The Evolutionary Convergent Algorithm: A Guiding Path of Neural Network Advancement
In the past few decades, there have been multiple algorithms proposed for the purpose of solving optimization problems including Machine Learning (ML) applications. Among these algorithms, metaheuristics are an appropriate tool to solve these real problems. Also, ML is one of the advanced tools in A...
        Saved in:
      
    
          | Published in | IEEE access Vol. 12; pp. 127440 - 127459 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2024.3452511 | 
Cover
| Abstract | In the past few decades, there have been multiple algorithms proposed for the purpose of solving optimization problems including Machine Learning (ML) applications. Among these algorithms, metaheuristics are an appropriate tool to solve these real problems. Also, ML is one of the advanced tools in Artificial Intelligence (AI) including different learning strategies to teach new tasks according to data. Therefore, proposing an efficient meta-heuristic to improve the inputs of the trainer in ML would be significant. In this study, a new idea centered on seed growth, Seed Growth Algorithm (SGA), as a conditional convergent evolutionary algorithm is proposed for optimizing several discrete and continuous optimization problems. SGA is used in the process of solving optimization test problems by neural networks. The problems are solved by the same neural network with and without SGA, computational results prove the efficiency of SGA in neural networks. Finally, SGA is proposed to solve very extensive test problems including IoT optimization problems. Comparative results of applying the SGA on all of these problems with different sizes are included, and the proposed algorithm suggests effective solutions within a reasonable timeframe. | 
    
|---|---|
| AbstractList | In the past few decades, there have been multiple algorithms proposed for the purpose of solving optimization problems including Machine Learning (ML) applications. Among these algorithms, metaheuristics are an appropriate tool to solve these real problems. Also, ML is one of the advanced tools in Artificial Intelligence (AI) including different learning strategies to teach new tasks according to data. Therefore, proposing an efficient meta-heuristic to improve the inputs of the trainer in ML would be significant. In this study, a new idea centered on seed growth, Seed Growth Algorithm (SGA), as a conditional convergent evolutionary algorithm is proposed for optimizing several discrete and continuous optimization problems. SGA is used in the process of solving optimization test problems by neural networks. The problems are solved by the same neural network with and without SGA, computational results prove the efficiency of SGA in neural networks. Finally, SGA is proposed to solve very extensive test problems including IoT optimization problems. Comparative results of applying the SGA on all of these problems with different sizes are included, and the proposed algorithm suggests effective solutions within a reasonable timeframe. | 
    
| Author | Shamini Gunasekaran, Saraswathy Hosseini, Eghbal Al-Ghaili, Abbas M. Daneshfar, Fatemeh Hussein Kadir, Dler Deveci, Muhammet  | 
    
| Author_xml | – sequence: 1 givenname: Eghbal orcidid: 0000-0002-3921-5469 surname: Hosseini fullname: Hosseini, Eghbal email: kseghbalhosseini@gmail.com organization: Institute of Informatics and Computing in Energy (IICE), UNITEN, Kajang, Selangor, Malaysia – sequence: 2 givenname: Abbas M. orcidid: 0000-0001-5982-2592 surname: Al-Ghaili fullname: Al-Ghaili, Abbas M. email: abbas@uniten.edu.my organization: Institute of Informatics and Computing in Energy (IICE), UNITEN, Kajang, Selangor, Malaysia – sequence: 3 givenname: Dler surname: Hussein Kadir fullname: Hussein Kadir, Dler organization: Department of Statistics, College of Administration and Economics, Salahaddin University-Erbil, Erbil, Iraq – sequence: 4 givenname: Fatemeh surname: Daneshfar fullname: Daneshfar, Fatemeh organization: Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran – sequence: 5 givenname: Saraswathy surname: Shamini Gunasekaran fullname: Shamini Gunasekaran, Saraswathy organization: Institute of Informatics and Computing in Energy (IICE), UNITEN, Kajang, Selangor, Malaysia – sequence: 6 givenname: Muhammet surname: Deveci fullname: Deveci, Muhammet organization: Department of Industrial Engineering, Turkish Naval Academy, National Defence University, Tuzla, Istanbul, Turkey  | 
    
| BookMark | eNptkd9r2zAQx8XoYF3Xv2B7MOw5mWRZsrU3Y9KuULZBumdx-uFEmSNlspzS_37KXEoJ08uJ4z7fu_vee3Thg7cIfSR4SQgWX9quW63XyxKX1ZJWrGSEvEGXJeFiQRnlF6_-79D1OO5wfk1OsfoSrR-2tlgdwzAlFzzEp6IL_mjjxvpUtMMmRJe2-69FW9xOzji_KX5C2hahL77bKcKQQ3oM8XfRmiN4bfeZ-4De9jCM9vo5XqFfN6uH7tvi_sftXdfeL3SFRVowxanQRvQ1xYbZRvFakdoKDZpSXhGlad6J0KrBdQNYM9YrxTiuaa9Vmde5Qnezrgmwk4fo9nl-GcDJf4kQNxJicnqwkphSNJw3JQaomOihtFwb0wujgHAFWauatSZ_gKdHGIYXQYLlyWcJWttxlCef5bPPGfs8Y4cY_kx2THIXpujz1pISzBmpCKO5SsxVOoZxjLaX2iU4GZ4iuOGlw3zJ8w70jD2f6__Up5ly1tpXBGeiqRn9C2yBqa8 | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_3390_jmse13010105 crossref_primary_10_3390_math12193015 crossref_primary_10_1007_s40313_024_01133_6 crossref_primary_10_1016_j_asej_2024_103182 crossref_primary_10_1016_j_aej_2024_12_098  | 
    
| Cites_doi | 10.1007/s00521-020-05124-x 10.1016/j.ejor.2020.07.063 10.1109/TVT.2016.2586382 10.3390/computers12020034 10.1016/j.apenergy.2022.120525 10.1109/JIOT.2018.2875482 10.1016/j.matcom.2021.08.013 10.1016/j.knosys.2015.12.022 10.32604/cmc.2022.022110 10.1016/j.ejor.2021.04.032 10.1109/TAC.2022.3144135 10.1007/s00521-015-1923-y 10.3390/su15042884 10.1016/j.future.2019.02.028 10.1016/j.matcom.2022.12.027 10.1109/TPAMI.2022.3185311 10.1145/3459664 10.3390/s23020849 10.1007/s10489-020-01920-z 10.1007/s00500-020-04905-9 10.1109/ICNN.1995.488968 10.1109/TPAMI.2022.3215702 10.4172/2168-9679.1000344 10.1109/JBHI.2020.3012487 10.1007/s13748-019-00185-z 10.1007/s10898-007-9149-x 10.1016/j.energy.2020.118019 10.1109/TPAMI.2022.3225572 10.1016/j.advengsoft.2022.103363 10.1007/s10994-022-06226-4 10.1109/TII.2021.3074397 10.1007/978-981-15-1967-3 10.1109/TPAMI.2022.3157083 10.1016/j.matcom.2022.06.007 10.1109/ACCESS.2020.2997761 10.3923/ajaps.2017.134.144 10.1007/s11738-012-1186-5 10.1016/j.eswa.2013.05.041 10.1109/TPAMI.2022.3174574  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2024.3452511 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 127459 | 
    
| ExternalDocumentID | oai_doaj_org_article_1d29866820aa459fa2e6cddf9dba16ba 10.1109/access.2024.3452511 10_1109_ACCESS_2024_3452511 10659875  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Tan Sri Leo Moggie Chair of Energy Informatics Publication Fund grantid: 20211EICHAIR – fundername: Dato’ Low Tuck Kwong International grantid: 20238008DLTK – fundername: Tenaga Nasional Berhad (TNB) and UNITEN through the BOLD Refresh Publication Fund grantid: J510050002-IC-6; BOLDREFRESH2025-Centre of Excellence  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c409t-5b639cd9f730d5e8b67b17e9cac33641bc32021348078a0c55fbb56073fcb2353 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:46:23 EDT 2025 Sun Sep 07 10:49:07 EDT 2025 Mon Jun 30 16:29:42 EDT 2025 Wed Oct 01 03:43:21 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Aug 27 01:58:55 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c409t-5b639cd9f730d5e8b67b17e9cac33641bc32021348078a0c55fbb56073fcb2353 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3921-5469 0000-0001-5982-2592  | 
    
| OpenAccessLink | https://doaj.org/article/1d29866820aa459fa2e6cddf9dba16ba | 
    
| PQID | 3106514153 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2024_3452511 doaj_primary_oai_doaj_org_article_1d29866820aa459fa2e6cddf9dba16ba ieee_primary_10659875 unpaywall_primary_10_1109_access_2024_3452511 proquest_journals_3106514153 crossref_primary_10_1109_ACCESS_2024_3452511  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Ghiyasi (ref36) 2008; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref6 doi: 10.1007/s00521-020-05124-x – ident: ref11 doi: 10.1016/j.ejor.2020.07.063 – ident: ref39 doi: 10.1109/TVT.2016.2586382 – ident: ref32 doi: 10.3390/computers12020034 – ident: ref33 doi: 10.1016/j.apenergy.2022.120525 – ident: ref38 doi: 10.1109/JIOT.2018.2875482 – ident: ref21 doi: 10.1016/j.matcom.2021.08.013 – ident: ref25 doi: 10.1016/j.knosys.2015.12.022 – ident: ref29 doi: 10.32604/cmc.2022.022110 – ident: ref12 doi: 10.1016/j.ejor.2021.04.032 – ident: ref15 doi: 10.1109/TAC.2022.3144135 – ident: ref27 doi: 10.1007/s00521-015-1923-y – ident: ref35 doi: 10.3390/su15042884 – ident: ref26 doi: 10.1016/j.future.2019.02.028 – ident: ref22 doi: 10.1016/j.matcom.2022.12.027 – ident: ref17 doi: 10.1109/TPAMI.2022.3185311 – ident: ref13 doi: 10.1145/3459664 – ident: ref34 doi: 10.3390/s23020849 – ident: ref8 doi: 10.1007/s10489-020-01920-z – ident: ref31 doi: 10.1007/s00500-020-04905-9 – volume: 3 start-page: 1249 issue: 10 year: 2008 ident: ref36 article-title: Effect of osmopriming with polyethylene glycol (8000) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress publication-title: Res. J. Biol. Sci. – ident: ref1 doi: 10.1109/ICNN.1995.488968 – ident: ref19 doi: 10.1109/TPAMI.2022.3215702 – ident: ref4 doi: 10.4172/2168-9679.1000344 – ident: ref7 doi: 10.1109/JBHI.2020.3012487 – ident: ref9 doi: 10.1007/s13748-019-00185-z – ident: ref2 doi: 10.1007/s10898-007-9149-x – ident: ref30 doi: 10.1016/j.energy.2020.118019 – ident: ref20 doi: 10.1109/TPAMI.2022.3225572 – ident: ref24 doi: 10.1016/j.advengsoft.2022.103363 – ident: ref10 doi: 10.1007/s10994-022-06226-4 – ident: ref28 doi: 10.1109/TII.2021.3074397 – ident: ref14 doi: 10.1007/978-981-15-1967-3 – ident: ref16 doi: 10.1109/TPAMI.2022.3157083 – ident: ref23 doi: 10.1016/j.matcom.2022.06.007 – ident: ref40 doi: 10.1109/ACCESS.2020.2997761 – ident: ref5 doi: 10.3923/ajaps.2017.134.144 – ident: ref37 doi: 10.1007/s11738-012-1186-5 – ident: ref3 doi: 10.1016/j.eswa.2013.05.041 – ident: ref18 doi: 10.1109/TPAMI.2022.3174574  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.4240768 | 
    
| Snippet | In the past few decades, there have been multiple algorithms proposed for the purpose of solving optimization problems including Machine Learning (ML)... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 127440 | 
    
| SubjectTerms | Algorithms Artificial intelligence Evolutionary algorithms Heuristic methods Machine learning Machine learning algorithms Meta-heuristic approaches Metaheuristics Neural networks Optimization Optimization methods seed growth algorithm Seeds (agriculture)  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxFbWuQDR7LY8Svmlq5aKiRWSFCpN8uvQNVlt1qSVu2vx69d7YJA3KLEScaaGfkbe-YbAN6Y2mDqsakYdayiTNvKII4qj4VBwhGqEwPfpyk_PaMfz9l5KVZPtTDe-5R85sfxMp3lu4Ud4lZZ8HDOQozMdsCOaHgu1lpvqMQOEpKJwiyEkXzXTiZhEiEGrOmYxPM7jLdWn0TSX7qqbAHM-8P8St_e6NlsY605eQymKylzisnleOjN2N79RuD439N4Ah4V1AnbbCZPwT0_fwYebnARPgdfgsHA4-tiiXp5CycxIT3WZvawnX1bLC_67z_ewxZ-GC7iggc_B_AIFx2M_B7h49OcUA7bnFUQZdgDZyfHXyenVem4UNkQ5_UVMwGwWCe74PeO-cZwYbDw0mpLCKfY2NhuHZNYh95oZBnrjAmYSZDOmpow8gLszhdz_xJAw2mAwq7BgmBqLGq8RE4L1yERQCEjI1CvNKFsoSOPXTFmKoUlSKqsPhXVp4r6RuDt-qWrzMbx7-FHUcXroZFKO90I6lDFMxV2tWw4D0hIa8pkp2vPrXOddEZjbvQI7EUVbvwva28EDlYWo4rf_1QkPsUBFIX5VWsr-kNWnZphbsm6_5ffvAIP4rC863MAdvvl4A8DDurN62T_vwAqFgHu priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd0AcYMAQZQP5wBEXO_6RmFtWbUyTqCZBpXGy_CswUdqpS4fGX89z4lUtkya4JnYS29-Tvxe_9z2E3rrCMRGZI1IESYS0njiqKImsdLQMXNhOge_TRJ1Mxem5PM862ykXZvP8nlH93nZlA8GPK8SIpzO4lMe7oyQQ7wHamU7O6q-pfBxTmvDuIHL_np5be08n0Z9rqmzRy4er-aW9-WVns42d5vhJn8J91QkUpgCTH6NV60b-91_yjf84iF30ODNOXPcQeYoexPkz9GhDh_A5-gxgwUfXGYV2eYPHKRg95WW2uJ59Wywv2u8_P-Aaf1xdpM0OnwFxxIsGJ20PePikDybHdR9RkP447qHp8dGX8QnJ1RaIBx-vJdIBWfFBN2DzQcbKqdKxMmpvPedKMOdTqXXGUw56ZamXsnEO-FLJG-8KmPwXaDBfzONLhJ0SQINDxUrOhPO0ipoGW4aGlkAIJR-i4nYdjM9S5Kkixsx0LgnVph6PAX8mzZjJMzZE79adLnsljvubH6YFXjdNMtrdBVgYk63SsFDoSilgQdYKqRtbROVDaHRwlilnh2gvwWPjfYA88PCG6OAWLybb_JXh6S4DQgTjI2sM3fnWHgxb3_rqP9sfoEG7XMXXQIda9yabwR_l5gH8 priority: 102 providerName: Unpaywall  | 
    
| Title | The Evolutionary Convergent Algorithm: A Guiding Path of Neural Network Advancement | 
    
| URI | https://ieeexplore.ieee.org/document/10659875 https://www.proquest.com/docview/3106514153 https://doi.org/10.1109/access.2024.3452511 https://doaj.org/article/1d29866820aa459fa2e6cddf9dba16ba  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHxKOIhbLygSOhdvyKuYVVS4XEqhKsVE6WX4FK291qyYL67xk77iorJLhwTRzHnhlnvnHG3yD02tWO8khdJXgQFRfWV45IUkWqHFGBcZsZ-D7N5dmCf7wQF6NSXyknbKAHHgR3TEOtGynBUVnLhe5sHaUPodPBWSpdhkak0aNgKn-DGyq1UIVmiBJ93M5mMCMICGv-lqWfeZTuuaLM2F9KrOyhzXvb1bW9-WWXy5HjOX2EHhbEiNthpI_Rnbh6gh6MeASfos-gbHzys1iR3dzgWUomT-cqe9wuv603l_33q3e4xR-2l8lZ4XMAfnjd4cTNAZ3Ph2Rw3A4ZAWnH8BAtTk--zM6qUi2h8hCj9ZVwADZ80B2s2SBi46RyVEXtrWdMcup8KpVOWTpD3ljiheicA7yjWOddzQR7hg5W61V8jrCTHGBsaKhilDtPmqhJsCp0RAGgE2yC6lvBGV-oxFNFi6XJIQXRZpC2SdI2RdoT9Gb30PXApPH35u-TRnZNEw12vgDGYYpxmH8ZxwQdJn2O3ieFhghtgo5uFWzKmv1hWLpLAdDA_Kqd0v8Yq82FLPfG-uJ_jPUlup_6HLZ3jtBBv9nGVwB4ejfNtj3NZxOn6O5ift5-_Q0j5Pui | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHAqH8ioiUMAHjmyw149dc9tGLQHaCIlW6s3ya0tFSKqwW1R-ff1KlIBA3Fa79nqsmZE_2zPfAPBalxpTh3XBqGUFZcoUGnFUOFxpVFlCVWTgO57w8Sn9eMbOcrJ6zIVxzsXgMzcMj_Eu385NH47KvIdz5vfI7Da4wyilLKVrrY5UQg0JwarMLYSReNuMRn4afhdY0iEJN3gYb6w_kaY_11XZgJjb_exSXf9U0-naanN4H0yWcqYgk2_DvtND8-s3Csf_nsgDsJNxJ2ySoTwEt9zsEbi3xkb4GHzxJgMPrrItqsU1HIWQ9JCd2cFmej5fXHRfv7-DDXzfX4QlD3728BHOWxgYPvzPJymkHDYpriDIsAtODw9ORuMi11wojN_pdQXTHrIYK1rv-Za5WvNK48oJowwhnGJtQsF1TEImeq2QYazV2qOmirRGl4SRJ2BrNp-5pwBqTj0YtjWuCKbaoNoJZFVlW1R5WMjIAJRLTUiTCclDXYypjBsTJGRSnwzqk1l9A_Bm1eky8XH8u_l-UPGqaSDTji-8OmT2TYltKWrOPRZSijLRqtJxY20rrFaYazUAu0GFa-Ml7Q3A3tJiZPb8H5KEr9jDIj-_YmVFf8iqYjnMDVmf_WWYV2B7fHJ8JI8-TD49B3dDl3QGtAe2ukXvXnhU1OmX0RduAMxcBTs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd0AcYMAQZQP5wBEXO_6RmFtWbUyTqCZBpXGy_CswUdqpS4fGX89z4lUtkya4JnYS29-Tvxe_9z2E3rrCMRGZI1IESYS0njiqKImsdLQMXNhOge_TRJ1Mxem5PM862ykXZvP8nlH93nZlA8GPK8SIpzO4lMe7oyQQ7wHamU7O6q-pfBxTmvDuIHL_np5be08n0Z9rqmzRy4er-aW9-WVns42d5vhJn8J91QkUpgCTH6NV60b-91_yjf84iF30ODNOXPcQeYoexPkz9GhDh_A5-gxgwUfXGYV2eYPHKRg95WW2uJ59Wywv2u8_P-Aaf1xdpM0OnwFxxIsGJ20PePikDybHdR9RkP447qHp8dGX8QnJ1RaIBx-vJdIBWfFBN2DzQcbKqdKxMmpvPedKMOdTqXXGUw56ZamXsnEO-FLJG-8KmPwXaDBfzONLhJ0SQINDxUrOhPO0ipoGW4aGlkAIJR-i4nYdjM9S5Kkixsx0LgnVph6PAX8mzZjJMzZE79adLnsljvubH6YFXjdNMtrdBVgYk63SsFDoSilgQdYKqRtbROVDaHRwlilnh2gvwWPjfYA88PCG6OAWLybb_JXh6S4DQgTjI2sM3fnWHgxb3_rqP9sfoEG7XMXXQIda9yabwR_l5gH8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Evolutionary+Convergent+Algorithm%3A+A+Guiding+Path+of+Neural+Network+Advancement&rft.jtitle=IEEE+access&rft.au=Hosseini%2C+Eghbal&rft.au=Al-Ghaili%2C+Abbas+M.&rft.au=Hussein+Kadir%2C+Dler&rft.au=Daneshfar%2C+Fatemeh&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=127440&rft.epage=127459&rft_id=info:doi/10.1109%2FACCESS.2024.3452511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3452511 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |