Improved Bald Eagle Search Optimization with Deep Learning based Cervical Cancer Detection and Classification
Cervical cancer (CC) is the fourth most popular cancer affecting women worldwide. Mortality and incidence rates can be consistently enhancing, particularly in emerging countries, because of the lack of screening services, lack of awareness, and restricted qualified experts. CC has screened utilizing...
Saved in:
| Published in | IEEE access Vol. 11; p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3337032 |
Cover
| Abstract | Cervical cancer (CC) is the fourth most popular cancer affecting women worldwide. Mortality and incidence rates can be consistently enhancing, particularly in emerging countries, because of the lack of screening services, lack of awareness, and restricted qualified experts. CC has screened utilizing human papillomavirus (HPV) test, Papanicolaou (Pap) test, histopathology test, and visual inspection after application of acetic acid (VIA). Intra- and Inter-observer variability can take place in the manual analysis method, resulting in misdiagnosis. Previous studies have exploited either deep learning (DL) or machine learning (ML) approaches, the preceding one could not be efficient as it needs segmentation and attaining hand-crafted features that utilize critical stage. Artificial Intelligence (AI) based computer-aided diagnoses (CAD) methods are generally explored for identifying CC for enhancing the standard testing method. This manuscript offers an Improved Bald Eagle Search Optimization with Deep Learning based Cervical Cancer Detection and Classification (IBESODL-CCDC) algorithm. The drive of the IBESODL-CCDC algorithm lies in the automated classification and detection of CC. In the presented IBESODL-CCDC technique, a contrast enhancement process takes place to enhance the image qualities. In addition, the IBESODL-CCDC technique utilizes a modified LeNet model for the feature extraction model. For CC detection, the IBESODL-CCDC technique applies an attention-based long short-term memory (ALSTM) network. A wide-ranging experiment was applied to validate the greater outcome of the IBESODL-CCDC technique. The experimental values highlight the remarkable performance of the IBESODL-CCDC algorithm with other recent systems. |
|---|---|
| AbstractList | Cervical cancer (CC) is the fourth most popular cancer affecting women worldwide. Mortality and incidence rates can be consistently enhancing, particularly in emerging countries, because of the lack of screening services, lack of awareness, and restricted qualified experts. CC has screened utilizing human papillomavirus (HPV) test, Papanicolaou (Pap) test, histopathology test, and visual inspection after application of acetic acid (VIA). Intra- and Inter-observer variability can take place in the manual analysis method, resulting in misdiagnosis. Previous studies have exploited either deep learning (DL) or machine learning (ML) approaches, the preceding one could not be efficient as it needs segmentation and attaining hand-crafted features that utilize critical stage. Artificial Intelligence (AI) based computer-aided diagnoses (CAD) methods are generally explored for identifying CC for enhancing the standard testing method. This manuscript offers an Improved Bald Eagle Search Optimization with Deep Learning based Cervical Cancer Detection and Classification (IBESODL-CCDC) algorithm. The drive of the IBESODL-CCDC algorithm lies in the automated classification and detection of CC. In the presented IBESODL-CCDC technique, a contrast enhancement process takes place to enhance the image qualities. In addition, the IBESODL-CCDC technique utilizes a modified LeNet model for the feature extraction model. For CC detection, the IBESODL-CCDC technique applies an attention-based long short-term memory (ALSTM) network. A wide-ranging experiment was applied to validate the greater outcome of the IBESODL-CCDC technique. The experimental values highlight the remarkable performance of the IBESODL-CCDC algorithm with other recent systems. |
| Author | Ishak, Mohamad Khairi Mazroa, Alanoud Al Aljarbouh, Ayman Mostafa, Samih M. |
| Author_xml | – sequence: 1 givenname: Alanoud Al surname: Mazroa fullname: Mazroa, Alanoud Al organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 2 givenname: Mohamad Khairi orcidid: 0000-0002-3554-0061 surname: Ishak fullname: Ishak, Mohamad Khairi organization: Department of Electrical and Computer Engineering, Ajman University, Ajman, United Arab Emirates – sequence: 3 givenname: Ayman surname: Aljarbouh fullname: Aljarbouh, Ayman organization: Department of Computer Science, University of Central Asia, Naryn, Kyrgyzstan – sequence: 4 givenname: Samih M. orcidid: 0000-0001-9234-5898 surname: Mostafa fullname: Mostafa, Samih M. organization: Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, Egypt |
| BookMark | eNptkU1vGyEQhldRKiVN8gvSA1LPdmHZDzimW7e1ZCkHN2c0yw4O1prdAk6U_vpibxRFVrgAM-8zA_N-zs7d4DDLbhmdM0blt7umWazX85zmfM45rynPz7LLnFVyxktenb87X2Q3IWxpWiKFyvoy2y13ox-esCPfoe_IAjY9kjWC14_kfox2Z_9BtIMjzzY-kh-II1mlrLNuQ1oIiWvQP1kNPWnAafRJE1EfEXAp20MI1iTBIXSdfTLQB7x53a-yh5-LP83v2er-17K5W810QWWcFXUtIUcEQN7RkhpGaQFluramxsq0psCyRCMrwyoO3JQ1thqBia41jLf8KltOdbsBtmr0dgf-RQ1g1TEw-I0CH63uUQlqDJcoRRplwTlIVlOoOlYJTRnqItUqplp7N8LLM_T9W0FG1cEBBVpjCOrggHp1IGFfJyyN9-8eQ1TbYe9d-rXKhZRFVcn6oJKTSvshBI9GaRuPo4oebP_WYfL4tAM_YU_f9TH1ZaIsIr4jeC5ELfh_rIy0Ng |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s13042_025_02576_2 crossref_primary_10_1002_dc_25295 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1016_j_critrevonc_2024_104528 crossref_primary_10_1016_j_compeleceng_2025_110106 |
| Cites_doi | 10.1016/j.neucom.2020.06.006 10.3390/bioengineering9100578 10.1109/JBHI.2021.3094311 10.1109/ACCESS.2023.3309410 10.1155/2023/1742891 10.3390/app13031916 10.1109/ACCESS.2021.3111408 10.1007/s12553-019-00375-8 10.1038/s41598-021-95748-3 10.1109/BIBE.2019.00078 10.1109/JBHI.2022.3223127 10.1016/j.patcog.2022.108829 10.1109/ACCESS.2020.2983186 10.1007/s00521-023-08757-w 10.1016/j.future.2019.09.015 10.1016/j.compbiomed.2021.104649 10.1016/j.aej.2022.12.045 10.1109/EMBC.2019.8856369 10.3390/su141911947 10.32604/cmc.2023.039340 10.32604/cmc.2022.020713 10.1038/s41746-022-00559-z 10.1109/BHI.2019.8834495 10.1007/s00500-023-08969-1 10.3390/diagnostics13172746 10.1016/j.compbiomed.2021.105026 10.1016/j.compbiomed.2023.107070 10.3390/diagnostics13040686 10.1038/s41598-022-07723-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3337032 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_80ff39e98109433a9170a6d168c01ec4 10.1109/access.2023.3337032 10_1109_ACCESS_2023_3337032 10328878 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-4779a2eeaae3d050f1004a5aaebf7e6fbf4e55ef96f163a3f57ebcea18dbf13b3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:45 EDT 2025 Tue Aug 19 20:57:55 EDT 2025 Mon Jun 30 03:25:01 EDT 2025 Wed Oct 01 04:52:07 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Aug 27 02:37:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-4779a2eeaae3d050f1004a5aaebf7e6fbf4e55ef96f163a3f57ebcea18dbf13b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9234-5898 0000-0002-3554-0061 0000-0002-3909-2227 |
| OpenAccessLink | https://doaj.org/article/80ff39e98109433a9170a6d168c01ec4 |
| PQID | 2899466972 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2899466972 unpaywall_primary_10_1109_access_2023_3337032 crossref_citationtrail_10_1109_ACCESS_2023_3337032 ieee_primary_10328878 doaj_primary_oai_doaj_org_article_80ff39e98109433a9170a6d168c01ec4 crossref_primary_10_1109_ACCESS_2023_3337032 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 (ref29) 2023 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1016/j.neucom.2020.06.006 – ident: ref20 doi: 10.3390/bioengineering9100578 – ident: ref18 doi: 10.1109/JBHI.2021.3094311 – ident: ref24 doi: 10.1109/ACCESS.2023.3309410 – ident: ref2 doi: 10.1155/2023/1742891 – ident: ref8 doi: 10.3390/app13031916 – ident: ref27 doi: 10.1109/ACCESS.2021.3111408 – ident: ref15 doi: 10.1007/s12553-019-00375-8 – ident: ref1 doi: 10.1038/s41598-021-95748-3 – ident: ref4 doi: 10.1109/BIBE.2019.00078 – ident: ref19 doi: 10.1109/JBHI.2022.3223127 – ident: ref21 doi: 10.1016/j.patcog.2022.108829 – ident: ref11 doi: 10.1109/ACCESS.2020.2983186 – volume-title: PAP-SMEAR (DTU/HERLEV) Databases & Related & Studies year: 2023 ident: ref29 – ident: ref6 doi: 10.1007/s00521-023-08757-w – ident: ref16 doi: 10.1016/j.future.2019.09.015 – ident: ref22 doi: 10.1016/j.compbiomed.2021.104649 – ident: ref26 doi: 10.1016/j.aej.2022.12.045 – ident: ref14 doi: 10.1109/EMBC.2019.8856369 – ident: ref9 doi: 10.3390/su141911947 – ident: ref28 doi: 10.32604/cmc.2023.039340 – ident: ref30 doi: 10.32604/cmc.2022.020713 – ident: ref7 doi: 10.1038/s41746-022-00559-z – ident: ref10 doi: 10.1109/BHI.2019.8834495 – ident: ref5 doi: 10.1007/s00500-023-08969-1 – ident: ref25 doi: 10.3390/diagnostics13172746 – ident: ref12 doi: 10.1016/j.compbiomed.2021.105026 – ident: ref23 doi: 10.1016/j.compbiomed.2023.107070 – ident: ref13 doi: 10.3390/diagnostics13040686 – ident: ref3 doi: 10.1038/s41598-022-07723-1 |
| SSID | ssj0000816957 |
| Score | 2.3248274 |
| Snippet | Cervical cancer (CC) is the fourth most popular cancer affecting women worldwide. Mortality and incidence rates can be consistently enhancing, particularly in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Acetic acid Algorithms Artificial intelligence Cancer Cervical cancer Cervical cancer screening Classification Classification algorithms Computer-aided diagnosis Convolutional neural networks Deep learning Feature extraction Human papillomavirus Image contrast Image enhancement Machine learning Medical diagnostic imaging Optimization Pap smear images Parameter tuning Solid modeling Tuning Visual observation Visualization |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxELBfnAkaRO_D62oVWFRLlQqbfIccY9kKarkhWCX4_H8a52QSBueUz80Iw948nMN4S8Ax71jHShCBxBtRXzhQuSFZI7o5To-8pj7vCnC3V-KT5eyaucrJ5yYQAgBZ9BiZfpX35_61foKjtK4G9Gmz2yp42ak7U2DhWsIGGlzshCFbNHx00TJ1FigfCScx5lu97RPgmkP1dV2TEw76_Gpfvx3Q3Dlq45e0wu1qOcQ0y-lqupK_3P3wAc_3saT8ijbHXS41lMnpJ7MD4jD7ewCJ-Tm9m9AD09cUNPT931AHQORqaf475ykxM2KXpu6QeAJc3YrNcUVWFPm7TtxG4alKS7SDOlOK-RujG-RTMd45JSKwfk8uz0S3Ne5FoMhY8nwKkQWltXAzgHvGeSBUSaczLedkGDCl0QICUEq0K08BwPUkPnwVWm70LFO_6C7I-3I7wkFCzntWMqaNEJWWtrWB288LEVD9rAgtRrHrU-A5VjvYyhTQcWZtuZsS0yts2MXZD3m4-WM07Hv8lPkPkbUgTZTg8io9q8ZlvDQuAWrKkw_JK7eLJlTvWVMp5V4MWCHCBzt_qb-bogh2tZavOO8K3Fg61QyurYd7GRrz_G6lKZzJ2xvvpLN6_JAySb_UGHZH-6W8GbaCFN3du0Mn4BaEEM7w priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfm6ibEM-cCSpE8d2fGzDpgmJwYGKcbIc53lMZFm1pRrw12M7btUOCQluceLEjt5nv_fs5-8h9Aao0zNM28RST6rNiUm0ZSRhVJecF02TGX92-MMpP5kX78_YWVxwC2dhACAEn0HqL8Ne_gW0P8SE5548TU64U_HOSZgEJrhSlOmisffRDmfOFh-hnfnpp-lXn1Eu4zKhYW9yPxJrTnTIQZj6jOEppdSBPd9SR4G1P6ZZ2bI4Hyy7hf55q9t2Q_kcP0Fq1e0h5uR7uuzr1Py6w-j4___1FD2OdimeDkB6hu5B9xw92mArfIEuhwUIaPBMtw0-0uct4CFcGX90M89lPNKJv1z03_A7gAWO7K3nycwpywZXYWJyzVQea9euTh8iwTqsO_fUG_I-cil8ZRfNj48-VydJzNaQGOcj9kkhhNQ5gNZAG8KI9Vx0mrlibQVwW9sCGAMruXU2oKaWCagN6KxsapvRmu6hUXfVwUuEQVKaa8KtKOqC5UKWJLemMO4rBkQJY5SvhKZMpDL3GTVaFVwaItW0qhx-lZe0ipIeo7frlxYDk8ffq888GtZVPQ13uOEkp-KoViWxlkqQZeYDNKl2vi_RvMl4aUgGphijXS_tjfYG2Y7RwQpcKs4ZN8q7vgXnUri2kzXg_ujrAOKtvr76x_r76KEvDitJB2jUXy_h0NlWff06DqDf-XccYA priority: 102 providerName: Unpaywall |
| Title | Improved Bald Eagle Search Optimization with Deep Learning based Cervical Cancer Detection and Classification |
| URI | https://ieeexplore.ieee.org/document/10328878 https://www.proquest.com/docview/2899466972 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10328878.pdf https://doaj.org/article/80ff39e98109433a9170a6d168c01ec4 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQCHikcRW9qVDxxJ68Tx67gbWlVIFA6sKKfIccYFKQ2rNlXFv2fsuKusKsGFYxI_xp7JPKzxN4S8A452RlifeR5AtSVzmfWCZYJbLWXZtrkLd4c_ncuzVfnxQlxMSn2FnLARHnjcuGPNvOcGjM5DDhy3GF4wK9tcasdycBEJlGkzCaaiDta5NEIlmCHseryoKlzRUagWfsQ5R0EvtkxRROxPJVa2vM0nt_3a_r6zXTcxPKfPyW7yGOlipPQFeQT9S_JsgiP4ilyNRwPQ0qXtWnpiLzugYyIx_Yw64SpdtqTffg4_6AeANU24qpfZEs1YS6uoMnCaKkjBNbYZYo5WT22PX4OLHXKK4ih7ZHV68rU6y1Idhcxh9DZkpVLGFgDWAm-ZYD6gxFmBj41XIH3jSxACvJEevTPLvVDQOLC5bhuf84a_Jjv9rx7eEAqG88Iy6VXZlKJQRrPCu9LhKA6Uhhkp7re0dglkPNS66OoYbDBTj3yoAx_qxIcZeb_ptB4xNv7efBl4tWkaALLjCxSbOolN_S-xmZG9wOnJfLxAfatn5OCe9XX6m2_qEJSWUhqFc2cbcXhAq40lLrdo3f8ftL4lT8OY48HPAdkZrm_hEF2hoZlHqZ_HW4tz8nh1_mXx_Q9UtQRV |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHnkUsFPCBI0md-BUf29BqgXa5tFJvkeOMeyBNV2VXCH49Hse72gWBuOVhZ2zN2J6ZzHxDyDvg4ZyR1meeI6i2Yi6zXrJMclspJbqucJg7fDZT0wvx6VJepmT1mAsDADH4DHK8jP_yuxu3RFfZQQR_q3R1l9yTQgg5pmutXSpYQ8JInbCFCmYODus6TCPHEuE55zxId7l1_kSY_lRXZUvF3F0Oc_vju-37jdPm5BGZrcY5Bpl8zZeLNnc_f4Nw_O-JPCYPk95JD0dBeULuwPCUPNhAI3xGrkcHA3T0yPYdPbZXPdAxHJl-CTvLdUrZpOi7pR8A5jShs15RPAw7WseNJ5CpUZZuQ5tFjPQaqB3CW1TUMTIpfmWPXJwcn9fTLFVjyFywAReZ0NrYEsBa4B2TzCPWnJXhtvUalG-9ACnBG-WDjme5lxpaB7aoutYXvOXPyc5wM8ALQsFwXlqmvBatkKU2FSu9Ey58xYGuYELKFY8al6DKsWJG30SThZlmZGyDjG0SYyfk_brTfETq-HfzI2T-uinCbMcHgVFNWrVNxbznBkxVYAAmt8G2ZVZ1haocK8CJCdlD5m7QG_k6IfsrWWrSnvCtQdNWKGV0oJ2t5euPsdpYKHNrrC__QuYt2Z2en502px9nn1-R-9hl9A7tk53F7RJeB31p0b6Jq-QXmN4QPA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfm6ibEM-cCSpE8d2fGzDpgmJwYGKcbIc53lMZFm1pRrw12M7btUOCQluceLEjt5nv_fs5-8h9Aao0zNM28RST6rNiUm0ZSRhVJecF02TGX92-MMpP5kX78_YWVxwC2dhACAEn0HqL8Ne_gW0P8SE5548TU64U_HOSZgEJrhSlOmisffRDmfOFh-hnfnpp-lXn1Eu4zKhYW9yPxJrTnTIQZj6jOEppdSBPd9SR4G1P6ZZ2bI4Hyy7hf55q9t2Q_kcP0Fq1e0h5uR7uuzr1Py6w-j4___1FD2OdimeDkB6hu5B9xw92mArfIEuhwUIaPBMtw0-0uct4CFcGX90M89lPNKJv1z03_A7gAWO7K3nycwpywZXYWJyzVQea9euTh8iwTqsO_fUG_I-cil8ZRfNj48-VydJzNaQGOcj9kkhhNQ5gNZAG8KI9Vx0mrlibQVwW9sCGAMruXU2oKaWCagN6KxsapvRmu6hUXfVwUuEQVKaa8KtKOqC5UKWJLemMO4rBkQJY5SvhKZMpDL3GTVaFVwaItW0qhx-lZe0ipIeo7frlxYDk8ffq888GtZVPQ13uOEkp-KoViWxlkqQZeYDNKl2vi_RvMl4aUgGphijXS_tjfYG2Y7RwQpcKs4ZN8q7vgXnUri2kzXg_ujrAOKtvr76x_r76KEvDitJB2jUXy_h0NlWff06DqDf-XccYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Bald+Eagle+Search+Optimization+With+Deep+Learning-Based+Cervical+Cancer+Detection+and+Classification&rft.jtitle=IEEE+access&rft.au=Alanoud+Al+Mazroa&rft.au=Mohamad+Khairi+Ishak&rft.au=Aljarbouh%2C+Ayman&rft.au=Mostafa%2C+Samih+M&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=135175&rft_id=info:doi/10.1109%2FACCESS.2023.3337032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |