M-FSDistill: A Feature Map Knowledge Distillation Algorithm for SAR Ship Detection
Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 13217 - 13231 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2024.3426288 |
Cover
| Abstract | Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such as reduced convolutional layers and pruning, can easily lead to missed detections in models. Researchers have introduced knowledge distillation algorithms to address the issue of poor performance of lightweight models. However, the improvement effect of algorithms is limited due to shortcomings such as noise interference in the background and improper distillation strategies, especially for small ship detection with complex backgrounds. Aiming to address the limited performance improvement of distillation algorithms and missing detections of small ships in distillation models, we propose a multiscale feature enhancement and foreground-scene feature distillation algorithm for SAR ship detection. Specifically, in order to improve distillation efficiency, the feature learning distillation module is proposed to improve the quality of distillation knowledge by separating foreground and scene distillation. Then, the ship feature representation enhancement module utilizes a feature map decoupling and attention-based multiscale fusion algorithm to enhance student model's learning of small ship features and reduce missing detection. To validate the performance of the proposed method, we conducted experiments on SAR ship detection dataset (SSDD) and high-resolution SAR images dataset (HRSID) datasets and compared with several advanced methods. The results indicate that the models using our algorithm achieved significant improvements in average precision (AP). For instance, on the SSDD dataset, RetinaNet, Cascade R-CNN, and RepPoints based on ResNet18 achieved AP scores of 95.5%, 95.4%, and 95.9% respectively, surpassing the baseline by 3.9%, 3.1%, and 1.9%. |
|---|---|
| AbstractList | Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in synthetic aperture radar (SAR) ship detection, especially for models based on deep learning. Nonetheless, traditional lightweight methods, such as reduced convolutional layers and pruning, can easily lead to missed detections in models. Researchers have introduced knowledge distillation algorithms to address the issue of poor performance of lightweight models. However, the improvement effect of algorithms is limited due to shortcomings such as noise interference in the background and improper distillation strategies, especially for small ship detection with complex backgrounds. Aiming to address the limited performance improvement of distillation algorithms and missing detections of small ships in distillation models, we propose a multiscale feature enhancement and foreground-scene feature distillation algorithm for SAR ship detection. Specifically, in order to improve distillation efficiency, the feature learning distillation module is proposed to improve the quality of distillation knowledge by separating foreground and scene distillation. Then, the ship feature representation enhancement module utilizes a feature map decoupling and attention-based multiscale fusion algorithm to enhance student model's learning of small ship features and reduce missing detection. To validate the performance of the proposed method, we conducted experiments on SAR ship detection dataset (SSDD) and high-resolution SAR images dataset (HRSID) datasets and compared with several advanced methods. The results indicate that the models using our algorithm achieved significant improvements in average precision (AP). For instance, on the SSDD dataset, RetinaNet, Cascade R-CNN, and RepPoints based on ResNet18 achieved AP scores of 95.5%, 95.4%, and 95.9% respectively, surpassing the baseline by 3.9%, 3.1%, and 1.9%. |
| Author | Wang, Guohui Xia, Ying Qin, Rui |
| Author_xml | – sequence: 1 givenname: Guohui orcidid: 0009-0000-9094-3878 surname: Wang fullname: Wang, Guohui email: 1361783422@qq.com organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China – sequence: 2 givenname: Rui orcidid: 0000-0003-1123-0090 surname: Qin fullname: Qin, Rui email: qinrui@cqupt.edu.cn organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China – sequence: 3 givenname: Ying orcidid: 0000-0002-7407-6126 surname: Xia fullname: Xia, Ying email: xiaying@cqupt.edu.cn organization: Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, China |
| BookMark | eNqFkc1q3DAURkVJoZO0T9AuBF17on9b3Zkk06RNKIzTtdDYVxMNiuXKGkLevp54KCVddCW4fOeI-91TdNLHHhD6SMmSUqLPvzX39bpZMsLEkgumWFW9QQtGJS2o5PIELajmuqCCiHfodBx3hChWar5A67ti1Vz6MfsQvuAar8DmfQJ8Zwf8vY9PAbot4GPAZh97XIdtTD4_PGIXE27qNW4e_IAvIUN7CLxHb50NI3w4vmfo5-rq_uK6uP3x9eaivi1aQXQulCxZKbQW3UbrTUWkU5I5pQR01FUlsAq41ERRoSwFXjHgDjrupiSUrab8DN3M3i7anRmSf7Tp2UTrzcsgpq2xKfs2gKm05MQBgN0IAcxp2012JoVyrKTWTS4xu_b9YJ-fbAh_hJSYQ8dmN2abRnPo2Bw7nrDPMzak-GsPYza7uE_9tLXhpNKaVoSUU4rPqTbFcUzg_nHP93vt1q-o1ueXC-RkffgP-2lm_bTzX79JzZQQ_DcSd6fl |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs16224340 |
| Cites_doi | 10.1109/CVPR52729.2023.00596 10.1109/ICCV.2019.00975 10.1007/s40747-023-01240-y 10.1109/CVPR52729.2023.01889 10.1109/LGRS.2023.3302412 10.3390/rs13183690 10.1109/CVPR52688.2022.00460 10.1016/j.patrec.2021.11.027 10.1109/CVPR.2018.00644 10.1109/ACCESS.2020.3005861 10.1109/ICCVW.2019.00246 10.1109/RadarConf2351548.2023.10149726 10.1109/JSTARS.2022.3180159 10.1109/ACCESS.2022.3154474 10.1109/TGRS.2019.2931308 10.1109/LGRS.2018.2882551 10.1109/ICAIIC57133.2023.10067131 10.3390/rs14051149 10.1109/CVPR.2014.81 10.1145/3434581.3434613 10.3390/s22093447 10.1109/LGRS.2020.3038901 10.1109/BIGSARDATA53212.2021.9574162 10.1109/JSTARS.2023.3244616 10.3390/rs14010180 10.1109/TGRS.2022.3186155 10.1109/JSTARS.2021.3120009 10.1109/JMASS.2022.3203214 10.1109/JSTARS.2022.3150910 10.1109/JSTARS.2020.3041783 10.1109/ICCV48922.2021.00526 10.1109/CVPR42600.2020.00978 10.1109/TGRS.2017.2763089 10.3390/rs9080860 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY DOA |
| DOI | 10.1109/JSTARS.2024.3426288 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) eJournal Collection |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 13231 |
| ExternalDocumentID | oai_doaj_org_article_89530feeeab44e2f9ad8e32546f271af 10.1109/jstars.2024.3426288 10_1109_JSTARS_2024_3426288 10592644 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Project of Key Laboratory of Tourism Multisource Data Perception and Decision – fundername: Ministry of Culture and Tourism, China grantid: E020H202300 – fundername: Chongqing Municipal Education Commission Key Cooperation Projects, China grantid: HZ2021008 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-657274994db99b805f652f664ed1f87e28e35906146a1e382e3fed3f805e7c913 |
| IEDL.DBID | RIE |
| ISSN | 1939-1404 2151-1535 |
| IngestDate | Fri Oct 03 12:44:50 EDT 2025 Sun Sep 07 10:55:26 EDT 2025 Fri Jul 25 18:54:50 EDT 2025 Wed Oct 01 03:51:39 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed Aug 27 02:35:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-657274994db99b805f652f664ed1f87e28e35906146a1e382e3fed3f805e7c913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-9094-3878 0000-0002-7407-6126 0000-0003-1123-0090 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10592644 |
| PQID | 3089918007 |
| PQPubID | 75722 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1109_jstars_2024_3426288 crossref_primary_10_1109_JSTARS_2024_3426288 ieee_primary_10592644 proquest_journals_3089918007 crossref_citationtrail_10_1109_JSTARS_2024_3426288 doaj_primary_oai_doaj_org_article_89530feeeab44e2f9ad8e32546f271af |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Chen (ref22) 2017 ref2 ref1 ref39 ref16 ref38 ref19 ref18 Xiao (ref36) 2021 ref24 Zhou (ref6) 2021; 10 ref23 ref26 ref25 Zhang (ref41) 2020 ref20 ref21 Ross (ref15) 2017 ref28 ref27 ref8 ref7 ref9 ref4 ref3 Cao (ref42) 2022 Ren (ref17) 2015; 28 ref5 Chen (ref29) 2019 ref40 |
| References_xml | – ident: ref14 doi: 10.1109/CVPR52729.2023.00596 – volume: 10 start-page: 531 issue: 4 year: 2021 ident: ref6 article-title: SAR image ship detection based on multi-scale feature fusion and feature channel relationship calibration publication-title: J. Radars – ident: ref18 doi: 10.1109/ICCV.2019.00975 – ident: ref40 doi: 10.1007/s40747-023-01240-y – ident: ref28 doi: 10.1109/CVPR52729.2023.01889 – start-page: 15394 year: 2022 ident: ref42 article-title: PKD: General distillation framework for object detectors via Pearson correlation coefficient publication-title: in Proc. 36th Int. Conf. Neural Inf. Process. Syst. – year: 2019 ident: ref29 article-title: MMdetection: Open MMLab detection toolbox and benchmark – ident: ref25 doi: 10.1109/LGRS.2023.3302412 – ident: ref30 doi: 10.3390/rs13183690 – ident: ref23 doi: 10.1109/CVPR52688.2022.00460 – ident: ref27 doi: 10.1016/j.patrec.2021.11.027 – ident: ref32 doi: 10.1109/CVPR.2018.00644 – ident: ref31 doi: 10.1109/ACCESS.2020.3005861 – start-page: 2980 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2017 ident: ref15 article-title: Focal loss for dense object detection – start-page: 742 year: 2017 ident: ref22 article-title: Learning efficient object detection models with knowledge distillation publication-title: in Proc. 31st Int. Conf. Neural Inf. Process. Syst. – ident: ref24 doi: 10.1109/ICCVW.2019.00246 – ident: ref3 doi: 10.1109/RadarConf2351548.2023.10149726 – ident: ref9 doi: 10.1109/JSTARS.2022.3180159 – start-page: 1 volume-title: Proc. 6th Int. Conf. Inf. Sci., Comput. Technol. Transp. year: 2021 ident: ref36 article-title: Lightweight SAR image target detection algorithm based on YOLO-V5 – ident: ref34 doi: 10.1109/ACCESS.2022.3154474 – ident: ref2 doi: 10.1109/TGRS.2019.2931308 – ident: ref20 doi: 10.1109/LGRS.2018.2882551 – ident: ref8 doi: 10.1109/ICAIIC57133.2023.10067131 – ident: ref35 doi: 10.3390/rs14051149 – ident: ref16 doi: 10.1109/CVPR.2014.81 – ident: ref12 doi: 10.1145/3434581.3434613 – ident: ref37 doi: 10.3390/s22093447 – ident: ref38 doi: 10.1109/LGRS.2020.3038901 – ident: ref39 doi: 10.1109/BIGSARDATA53212.2021.9574162 – ident: ref21 doi: 10.1109/JSTARS.2023.3244616 – ident: ref19 doi: 10.3390/rs14010180 – ident: ref10 doi: 10.1109/TGRS.2022.3186155 – ident: ref13 doi: 10.1109/JSTARS.2021.3120009 – volume: 28 start-page: 91 year: 2015 ident: ref17 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: in Proc. 28th Int. Conf. Neural Inf. Process. Syst. – ident: ref4 doi: 10.1109/JMASS.2022.3203214 – ident: ref7 doi: 10.1109/JSTARS.2022.3150910 – ident: ref11 doi: 10.1109/JSTARS.2020.3041783 – volume-title: Proc. Int. Conf. Learn. Represent. year: 2020 ident: ref41 article-title: Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors – ident: ref26 doi: 10.1109/ICCV48922.2021.00526 – ident: ref33 doi: 10.1109/CVPR42600.2020.00978 – ident: ref1 doi: 10.1109/TGRS.2017.2763089 – ident: ref5 doi: 10.3390/rs9080860 |
| SSID | ssj0062793 |
| Score | 2.3817334 |
| Snippet | Limited by the capacity and computing ability of platform payload, researchers often face the challenge of balancing lightness and performance of models in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13217 |
| SubjectTerms | Algorithms Background noise Biological system modeling Computational modeling Datasets Decoupling Deep learning Detectors Distillation Distilling Feature extraction Feature imitation Feature maps Image enhancement Image resolution knowledge distillation Knowledge engineering Knowledge representation Machine learning Marine vehicles Modules multiscale fusion Radar detection SAR (radar) ship detection Synthetic aperture radar synthetic aperture radar (SAR) image |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSoheEJQiUgrygSOhib8Scwu0SwVqD7tU6s1ykjFtlaarbVao_x6P4122QioXblE0SUYz4_EbZ_SGkPey5kKCan3wgktFo0Vqpb9See24g0zwOjTInqmTc_HtQl5sjPrCnrCRHng03GGpJc8cANhaCGBO27YEjizujhW5dZh9s1KviqkxBytWBLpdj050igQykW8oz_ShD_hqOvOVIRMfOfKxh6Erf_akQN0fZ608gJ1Pl_3c3v-yXbexA02ek2cROtJqVPkF2YJ-lzz5Gkbz3r8k09N0MjvCJdt1n2hFEdwtF0BP7Zx-X52c0SgQ_EGr7uft4mq4vKEeutJZNaWzy6s5PYIhNGj1e-R8cvzjy0kaJyakja_TBuxj8VWm1qKtta7LTDolmVNKQJu7sgDmTSc1FoHK5sBLBt4fLXdeEopG5_wV2e5ve3hNaCmZbGTRKtmUgjet9qnNSZspB1wLJxPCVjYzTaQTx6kWnQllRabNaGiDhjbR0An5sH5oPrJpPC7-GZ2xFkUq7HDDB4iJAWL-FSAJ2UNXbnxPakSBCTlY-dbEdXtnOP4FzT2ILhKSrv39l67XHrkv7h7ouv8_dH1DdvCd4xHPAdkeFkt460HPUL8L8f0byyr3zQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegE-KJzyGCBvIDj6Qk8Uds3gKjTKBNqKXSeLKcxN4GIau6VGj89dwlbtWCQPAWRZfE9t3Zv4vPvyPkuSgZF07WYLzOx7zSPLYCrmRaeuZdwlnZJ8ieyKM5f38qTgPPNp6F2d6_TxP98gtgpCXSamd8zJA9XambZE8KAN4jsjc_-Vh8HvaNdYxEMVhKDtawGPxYBI6hP7xlZx3q6fpDfZUdqHl71S7s9XfbNFurzuTucJz7qicrxGSTr-NVV46rH79QOf5jh-6ROwF90mIwl_vkhmsfkFvv-uq-1w_J9DiezA7R65vmFS0o4sPV0tFju6Af1j_faBDoVUqL5uxyedGdf6OAfumsmNLZ-cWCHrquz_Fq98l88vbTm6M4FF2IKwj1OkyFgUBVa16XWpcqEV6KzEvJXZ16lbtMOSY0xpHSpo6pzIFKa-ZB0uWVTtkjMmovW_eYUCUyUYm8lqJSnFW1htnRC5tI75jmXkQkW6vAVIGRHAtjNKaPTBJtYHIqpjODg2XCYEXkxeahxUDI8Xfx16jbjSiyafc3QCcmOKdRWrDEg-5tybnLvLY19BIrBfgsT62PyD5axtb3hEYgGZGDtamY4PpXhuFGago4PI9IvDGf39o62MFOW5_8p_wBGXXLlXsKqKgrnwVv-AnLZwJF priority: 102 providerName: Unpaywall |
| Title | M-FSDistill: A Feature Map Knowledge Distillation Algorithm for SAR Ship Detection |
| URI | https://ieeexplore.ieee.org/document/10592644 https://www.proquest.com/docview/3089918007 https://doi.org/10.1109/jstars.2024.3426288 https://doaj.org/article/89530feeeab44e2f9ad8e32546f271af |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIgQXyqOIQFn5wJFsk_iRmFvaslSgrtAuK5VTlMe4LYTsapsIlV9f23GWFgTiFkUT2dY3jr-xx98AvOYFZRxFpZ0Xlc9Kyfyc6ycRFooqDBgtbILsVBwv2IdTfuouq9u7MIhok89wbB7tWX61LDuzVbZvuIBZwLdgK05Ef1lr-O2KKLYKu5qQSN9oxjiJoTCQ-9rH09lcB4MRG1MjwW7rrPxahqxavyuvcotp3u-aVX71I6_rG4vOZAemQ3f7XJNv464txuXP35Qc_3s8j-Cho58k7f3lMdzB5gnce2_L-149hdmJP5kfmWlf129JSgxB7NZITvIV-TjsvhFnYDElaX22XF-059-Jpr9kns7I_PxiRY6wtUlezS4sJu8-Hx77ruqCX-pYrzW5MDpSlZJVhZRFEnAleKSEYFiFKokxSpByaQJJkYdIkwg1phVV2hLjUob0GWw3ywafA0l4xEseV4KXCaNlJfXvUfE8EAqpZIp7EA0gZKWTJDeVMerMhiaBzHrkMoNc5pDz4M3mo1WvyPFv8wOD7sbUyGnbFxqJzM3OLJGcBkrjkxeMYaRkXulRmlIBKorDXHmwa9C70V4PnAd7g7Nkbu5fZtScpIaaiMce-BsH-qOvXzX7X1_e6uuLvzTzEh4Ys37nZw-223WHrzQXaouR3UMY2ZkwgruL6af0yzXoaAOb |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCLUXPosIFPCBI9km8UdiboGyLLS7h91W6s1KnDEtDdnVNhEqvx7bcZYWBOJmRbbs6I3tN_b4DUKvWUkoA14Z4wUdUiVoWDBT4nGpiYaIktIFyM745IR-PmWn_rG6ewsDAC74DEa26O7yq6Xq7FHZvuUCdgO_je4wSinrn2sNCy9PUqexayiJCK1qjBcZiiOxb6w8ny-MO5jQEbEi7C7Tyq-NyOn1-wQrN7jmdtesiqvvRV1f23bG99FsGHAfbXIx6tpypH78puX433_0AN3zBBTnvcU8RLegeYTufnQJfq8eo_k0HC8O7MSv67c4x5YidmvA02KFD4fzN-wrOFRxXn9Zrs_bs2_YEGC8yOd4cXa-wgfQujCvZhedjD8cv5-EPu9CqIy319poGOOrCkGrUogyi5jmLNGcU6hinaWQZECYsK4kL2IgWQIG1YpoUxNSJWLyBG01ywaeIpyxhCmWVpypjBJVCbNAalZEXAMRVLMAJQMIUnlRcpsbo5bOOYmE7JGTFjnpkQvQm02jVa_J8e_q7yy6m6pWUNt9MEhIPz9lJhiJtMGnKCmFRIuiMn9pkwXoJI0LHaBdi961_nrgArQ3GIv0s_9SEnuXGhsqngYo3BjQH2P9avj_-vLGWJ_9pZtXaHtyPD2SR59mh8_Rjm3SnwPtoa123cELw4za8qWbDz8BZKgEQw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegE-KJzyGCBvIDj6Qk8Uds3gKjTKBNqKXSeLKcxN4GIau6VGj89dwlbtWCQPAWRZfE9t3Zv4vPvyPkuSgZF07WYLzOx7zSPLYCrmRaeuZdwlnZJ8ieyKM5f38qTgPPNp6F2d6_TxP98gtgpCXSamd8zJA9XambZE8KAN4jsjc_-Vh8HvaNdYxEMVhKDtawGPxYBI6hP7xlZx3q6fpDfZUdqHl71S7s9XfbNFurzuTucJz7qicrxGSTr-NVV46rH79QOf5jh-6ROwF90mIwl_vkhmsfkFvv-uq-1w_J9DiezA7R65vmFS0o4sPV0tFju6Af1j_faBDoVUqL5uxyedGdf6OAfumsmNLZ-cWCHrquz_Fq98l88vbTm6M4FF2IKwj1OkyFgUBVa16XWpcqEV6KzEvJXZ16lbtMOSY0xpHSpo6pzIFKa-ZB0uWVTtkjMmovW_eYUCUyUYm8lqJSnFW1htnRC5tI75jmXkQkW6vAVIGRHAtjNKaPTBJtYHIqpjODg2XCYEXkxeahxUDI8Xfx16jbjSiyafc3QCcmOKdRWrDEg-5tybnLvLY19BIrBfgsT62PyD5axtb3hEYgGZGDtamY4PpXhuFGago4PI9IvDGf39o62MFOW5_8p_wBGXXLlXsKqKgrnwVv-AnLZwJF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-FSDistill%3A+A+Feature+Map+Knowledge+Distillation+Algorithm+for+SAR+Ship+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Guohui&rft.au=Qin%2C+Rui&rft.au=Xia%2C+Ying&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=13217&rft.epage=13231&rft_id=info:doi/10.1109%2FJSTARS.2024.3426288&rft.externalDocID=10592644 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |