53212.2021.9574162
– ident: ref21
  doi: 10.1109/JSTARS.2023.3244616
– ident: ref19
  doi: 10.3390/rs14010180
– ident: ref10
  doi: 10.1109/TGRS.2022.3186155
– ident: ref13
  doi: 10.1109/JSTARS.2021.3120009
– volume: 28
  start-page: 91
  year: 2015
  ident: ref17
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: in Proc. 28th Int. Conf. Neural Inf. Process. Syst.
– ident: ref4
  doi: 10.1109/JMASS.2022.3203214
– ident: ref7
  doi: 10.1109/JSTARS.2022.3150910
– ident: ref11
  doi: 10.1109/JSTARS.2020.3041783
– volume-title: Proc. Int. Conf. Learn. Represent.
  year: 2020
  ident: ref41
  article-title: Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors
– ident: ref26
  doi: 10.1109/ICCV48922.2021.00526
– ident: ref33
  doi: 10.1109/CVPR42600.2020.00978
– ident: ref1
  doi: 10.1109/TGRS.2017.2763089
– ident: ref5
  doi: 10.3390/rs9080860
SSID ssj0062793
Score 2.3817334
Snippet Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13217
SubjectTerms Algorithms
Background noise
Biological system modeling
Computational modeling
Datasets
Decoupling
Deep learning
Detectors
Distillation
Distilling
Feature extraction
Feature imitation
Feature maps
Image enhancement
Image resolution
knowledge distillation
Knowledge engineering
Knowledge representation
Machine learning
Marine vehicles
Modules
multiscale fusion
Radar detection
SAR (radar)
ship detection
Synthetic aperture radar
synthetic aperture radar (SAR) image
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSoheEJQiUgrygSOhib8Scwu0SwVqD7tU6s1ykjFtlaarbVao_x6P4122QioXblE0SUYz4_EbZ_SGkPey5kKCan3wgktFo0Vqpb9See24g0zwOjTInqmTc_HtQl5sjPrCnrCRHng03GGpJc8cANhaCGBO27YEjizujhW5dZh9s1KviqkxBytWBLpdj050igQykW8oz_ShD_hqOvOVIRMfOfKxh6Erf_akQN0fZ608gJ1Pl_3c3v-yXbexA02ek2cROtJqVPkF2YJ-lzz5Gkbz3r8k09N0MjvCJdt1n2hFEdwtF0BP7Zx-X52c0SgQ_EGr7uft4mq4vKEeutJZNaWzy6s5PYIhNGj1e-R8cvzjy0kaJyakja_TBuxj8VWm1qKtta7LTDolmVNKQJu7sgDmTSc1FoHK5sBLBt4fLXdeEopG5_wV2e5ve3hNaCmZbGTRKtmUgjet9qnNSZspB1wLJxPCVjYzTaQTx6kWnQllRabNaGiDhjbR0An5sH5oPrJpPC7-GZ2xFkUq7HDDB4iJAWL-FSAJ2UNXbnxPakSBCTlY-dbEdXtnOP4FzT2ILhKSrv39l67XHrkv7h7ouv8_dH1DdvCd4xHPAdkeFkt460HPUL8L8f0byyr3zQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegE-KJzyGCBvIDj6Qk8Uds3gKjTKBNqKXSeLKcxN4GIau6VGj89dwlbtWCQPAWRZfE9t3Zv4vPvyPkuSgZF07WYLzOx7zSPLYCrmRaeuZdwlnZJ8ieyKM5f38qTgPPNp6F2d6_TxP98gtgpCXSamd8zJA9XambZE8KAN4jsjc_-Vh8HvaNdYxEMVhKDtawGPxYBI6hP7xlZx3q6fpDfZUdqHl71S7s9XfbNFurzuTucJz7qicrxGSTr-NVV46rH79QOf5jh-6ROwF90mIwl_vkhmsfkFvv-uq-1w_J9DiezA7R65vmFS0o4sPV0tFju6Af1j_faBDoVUqL5uxyedGdf6OAfumsmNLZ-cWCHrquz_Fq98l88vbTm6M4FF2IKwj1OkyFgUBVa16XWpcqEV6KzEvJXZ16lbtMOSY0xpHSpo6pzIFKa-ZB0uWVTtkjMmovW_eYUCUyUYm8lqJSnFW1htnRC5tI75jmXkQkW6vAVIGRHAtjNKaPTBJtYHIqpjODg2XCYEXkxeahxUDI8Xfx16jbjSiyafc3QCcmOKdRWrDEg-5tybnLvLY19BIrBfgsT62PyD5axtb3hEYgGZGDtamY4PpXhuFGago4PI9IvDGf39o62MFOW5_8p_wBGXXLlXsKqKgrnwVv-AnLZwJF
  priority: 102
  providerName: Unpaywall
Title M-FSDistill: A Feature Map Knowledge Distillation Algorithm for SAR Ship Detection
URI https://ieeexplore.ieee.org/document/10592644
https://www.proquest.com/docview/3089918007
https://doi.org/10.1109/jstars.2024.3426288
https://doaj.org/article/89530feeeab44e2f9ad8e32546f271af
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIgQXyqOIQFn5wJFsk_iRmFvaslSgrtAuK5VTlMe4LYTsapsIlV9f23GWFgTiFkUT2dY3jr-xx98AvOYFZRxFpZ0Xlc9Kyfyc6ycRFooqDBgtbILsVBwv2IdTfuouq9u7MIhok89wbB7tWX61LDuzVbZvuIBZwLdgK05Ef1lr-O2KKLYKu5qQSN9oxjiJoTCQ-9rH09lcB4MRG1MjwW7rrPxahqxavyuvcotp3u-aVX71I6_rG4vOZAemQ3f7XJNv464txuXP35Qc_3s8j-Cho58k7f3lMdzB5gnce2_L-149hdmJP5kfmWlf129JSgxB7NZITvIV-TjsvhFnYDElaX22XF-059-Jpr9kns7I_PxiRY6wtUlezS4sJu8-Hx77ruqCX-pYrzW5MDpSlZJVhZRFEnAleKSEYFiFKokxSpByaQJJkYdIkwg1phVV2hLjUob0GWw3ywafA0l4xEseV4KXCaNlJfXvUfE8EAqpZIp7EA0gZKWTJDeVMerMhiaBzHrkMoNc5pDz4M3mo1WvyPFv8wOD7sbUyGnbFxqJzM3OLJGcBkrjkxeMYaRkXulRmlIBKorDXHmwa9C70V4PnAd7g7Nkbu5fZtScpIaaiMce-BsH-qOvXzX7X1_e6uuLvzTzEh4Ys37nZw-223WHrzQXaouR3UMY2ZkwgruL6af0yzXoaAOb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCLUXPosIFPCBI9km8UdiboGyLLS7h91W6s1KnDEtDdnVNhEqvx7bcZYWBOJmRbbs6I3tN_b4DUKvWUkoA14Z4wUdUiVoWDBT4nGpiYaIktIFyM745IR-PmWn_rG6ewsDAC74DEa26O7yq6Xq7FHZvuUCdgO_je4wSinrn2sNCy9PUqexayiJCK1qjBcZiiOxb6w8ny-MO5jQEbEi7C7Tyq-NyOn1-wQrN7jmdtesiqvvRV1f23bG99FsGHAfbXIx6tpypH78puX433_0AN3zBBTnvcU8RLegeYTufnQJfq8eo_k0HC8O7MSv67c4x5YidmvA02KFD4fzN-wrOFRxXn9Zrs_bs2_YEGC8yOd4cXa-wgfQujCvZhedjD8cv5-EPu9CqIy319poGOOrCkGrUogyi5jmLNGcU6hinaWQZECYsK4kL2IgWQIG1YpoUxNSJWLyBG01ywaeIpyxhCmWVpypjBJVCbNAalZEXAMRVLMAJQMIUnlRcpsbo5bOOYmE7JGTFjnpkQvQm02jVa_J8e_q7yy6m6pWUNt9MEhIPz9lJhiJtMGnKCmFRIuiMn9pkwXoJI0LHaBdi961_nrgArQ3GIv0s_9SEnuXGhsqngYo3BjQH2P9avj_-vLGWJ_9pZtXaHtyPD2SR59mh8_Rjm3SnwPtoa123cELw4za8qWbDz8BZKgEQw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegE-KJzyGCBvIDj6Qk8Uds3gKjTKBNqKXSeLKcxN4GIau6VGj89dwlbtWCQPAWRZfE9t3Zv4vPvyPkuSgZF07WYLzOx7zSPLYCrmRaeuZdwlnZJ8ieyKM5f38qTgPPNp6F2d6_TxP98gtgpCXSamd8zJA9XambZE8KAN4jsjc_-Vh8HvaNdYxEMVhKDtawGPxYBI6hP7xlZx3q6fpDfZUdqHl71S7s9XfbNFurzuTucJz7qicrxGSTr-NVV46rH79QOf5jh-6ROwF90mIwl_vkhmsfkFvv-uq-1w_J9DiezA7R65vmFS0o4sPV0tFju6Af1j_faBDoVUqL5uxyedGdf6OAfumsmNLZ-cWCHrquz_Fq98l88vbTm6M4FF2IKwj1OkyFgUBVa16XWpcqEV6KzEvJXZ16lbtMOSY0xpHSpo6pzIFKa-ZB0uWVTtkjMmovW_eYUCUyUYm8lqJSnFW1htnRC5tI75jmXkQkW6vAVIGRHAtjNKaPTBJtYHIqpjODg2XCYEXkxeahxUDI8Xfx16jbjSiyafc3QCcmOKdRWrDEg-5tybnLvLY19BIrBfgsT62PyD5axtb3hEYgGZGDtamY4PpXhuFGago4PI9IvDGf39o62MFOW5_8p_wBGXXLlXsKqKgrnwVv-AnLZwJF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-FSDistill%3A+A+Feature+Map+Knowledge+Distillation+Algorithm+for+SAR+Ship+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Guohui&rft.au=Qin%2C+Rui&rft.au=Xia%2C+Ying&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=13217&rft.epage=13231&rft_id=info:doi/10.1109%2FJSTARS.2024.3426288&rft.externalDocID=10592644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon