PFYOLOv4: An Improved Small Object Pedestrian Detection Algorithm
With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In orde...
Saved in:
| Published in | IEEE access Vol. 11; pp. 17197 - 17206 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3244981 |
Cover
| Abstract | With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In order to solve the above problems, based on YOLOv4 algorithm, this paper proposes an improved small target pedestrian detection algorithm named PF_YOLOv4. The algorithm is improved in three aspects on the basis of the YOLOv4 algorithm: firstly, a soft thresholding module is added to the residual structure of the backbone network to perform noise reduction process on interference factors, such as light to enhance the robustness of the algorithm; secondly, the depthwise separable convolution replaces the traditional convolution in the YOLOv4 residual structure, to reduce the number of network model parameters; finally, the Convolutional Block Attention Module (CBAM) is added after the output feature map of the backbone network to enhance of the network feature expression. Experimental results show that the PF_YOLOv4 algorithm outperforms most of the state-of-the-art algorithms in detecting small target pedestrians. The mean Average Precision (mAP) of the PF_YOLOv4 algorithm is 2.35% higher than that of the YOLOv4 algorithm and 9.67% higher than that of the YOLOv3 algorithm, while the detection speed is slightly higher than that of YOLOv4 algorithm. |
|---|---|
| AbstractList | With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In order to solve the above problems, based on YOLOv4 algorithm, this paper proposes an improved small target pedestrian detection algorithm named PF_YOLOv4. The algorithm is improved in three aspects on the basis of the YOLOv4 algorithm: firstly, a soft thresholding module is added to the residual structure of the backbone network to perform noise reduction process on interference factors, such as light to enhance the robustness of the algorithm; secondly, the depthwise separable convolution replaces the traditional convolution in the YOLOv4 residual structure, to reduce the number of network model parameters; finally, the Convolutional Block Attention Module (CBAM) is added after the output feature map of the backbone network to enhance of the network feature expression. Experimental results show that the PF_YOLOv4 algorithm outperforms most of the state-of-the-art algorithms in detecting small target pedestrians. The mean Average Precision (mAP) of the PF_YOLOv4 algorithm is 2.35% higher than that of the YOLOv4 algorithm and 9.67% higher than that of the YOLOv3 algorithm, while the detection speed is slightly higher than that of YOLOv4 algorithm. |
| Author | Zhuang, Yuan Lai, Jinling Zeng, Yunhui Li, Kaihui |
| Author_xml | – sequence: 1 givenname: Kaihui orcidid: 0000-0002-2249-3497 surname: Li fullname: Li, Kaihui organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China – sequence: 2 givenname: Yuan surname: Zhuang fullname: Zhuang, Yuan organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China – sequence: 3 givenname: Jinling surname: Lai fullname: Lai, Jinling organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China – sequence: 4 givenname: Yunhui orcidid: 0000-0003-3398-6884 surname: Zeng fullname: Zeng, Yunhui email: zengyh@sdas.org organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China |
| BookMark | eNptkUtPGzEURi1EpVLgF5TFSF0n-DV-sBulASJFClLaRVeWx74Djibj1DOh4t_XYRBCEd7Yurrns-_xN3TaxQ4Q-k7wlBCsr6vZbL5eTymmbMoo51qRE3RGidATVjJx-uH8FV32_QbnpXKplGeoerj9s1qunvlNUXXFYrtL8Rl8sd7ati1W9QbcUDyAh35IwXbFTxhyJcSuqNrHmMLwtL1AXxrb9nD5tp-j37fzX7P7yXJ1t5hVy4njWA-TsvENYZoC4w0RFCjTnglva18L67DFUFNVEgHSU1fK3CkkSFtDDczJjJ2jxZjro92YXQpbm15MtMG8FmJ6NDYNwbVgaqtACV9zqjGXSmiqHHFKl0qUlnORs_iYte929uVfnvU9kGBzsGqsc9D35mDVvFnN2I8Ry5b-7rMTs4n71OWpDZVSC5kH1LlLj10uxb5P0BgXBnuQNiQb2vcbxn87voEdscfv-py6GqkAAB8IzLN6yv4DnpiiZA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104611 crossref_primary_10_1109_ACCESS_2025_3534321 crossref_primary_10_1109_ACCESS_2023_3284062 crossref_primary_10_3390_electronics13020273 crossref_primary_10_48084_etasr_9135 crossref_primary_10_1109_ACCESS_2024_3437359 crossref_primary_10_1016_j_amf_2025_200205 |
| Cites_doi | 10.1007/s42452-021-04897-7 10.1016/j.engappai.2020.103615 10.48550/arXiv.2004.10934 10.1016/j.patrec.2018.05.024 10.48550/ARXIV.1807.06521 10.1109/CVPR.2016.91 10.1007/978-981-33-4080-0_64 10.1109/TMM.2017.2759508 10.1109/TPAMI.2015.2389824 10.1109/CVPRW50498.2020.00203 10.1109/CVPR.2018.00010 10.1109/CVPR.2017.690 10.1109/TPAMI.2016.2587640 10.5244/C.31.76 10.1109/CVPR.2019.00075 10.1109/CVPR.2014.81 10.1007/978-3-319-10602-1_48 10.1109/ACCESS.2022.3204053 10.1109/CVPR.2018.00913 10.1109/ICCV.2015.169 10.48550/arXiv.1911.08287 10.1109/TII.2019.2943898 10.1088/1742-6596/1777/1/012057 10.1109/CVPR.2005.177 10.3390/s21124184 10.1109/CVPR.2018.00474 10.1109/ICSPCC52875.2021.9564613 10.1109/ICCC51575.2020.9344983 10.1109/ACCESS.2020.2999694 10.l007/978-3-319-46448-0_2 10.1145/2964284.2967274 10.1016/j.patcog.2018.08.018 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3244981 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 17206 |
| ExternalDocumentID | oai_doaj_org_article_ba8e86db42904786928c1c895865a446 10.1109/access.2023.3244981 10_1109_ACCESS_2023_3244981 10044092 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shandong Provincial Key Research and Development Program grantid: 2019JMRH0109 funderid: 10.13039/100014103 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-5fdf1392e34f162e239d36dabdb6ac0a0eb28516e7d2c5739267e7abebe3c72e3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:35:57 EDT 2025 Tue Aug 19 19:02:57 EDT 2025 Mon Jun 30 06:33:01 EDT 2025 Wed Oct 01 03:26:32 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Aug 27 02:54:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-5fdf1392e34f162e239d36dabdb6ac0a0eb28516e7d2c5739267e7abebe3c72e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3398-6884 0000-0002-2249-3497 |
| OpenAccessLink | https://doaj.org/article/ba8e86db42904786928c1c895865a446 |
| PQID | 2779671399 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2023_3244981 crossref_citationtrail_10_1109_ACCESS_2023_3244981 ieee_primary_10044092 doaj_primary_oai_doaj_org_article_ba8e86db42904786928c1c895865a446 proquest_journals_2779671399 crossref_primary_10_1109_ACCESS_2023_3244981 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 Redmon (ref23) 2018 ref31 Ren (ref13); 28 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Li (ref20) 2017 ref18 Fu (ref16) 2017 ref24 ref26 ref25 Cao (ref19) 2018; 10615 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1007/s42452-021-04897-7 – ident: ref1 doi: 10.1016/j.engappai.2020.103615 – ident: ref24 doi: 10.48550/arXiv.2004.10934 – ident: ref2 doi: 10.1016/j.patrec.2018.05.024 – volume: 10615 start-page: 381 year: 2018 ident: ref19 article-title: Feature-fused SSD: Fast detection for small objects publication-title: Proc. SPIE – ident: ref31 doi: 10.48550/ARXIV.1807.06521 – ident: ref21 doi: 10.1109/CVPR.2016.91 – ident: ref7 doi: 10.1007/978-981-33-4080-0_64 – ident: ref6 doi: 10.1109/TMM.2017.2759508 – ident: ref11 doi: 10.1109/TPAMI.2015.2389824 – ident: ref25 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref3 doi: 10.1109/CVPR.2018.00010 – ident: ref22 doi: 10.1109/CVPR.2017.690 – ident: ref36 doi: 10.1109/TPAMI.2016.2587640 – ident: ref18 doi: 10.5244/C.31.76 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref13 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: ref34 doi: 10.1109/CVPR.2019.00075 – ident: ref10 doi: 10.1109/CVPR.2014.81 – ident: ref4 doi: 10.1007/978-3-319-10602-1_48 – ident: ref9 doi: 10.1109/ACCESS.2022.3204053 – ident: ref28 doi: 10.1109/CVPR.2018.00913 – ident: ref12 doi: 10.1109/ICCV.2015.169 – ident: ref32 doi: 10.48550/arXiv.1911.08287 – ident: ref29 doi: 10.1109/TII.2019.2943898 – ident: ref14 doi: 10.1088/1742-6596/1777/1/012057 – ident: ref37 doi: 10.1109/CVPR.2005.177 – year: 2017 ident: ref20 article-title: FSSD: Feature fusion single shot multibox detector publication-title: arXiv:1712.00960 – ident: ref27 doi: 10.3390/s21124184 – ident: ref30 doi: 10.1109/CVPR.2018.00474 – ident: ref8 doi: 10.1109/ICSPCC52875.2021.9564613 – ident: ref26 doi: 10.1109/ICCC51575.2020.9344983 – ident: ref35 doi: 10.1109/ACCESS.2020.2999694 – ident: ref15 doi: 10.l007/978-3-319-46448-0_2 – year: 2017 ident: ref16 article-title: DSSD: Deconvolutional single shot detector publication-title: arXiv:1701.06659 – ident: ref33 doi: 10.1145/2964284.2967274 – ident: ref5 doi: 10.1016/j.patcog.2018.08.018 – year: 2018 ident: ref23 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 |
| SSID | ssj0000816957 |
| Score | 2.3248944 |
| Snippet | With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17197 |
| SubjectTerms | Algorithms Artificial neural networks Classification algorithms Computer networks convolutional block attention module Convolutional neural networks Deep learning depthwise separable convolution Detection algorithms Feature extraction Feature maps Interference Modules Noise reduction Object detection Object recognition Occlusion Pedestrians Small target pedestrian detection soft thresholding Target detection |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-DAs4jQgnzgSNLEie24t7CwqhB0K0Glcor8mABim61KFkR_fceOd7ULAnGLorE89owznyf2N4S8yAVTFrF9qriCtIJOp4ZrSEtwpTIKA3qgY3h_LI5Oq7dn_CxeVg93YQAgHD6DzD-Gf_luYZc-VXYQ2M1yhV_cm7IW42WtdULFV5BQXEZmoSJXB81kgoPIfIHwDHFDpepiK_oEkv5YVWULYN5a9hf61089n2_Emuk9crzScjxi8i1bDiazV78ROP73MO6TuxF10mZ0kwfkBvQPyZ0NLsJHpDmZfpq9m_2oDmnT0zHXAI5-OEf96Mz4dA09AQehzkdPX8MQDnH1tJl_Xlx-Hb6c75LT6ZuPk6M01ldILXY_pLxzHQJABmXVFYIBK5UrhdPGGaFtrnPcdSMgEyAds1yipJAgtUG7l1Zis8dkp1_08IRQxGkFN6ZEvyw9p73inSp04UTFdc1rlhC2mvfWRvJxXwNj3oZNSK7a0VitN1YbjZWQl-tGFyP3xr_FX3mDrkU9cXZ4gZPfxnWI2KCGWjiDYdjzEgnFaltY1LcWXOPWOCG73mAb_Y22Ssj-yj_auMq_t0xKJXCXr1RC0rXP_KGrDqUvt3R9-pdu9shtLzbmePbJznC5hGeIegbzPHj7NZFz-is priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELage0A8wIAhMjbkBx5JmjixE_MWCtWEYK0ElbanyI4vMJFl00jHxq_n7LhVCxISvEXRWbnkvuS-s53vCHkZCyZr5Pah5BLCDBoVaq4gTMGkUktM6E6O4eOxOFpk70_4iZ9wc__CAIDbfAaRPXRr-WfQ3uRjwax4mhwLTPFYJIyd1FkssS40zV2yIzhy8RHZWRzPy1PbUS4RMkzd2uRzL6w5Vq4HYWQ7hkdIJDJZJFvpyKn2-zYrW4zz3rK7VLc_VNtuJJ_pQ1Kt3B72nHyLlr2O6p-_KTr-_33tkgeel9JyANIjcge6x-T-hlrhE1LOp6ezD7Pr7DUtOzrMRoChn87RYTrTdkKHzsGA6wTS0bfQu21eHS3bLxdXZ_3X8z2ymL77PDkKfQeGsEYX-pA3pkGKyCDNmkQwYKk0qTBKGy1UHasY63KkbAJyw2qeo6XIIVcakZHWOQ57SkbdRQfPCEUml3CtU0RualXvJW9kohIjMq4KXrCAsFUgqtrLk9suGW3lypRYVuVkgpisbPQqH72AvFoPuhzUOf5u_sZGeG1qpbXdCYxG5d9UZA8FFMJoTNRWuUhIVtRJjf4WgissngOyZyO4cb0hXgE5WAGm8t-B7xXLcylyfIQyIOEaRH_4OgBzy9f9f7Q_IKP-agmHSJF6_cK_B78AGm4H8Q priority: 102 providerName: Unpaywall |
| Title | PFYOLOv4: An Improved Small Object Pedestrian Detection Algorithm |
| URI | https://ieeexplore.ieee.org/document/10044092 https://www.proquest.com/docview/2779671399 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10044092.pdf https://doaj.org/article/ba8e86db42904786928c1c895865a446 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqOLQcKsqH2Ha78oFjA4kTOx5u6bYrhCi7El0JTpYdO22lJSAaivj3jJ3sKqtK7YVrZDvjmYn9xnLeI-QwFgxKxPYRcHBR5iodGa5dlDqbggHc0AMdw7cLcTrPzq74VU_qy98Ja-mBW8cdGy2dFNbguumJZAQwWSalBC4F11jL-NU3ltArpsIaLBMBPO9ohpIYjovxGGd05NXCjxBEZCCTta0oMPZ3EitraPP1Q32nnx71YtHbeCbb5G2HGGnRWvqOvHL1Dtnq8QjukmI2uZ6eT_9kJ7SoaXtO4Cy9vMHh6NT4oxY6c9YFjY6afnFNuIBV02Lx4_b-V_PzZo_MJ1-_j0-jThshKrEiayJe2QrBG3NpViWCOZaCTYXVxhqhy1jHWDEjmBIut6zkObYUucu1wZilZY7d9slGfVu7A0IRYyXcmBRzKvV89MArSHRiRca15JINCFu6SZUdcbjXr1ioUEDEoFrfKu9b1fl2QD6tOt21vBn_bv7Z-3_V1JNehweYCqpLBfW_VBiQPR-93vu8njbgBIbLcKruC_2tWJ6DwAodYECiVYj_slUH2co1W9-_hK0fyBs_ZnuYMyQbzf2D-4jwpjGjkMmj8CfiiGzOL2bF9TNU_fHH |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQeygcKI-ihhbIgSNJ87CduLewsFpgu1uJViqnyI8JILbZqs0Wwa9n7HhXuyAQtyiy5bFnnPlmYn9DyMuEZ0Ijto8EExBRaGSkmIQoB5MLJdChOzqGkwkfndP3F-zCX1Z3d2EAwB0-g9g-un_5Zq4XNlV25NjNEoFf3G1GKWX9da1VSsXWkBCs8NxCaSKOqsEApxHbEuExIgcqynTD_ziafl9XZQNi7izaK_nju5zN1rzNcJdMlnL2h0y-xYtOxfrnbxSO_z2RB-S-x51h1RvKQ3IH2kfk3hob4WNSnQ4_TcfTW3ocVm3YZxvAhB8vUb5wqmzCJjwFA67SRxu-gc4d42rDavZ5fv21-3K5R86Hb88Go8hXWIg0Dt9FrDENQsAMctqkPIMsFybnRiqjuNSJTDDuRkjGoTCZZgW25AUUUqHmc11gtydkq523sE9CRGopUypHy8wtq71gjUhlajhlsmRlFpBsue619vTjtgrGrHZhSCLqXlm1VVbtlRWQV6tOVz37xr-bv7YKXTW11NnuBS5-7XciooMSSm4UOmLLTMRFVupUo7wlZxKD44DsWYWtjdfrKiCHS_uo_T6_qbOiEBzjfCECEq1s5g9ZpSt-uSHr078M84LsjM5OxvX43eTDAblru_QZn0Oy1V0v4BlioE49d5b_C9Ax_Xg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELage0A8wIAhMjbkBx5JmjixE_MWCtWEYK0ElbanyI4vMJFl00jHxq_n7LhVCxISvEXRWbnkvuS-s53vCHkZCyZr5Pah5BLCDBoVaq4gTMGkUktM6E6O4eOxOFpk70_4iZ9wc__CAIDbfAaRPXRr-WfQ3uRjwax4mhwLTPFYJIyd1FkssS40zV2yIzhy8RHZWRzPy1PbUS4RMkzd2uRzL6w5Vq4HYWQ7hkdIJDJZJFvpyKn2-zYrW4zz3rK7VLc_VNtuJJ_pQ1Kt3B72nHyLlr2O6p-_KTr-_33tkgeel9JyANIjcge6x-T-hlrhE1LOp6ezD7Pr7DUtOzrMRoChn87RYTrTdkKHzsGA6wTS0bfQu21eHS3bLxdXZ_3X8z2ymL77PDkKfQeGsEYX-pA3pkGKyCDNmkQwYKk0qTBKGy1UHasY63KkbAJyw2qeo6XIIVcakZHWOQ57SkbdRQfPCEUml3CtU0RualXvJW9kohIjMq4KXrCAsFUgqtrLk9suGW3lypRYVuVkgpisbPQqH72AvFoPuhzUOf5u_sZGeG1qpbXdCYxG5d9UZA8FFMJoTNRWuUhIVtRJjf4WgissngOyZyO4cb0hXgE5WAGm8t-B7xXLcylyfIQyIOEaRH_4OgBzy9f9f7Q_IKP-agmHSJF6_cK_B78AGm4H8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFYOLOv4%3A+An+Improved+Small+Object+Pedestrian+Detection+Algorithm&rft.jtitle=IEEE+access&rft.au=Li%2C+Kaihui&rft.au=Zhuang%2C+Yuan&rft.au=Lai%2C+Jinling&rft.au=Zeng%2C+Yunhui&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=17197&rft.epage=17206&rft_id=info:doi/10.1109%2FACCESS.2023.3244981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3244981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |