PFYOLOv4: An Improved Small Object Pedestrian Detection Algorithm

With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In orde...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 17197 - 17206
Main Authors Li, Kaihui, Zhuang, Yuan, Lai, Jinling, Zeng, Yunhui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3244981

Cover

Abstract With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In order to solve the above problems, based on YOLOv4 algorithm, this paper proposes an improved small target pedestrian detection algorithm named PF_YOLOv4. The algorithm is improved in three aspects on the basis of the YOLOv4 algorithm: firstly, a soft thresholding module is added to the residual structure of the backbone network to perform noise reduction process on interference factors, such as light to enhance the robustness of the algorithm; secondly, the depthwise separable convolution replaces the traditional convolution in the YOLOv4 residual structure, to reduce the number of network model parameters; finally, the Convolutional Block Attention Module (CBAM) is added after the output feature map of the backbone network to enhance of the network feature expression. Experimental results show that the PF_YOLOv4 algorithm outperforms most of the state-of-the-art algorithms in detecting small target pedestrians. The mean Average Precision (mAP) of the PF_YOLOv4 algorithm is 2.35% higher than that of the YOLOv4 algorithm and 9.67% higher than that of the YOLOv3 algorithm, while the detection speed is slightly higher than that of YOLOv4 algorithm.
AbstractList With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In order to solve the above problems, based on YOLOv4 algorithm, this paper proposes an improved small target pedestrian detection algorithm named PF_YOLOv4. The algorithm is improved in three aspects on the basis of the YOLOv4 algorithm: firstly, a soft thresholding module is added to the residual structure of the backbone network to perform noise reduction process on interference factors, such as light to enhance the robustness of the algorithm; secondly, the depthwise separable convolution replaces the traditional convolution in the YOLOv4 residual structure, to reduce the number of network model parameters; finally, the Convolutional Block Attention Module (CBAM) is added after the output feature map of the backbone network to enhance of the network feature expression. Experimental results show that the PF_YOLOv4 algorithm outperforms most of the state-of-the-art algorithms in detecting small target pedestrians. The mean Average Precision (mAP) of the PF_YOLOv4 algorithm is 2.35% higher than that of the YOLOv4 algorithm and 9.67% higher than that of the YOLOv3 algorithm, while the detection speed is slightly higher than that of YOLOv4 algorithm.
Author Zhuang, Yuan
Lai, Jinling
Zeng, Yunhui
Li, Kaihui
Author_xml – sequence: 1
  givenname: Kaihui
  orcidid: 0000-0002-2249-3497
  surname: Li
  fullname: Li, Kaihui
  organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 2
  givenname: Yuan
  surname: Zhuang
  fullname: Zhuang, Yuan
  organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 3
  givenname: Jinling
  surname: Lai
  fullname: Lai, Jinling
  organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 4
  givenname: Yunhui
  orcidid: 0000-0003-3398-6884
  surname: Zeng
  fullname: Zeng, Yunhui
  email: zengyh@sdas.org
  organization: Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
BookMark eNptkUtPGzEURi1EpVLgF5TFSF0n-DV-sBulASJFClLaRVeWx74Djibj1DOh4t_XYRBCEd7Yurrns-_xN3TaxQ4Q-k7wlBCsr6vZbL5eTymmbMoo51qRE3RGidATVjJx-uH8FV32_QbnpXKplGeoerj9s1qunvlNUXXFYrtL8Rl8sd7ati1W9QbcUDyAh35IwXbFTxhyJcSuqNrHmMLwtL1AXxrb9nD5tp-j37fzX7P7yXJ1t5hVy4njWA-TsvENYZoC4w0RFCjTnglva18L67DFUFNVEgHSU1fK3CkkSFtDDczJjJ2jxZjro92YXQpbm15MtMG8FmJ6NDYNwbVgaqtACV9zqjGXSmiqHHFKl0qUlnORs_iYte929uVfnvU9kGBzsGqsc9D35mDVvFnN2I8Ry5b-7rMTs4n71OWpDZVSC5kH1LlLj10uxb5P0BgXBnuQNiQb2vcbxn87voEdscfv-py6GqkAAB8IzLN6yv4DnpiiZA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104611
crossref_primary_10_1109_ACCESS_2025_3534321
crossref_primary_10_1109_ACCESS_2023_3284062
crossref_primary_10_3390_electronics13020273
crossref_primary_10_48084_etasr_9135
crossref_primary_10_1109_ACCESS_2024_3437359
crossref_primary_10_1016_j_amf_2025_200205
Cites_doi 10.1007/s42452-021-04897-7
10.1016/j.engappai.2020.103615
10.48550/arXiv.2004.10934
10.1016/j.patrec.2018.05.024
10.48550/ARXIV.1807.06521
10.1109/CVPR.2016.91
10.1007/978-981-33-4080-0_64
10.1109/TMM.2017.2759508
10.1109/TPAMI.2015.2389824
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2018.00010
10.1109/CVPR.2017.690
10.1109/TPAMI.2016.2587640
10.5244/C.31.76
10.1109/CVPR.2019.00075
10.1109/CVPR.2014.81
10.1007/978-3-319-10602-1_48
10.1109/ACCESS.2022.3204053
10.1109/CVPR.2018.00913
10.1109/ICCV.2015.169
10.48550/arXiv.1911.08287
10.1109/TII.2019.2943898
10.1088/1742-6596/1777/1/012057
10.1109/CVPR.2005.177
10.3390/s21124184
10.1109/CVPR.2018.00474
10.1109/ICSPCC52875.2021.9564613
10.1109/ICCC51575.2020.9344983
10.1109/ACCESS.2020.2999694
10.l007/978-3-319-46448-0_2
10.1145/2964284.2967274
10.1016/j.patcog.2018.08.018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3244981
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 17206
ExternalDocumentID oai_doaj_org_article_ba8e86db42904786928c1c895865a446
10.1109/access.2023.3244981
10_1109_ACCESS_2023_3244981
10044092
Genre orig-research
GrantInformation_xml – fundername: Shandong Provincial Key Research and Development Program
  grantid: 2019JMRH0109
  funderid: 10.13039/100014103
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-5fdf1392e34f162e239d36dabdb6ac0a0eb28516e7d2c5739267e7abebe3c72e3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:35:57 EDT 2025
Tue Aug 19 19:02:57 EDT 2025
Mon Jun 30 06:33:01 EDT 2025
Wed Oct 01 03:26:32 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Aug 27 02:54:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5fdf1392e34f162e239d36dabdb6ac0a0eb28516e7d2c5739267e7abebe3c72e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3398-6884
0000-0002-2249-3497
OpenAccessLink https://doaj.org/article/ba8e86db42904786928c1c895865a446
PQID 2779671399
PQPubID 4845423
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_access_2023_3244981
crossref_citationtrail_10_1109_ACCESS_2023_3244981
ieee_primary_10044092
doaj_primary_oai_doaj_org_article_ba8e86db42904786928c1c895865a446
proquest_journals_2779671399
crossref_primary_10_1109_ACCESS_2023_3244981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref36
Redmon (ref23) 2018
ref31
Ren (ref13); 28
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Li (ref20) 2017
ref18
Fu (ref16) 2017
ref24
ref26
ref25
Cao (ref19) 2018; 10615
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1007/s42452-021-04897-7
– ident: ref1
  doi: 10.1016/j.engappai.2020.103615
– ident: ref24
  doi: 10.48550/arXiv.2004.10934
– ident: ref2
  doi: 10.1016/j.patrec.2018.05.024
– volume: 10615
  start-page: 381
  year: 2018
  ident: ref19
  article-title: Feature-fused SSD: Fast detection for small objects
  publication-title: Proc. SPIE
– ident: ref31
  doi: 10.48550/ARXIV.1807.06521
– ident: ref21
  doi: 10.1109/CVPR.2016.91
– ident: ref7
  doi: 10.1007/978-981-33-4080-0_64
– ident: ref6
  doi: 10.1109/TMM.2017.2759508
– ident: ref11
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref25
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref3
  doi: 10.1109/CVPR.2018.00010
– ident: ref22
  doi: 10.1109/CVPR.2017.690
– ident: ref36
  doi: 10.1109/TPAMI.2016.2587640
– ident: ref18
  doi: 10.5244/C.31.76
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref34
  doi: 10.1109/CVPR.2019.00075
– ident: ref10
  doi: 10.1109/CVPR.2014.81
– ident: ref4
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref9
  doi: 10.1109/ACCESS.2022.3204053
– ident: ref28
  doi: 10.1109/CVPR.2018.00913
– ident: ref12
  doi: 10.1109/ICCV.2015.169
– ident: ref32
  doi: 10.48550/arXiv.1911.08287
– ident: ref29
  doi: 10.1109/TII.2019.2943898
– ident: ref14
  doi: 10.1088/1742-6596/1777/1/012057
– ident: ref37
  doi: 10.1109/CVPR.2005.177
– year: 2017
  ident: ref20
  article-title: FSSD: Feature fusion single shot multibox detector
  publication-title: arXiv:1712.00960
– ident: ref27
  doi: 10.3390/s21124184
– ident: ref30
  doi: 10.1109/CVPR.2018.00474
– ident: ref8
  doi: 10.1109/ICSPCC52875.2021.9564613
– ident: ref26
  doi: 10.1109/ICCC51575.2020.9344983
– ident: ref35
  doi: 10.1109/ACCESS.2020.2999694
– ident: ref15
  doi: 10.l007/978-3-319-46448-0_2
– year: 2017
  ident: ref16
  article-title: DSSD: Deconvolutional single shot detector
  publication-title: arXiv:1701.06659
– ident: ref33
  doi: 10.1145/2964284.2967274
– ident: ref5
  doi: 10.1016/j.patcog.2018.08.018
– year: 2018
  ident: ref23
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
SSID ssj0000816957
Score 2.3248944
Snippet With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17197
SubjectTerms Algorithms
Artificial neural networks
Classification algorithms
Computer networks
convolutional block attention module
Convolutional neural networks
Deep learning
depthwise separable convolution
Detection algorithms
Feature extraction
Feature maps
Interference
Modules
Noise reduction
Object detection
Object recognition
Occlusion
Pedestrians
Small target pedestrian detection
soft thresholding
Target detection
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-DAs4jQgnzgSNLEie24t7CwqhB0K0Glcor8mABim61KFkR_fceOd7ULAnGLorE89owznyf2N4S8yAVTFrF9qriCtIJOp4ZrSEtwpTIKA3qgY3h_LI5Oq7dn_CxeVg93YQAgHD6DzD-Gf_luYZc-VXYQ2M1yhV_cm7IW42WtdULFV5BQXEZmoSJXB81kgoPIfIHwDHFDpepiK_oEkv5YVWULYN5a9hf61089n2_Emuk9crzScjxi8i1bDiazV78ROP73MO6TuxF10mZ0kwfkBvQPyZ0NLsJHpDmZfpq9m_2oDmnT0zHXAI5-OEf96Mz4dA09AQehzkdPX8MQDnH1tJl_Xlx-Hb6c75LT6ZuPk6M01ldILXY_pLxzHQJABmXVFYIBK5UrhdPGGaFtrnPcdSMgEyAds1yipJAgtUG7l1Zis8dkp1_08IRQxGkFN6ZEvyw9p73inSp04UTFdc1rlhC2mvfWRvJxXwNj3oZNSK7a0VitN1YbjZWQl-tGFyP3xr_FX3mDrkU9cXZ4gZPfxnWI2KCGWjiDYdjzEgnFaltY1LcWXOPWOCG73mAb_Y22Ssj-yj_auMq_t0xKJXCXr1RC0rXP_KGrDqUvt3R9-pdu9shtLzbmePbJznC5hGeIegbzPHj7NZFz-is
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELage0A8wIAhMjbkBx5JmjixE_MWCtWEYK0ElbanyI4vMJFl00jHxq_n7LhVCxISvEXRWbnkvuS-s53vCHkZCyZr5Pah5BLCDBoVaq4gTMGkUktM6E6O4eOxOFpk70_4iZ9wc__CAIDbfAaRPXRr-WfQ3uRjwax4mhwLTPFYJIyd1FkssS40zV2yIzhy8RHZWRzPy1PbUS4RMkzd2uRzL6w5Vq4HYWQ7hkdIJDJZJFvpyKn2-zYrW4zz3rK7VLc_VNtuJJ_pQ1Kt3B72nHyLlr2O6p-_KTr-_33tkgeel9JyANIjcge6x-T-hlrhE1LOp6ezD7Pr7DUtOzrMRoChn87RYTrTdkKHzsGA6wTS0bfQu21eHS3bLxdXZ_3X8z2ymL77PDkKfQeGsEYX-pA3pkGKyCDNmkQwYKk0qTBKGy1UHasY63KkbAJyw2qeo6XIIVcakZHWOQ57SkbdRQfPCEUml3CtU0RualXvJW9kohIjMq4KXrCAsFUgqtrLk9suGW3lypRYVuVkgpisbPQqH72AvFoPuhzUOf5u_sZGeG1qpbXdCYxG5d9UZA8FFMJoTNRWuUhIVtRJjf4WgissngOyZyO4cb0hXgE5WAGm8t-B7xXLcylyfIQyIOEaRH_4OgBzy9f9f7Q_IKP-agmHSJF6_cK_B78AGm4H8Q
  priority: 102
  providerName: Unpaywall
Title PFYOLOv4: An Improved Small Object Pedestrian Detection Algorithm
URI https://ieeexplore.ieee.org/document/10044092
https://www.proquest.com/docview/2779671399
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10044092.pdf
https://doaj.org/article/ba8e86db42904786928c1c895865a446
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqOLQcKsqH2Ha78oFjA4kTOx5u6bYrhCi7El0JTpYdO22lJSAaivj3jJ3sKqtK7YVrZDvjmYn9xnLeI-QwFgxKxPYRcHBR5iodGa5dlDqbggHc0AMdw7cLcTrPzq74VU_qy98Ja-mBW8cdGy2dFNbguumJZAQwWSalBC4F11jL-NU3ltArpsIaLBMBPO9ohpIYjovxGGd05NXCjxBEZCCTta0oMPZ3EitraPP1Q32nnx71YtHbeCbb5G2HGGnRWvqOvHL1Dtnq8QjukmI2uZ6eT_9kJ7SoaXtO4Cy9vMHh6NT4oxY6c9YFjY6afnFNuIBV02Lx4_b-V_PzZo_MJ1-_j0-jThshKrEiayJe2QrBG3NpViWCOZaCTYXVxhqhy1jHWDEjmBIut6zkObYUucu1wZilZY7d9slGfVu7A0IRYyXcmBRzKvV89MArSHRiRca15JINCFu6SZUdcbjXr1ioUEDEoFrfKu9b1fl2QD6tOt21vBn_bv7Z-3_V1JNehweYCqpLBfW_VBiQPR-93vu8njbgBIbLcKruC_2tWJ6DwAodYECiVYj_slUH2co1W9-_hK0fyBs_ZnuYMyQbzf2D-4jwpjGjkMmj8CfiiGzOL2bF9TNU_fHH
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQeygcKI-ihhbIgSNJ87CduLewsFpgu1uJViqnyI8JILbZqs0Wwa9n7HhXuyAQtyiy5bFnnPlmYn9DyMuEZ0Ijto8EExBRaGSkmIQoB5MLJdChOzqGkwkfndP3F-zCX1Z3d2EAwB0-g9g-un_5Zq4XNlV25NjNEoFf3G1GKWX9da1VSsXWkBCs8NxCaSKOqsEApxHbEuExIgcqynTD_ziafl9XZQNi7izaK_nju5zN1rzNcJdMlnL2h0y-xYtOxfrnbxSO_z2RB-S-x51h1RvKQ3IH2kfk3hob4WNSnQ4_TcfTW3ocVm3YZxvAhB8vUb5wqmzCJjwFA67SRxu-gc4d42rDavZ5fv21-3K5R86Hb88Go8hXWIg0Dt9FrDENQsAMctqkPIMsFybnRiqjuNSJTDDuRkjGoTCZZgW25AUUUqHmc11gtydkq523sE9CRGopUypHy8wtq71gjUhlajhlsmRlFpBsue619vTjtgrGrHZhSCLqXlm1VVbtlRWQV6tOVz37xr-bv7YKXTW11NnuBS5-7XciooMSSm4UOmLLTMRFVupUo7wlZxKD44DsWYWtjdfrKiCHS_uo_T6_qbOiEBzjfCECEq1s5g9ZpSt-uSHr078M84LsjM5OxvX43eTDAblru_QZn0Oy1V0v4BlioE49d5b_C9Ax_Xg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELage0A8wIAhMjbkBx5JmjixE_MWCtWEYK0ElbanyI4vMJFl00jHxq_n7LhVCxISvEXRWbnkvuS-s53vCHkZCyZr5Pah5BLCDBoVaq4gTMGkUktM6E6O4eOxOFpk70_4iZ9wc__CAIDbfAaRPXRr-WfQ3uRjwax4mhwLTPFYJIyd1FkssS40zV2yIzhy8RHZWRzPy1PbUS4RMkzd2uRzL6w5Vq4HYWQ7hkdIJDJZJFvpyKn2-zYrW4zz3rK7VLc_VNtuJJ_pQ1Kt3B72nHyLlr2O6p-_KTr-_33tkgeel9JyANIjcge6x-T-hlrhE1LOp6ezD7Pr7DUtOzrMRoChn87RYTrTdkKHzsGA6wTS0bfQu21eHS3bLxdXZ_3X8z2ymL77PDkKfQeGsEYX-pA3pkGKyCDNmkQwYKk0qTBKGy1UHasY63KkbAJyw2qeo6XIIVcakZHWOQ57SkbdRQfPCEUml3CtU0RualXvJW9kohIjMq4KXrCAsFUgqtrLk9suGW3lypRYVuVkgpisbPQqH72AvFoPuhzUOf5u_sZGeG1qpbXdCYxG5d9UZA8FFMJoTNRWuUhIVtRJjf4WgissngOyZyO4cb0hXgE5WAGm8t-B7xXLcylyfIQyIOEaRH_4OgBzy9f9f7Q_IKP-agmHSJF6_cK_B78AGm4H8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFYOLOv4%3A+An+Improved+Small+Object+Pedestrian+Detection+Algorithm&rft.jtitle=IEEE+access&rft.au=Li%2C+Kaihui&rft.au=Zhuang%2C+Yuan&rft.au=Lai%2C+Jinling&rft.au=Zeng%2C+Yunhui&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=17197&rft.epage=17206&rft_id=info:doi/10.1109%2FACCESS.2023.3244981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3244981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon