A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles
The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input...
Saved in:
| Published in | Drones (Basel) Vol. 8; no. 2; p. 43 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2504-446X 2504-446X |
| DOI | 10.3390/drones8020043 |
Cover
| Abstract | The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input images with object boundary information. After training on sets of data, it is able to set its own object boundaries. In the present study, the algorithm was trained for tree crown detection and segmentation. The test bed consisted of UAV imagery of an agricultural field of tangerine trees in the city of Palermo in Sicily, Italy. The algorithm’s output was the accurate boundary of each tree. The output from the developed algorithm was compared against the results of tree boundary segmentation generated by the Support Vector Machine (SVM) supervised classifier, which has proven to be a very promising object segmentation method. The results from the two methods were compared with the most accurate yet time-consuming method, direct digitalization. For accuracy assessment purposes, the detected area efficiency, skipped area rate, and false area rate were estimated for both methods. The results showed that the Detectron2 algorithm is more efficient in segmenting the relevant data when compared to the SVM model in two out of the three indices. Specifically, the Detectron2 algorithm exhibited a 0.959% and 0.041% fidelity rate on the common detected and skipped area rate, respectively, when compared with the digitalization method. The SVM exhibited 0.902% and 0.097%, respectively. On the other hand, the SVM classification generated better false detected area results, with 0.035% accuracy, compared to the Detectron2 algorithm’s 0.056%. Having an accurate estimation of the tree boundaries from the Detectron2 algorithm, the tree health assessment was evaluated last. For this to happen, three different vegetation indices were produced (NDVI, GLI and VARI). All those indices showed tree health as average. All in all, the results demonstrated the ability of the technique to detect and segment trees from UAV imagery. |
|---|---|
| AbstractList | The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input images with object boundary information. After training on sets of data, it is able to set its own object boundaries. In the present study, the algorithm was trained for tree crown detection and segmentation. The test bed consisted of UAV imagery of an agricultural field of tangerine trees in the city of Palermo in Sicily, Italy. The algorithm’s output was the accurate boundary of each tree. The output from the developed algorithm was compared against the results of tree boundary segmentation generated by the Support Vector Machine (SVM) supervised classifier, which has proven to be a very promising object segmentation method. The results from the two methods were compared with the most accurate yet time-consuming method, direct digitalization. For accuracy assessment purposes, the detected area efficiency, skipped area rate, and false area rate were estimated for both methods. The results showed that the Detectron2 algorithm is more efficient in segmenting the relevant data when compared to the SVM model in two out of the three indices. Specifically, the Detectron2 algorithm exhibited a 0.959% and 0.041% fidelity rate on the common detected and skipped area rate, respectively, when compared with the digitalization method. The SVM exhibited 0.902% and 0.097%, respectively. On the other hand, the SVM classification generated better false detected area results, with 0.035% accuracy, compared to the Detectron2 algorithm’s 0.056%. Having an accurate estimation of the tree boundaries from the Detectron2 algorithm, the tree health assessment was evaluated last. For this to happen, three different vegetation indices were produced (NDVI, GLI and VARI). All those indices showed tree health as average. All in all, the results demonstrated the ability of the technique to detect and segment trees from UAV imagery. |
| Audience | Academic |
| Author | Petropoulos, George P. Kouvaras, Loukas |
| Author_xml | – sequence: 1 givenname: Loukas surname: Kouvaras fullname: Kouvaras, Loukas – sequence: 2 givenname: George P. orcidid: 0000-0003-1442-1423 surname: Petropoulos fullname: Petropoulos, George P. |
| BookMark | eNp9kU1vEzEQhleoSJTSI3dLnLfYa6_jPYaW0kgBJEgrbqtZe7xxtGsHewPK7-gfrtMgviSQD_aM_T7zeuZ5ceKDx6J4yegF5w19bWKOk6IVpYI_KU6rmopSCPnl5Lfzs-I8pQ2ltKpELRt2WtzPyYfwDQeyQr327usOyRtIaEjw5D3otfNIlgjRO98TGyK5wgn1dIjAG_IZ-xH9Y7iKiIk4T-4w7smN69fkE6Yw7CaXWVeudxMMZDFCn5_ZGEZy60fwPteaY3T57g7XTg-YXhRPLQwJz3_sZ8Xt9dvV5U25_PhucTlfllrQZioFF1ZZ2RnVNMCMZIxykNrWUllmmRJgedOhUkzLTksKtmKm4jNr6kp3hvKzYnHkmgCbdhvdCHHfBnDtYyLEvoU4HSy1mS64AYHWdMKoupFczbQEU2ujAUxmXRxZO7-F_XcYhp9ARtvDhNo_JpQFr46CbQy562lqN2EXff5vy6lQs6qaKfYL20N24bwNUwSdl8HR6cyzLufnMyUoVzUXWcCPAh1DShFtq3PfDyPIQjf800z5l-r_5h8AvnHFiA |
| CitedBy_id | crossref_primary_10_3390_drones8040145 crossref_primary_10_1080_01431161_2024_2370504 crossref_primary_10_3390_land14030643 |
| Cites_doi | 10.1016/j.rse.2014.02.014 10.3390/s150715520 10.3390/ijgi10080507 10.1007/s11119-021-09813-y 10.1080/10106049.2013.768300 10.1109/ACCESS.2020.2964540 10.1080/22797254.2017.1365570 10.3390/rs12152426 10.1117/1.JRS.9.096088 10.1080/10106049.2022.2036824 10.1371/journal.pone.0223906 10.3390/s21051617 10.1007/978-3-319-10602-1_48 10.1016/S0034-4257(01)00295-4 10.1109/36.134076 10.3390/rs12040597 10.1016/j.isprsjprs.2018.04.003 10.1101/532952 10.1201/b19478 10.1080/01431161.2020.1841319 10.1016/j.isprsjprs.2018.05.005 10.1016/j.isprsjprs.2021.06.003 10.3390/rs9010022 10.1080/2150704X.2020.1784491 10.1016/S0034-4257(99)00067-X 10.3390/rs16010149 10.3390/f11070750 10.1093/jee/toz268 10.1111/j.1600-0587.1986.tb01224.x 10.1080/01431160110040323 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/drones8020043 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) eJournal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_d6143da4efdb4d8596387c6ad5cdcaad 10.3390/drones8020043 A784038534 10_3390_drones8020043 |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-434f8f6bd899a1d61103a6cf568f1f184af39be881c6bc60af21d237fd52cbd03 |
| IEDL.DBID | UNPAY |
| ISSN | 2504-446X |
| IngestDate | Tue Oct 14 14:44:43 EDT 2025 Tue Aug 19 17:03:04 EDT 2025 Fri Jul 25 22:45:02 EDT 2025 Mon Oct 20 17:08:42 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Thu Oct 16 04:39:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-434f8f6bd899a1d61103a6cf568f1f184af39be881c6bc60af21d237fd52cbd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1442-1423 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2504-446X/8/2/43/pdf?version=1706754011 |
| PQID | 3048722781 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d6143da4efdb4d8596387c6ad5cdcaad unpaywall_primary_10_3390_drones8020043 proquest_journals_3048722781 gale_infotracacademiconefile_A784038534 crossref_citationtrail_10_3390_drones8020043 crossref_primary_10_3390_drones8020043 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ding (ref_9) 2018; 141 Lorenzen (ref_34) 1986; 9 Olariu (ref_28) 2017; 50 Foody (ref_29) 2002; 80 ref_36 ref_13 ref_12 Achille (ref_5) 2015; 15 ref_11 Thenkabail (ref_18) 2000; 71 ref_32 Huang (ref_25) 2002; 23 Gordana (ref_14) 2020; 11 ref_17 Zhang (ref_35) 2021; 22 Heldens (ref_20) 2020; 113 Deng (ref_8) 2018; 145 ref_15 ref_37 Hao (ref_7) 2021; 178 Sandric (ref_16) 2022; 37 Gitelson (ref_19) 2014; 147 Tehrany (ref_27) 2013; 29 Kaufman (ref_33) 1992; 30 Xuan (ref_10) 2020; 8 ref_23 ref_22 ref_21 Petropoulos (ref_31) 2011; 18 ref_1 ref_3 ref_2 Petropoulos (ref_4) 2020; 42 ref_26 Petropoulos (ref_24) 2015; 9 Kontoes (ref_30) 2009; 11 ref_6 |
| References_xml | – volume: 147 start-page: 108 year: 2014 ident: ref_19 article-title: Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.014 – ident: ref_32 – volume: 15 start-page: 15520 year: 2015 ident: ref_5 article-title: UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy) publication-title: Sensors doi: 10.3390/s150715520 – ident: ref_3 doi: 10.3390/ijgi10080507 – volume: 22 start-page: 2007 year: 2021 ident: ref_35 article-title: Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches publication-title: Precis. Agric doi: 10.1007/s11119-021-09813-y – volume: 29 start-page: 351 year: 2013 ident: ref_27 article-title: A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery publication-title: Geocarto Int. doi: 10.1080/10106049.2013.768300 – volume: 18 start-page: 344 year: 2011 ident: ref_31 article-title: Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_21 – volume: 8 start-page: 9325 year: 2020 ident: ref_10 article-title: Attention Mask R-CNN for Ship Detection and Segmentation from Remote Sensing Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964540 – volume: 50 start-page: 496 year: 2017 ident: ref_28 article-title: Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2017.1365570 – ident: ref_6 doi: 10.3390/rs12152426 – volume: 9 start-page: 096088 year: 2015 ident: ref_24 article-title: Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: Case of Athens, Greece publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.9.096088 – volume: 37 start-page: 10459 year: 2022 ident: ref_16 article-title: Tree’s detection & health’s assessment from ultrahigh resolution UAV imagery and deep learning publication-title: Geocarto Int. doi: 10.1080/10106049.2022.2036824 – ident: ref_13 doi: 10.1371/journal.pone.0223906 – ident: ref_15 doi: 10.3390/s21051617 – volume: 11 start-page: 299 year: 2009 ident: ref_30 article-title: A comparative analysis of a fixed thresholding vs. a classification tree approach for operational burn scar detection and mapping publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_23 doi: 10.1007/978-3-319-10602-1_48 – volume: 80 start-page: 185 year: 2002 ident: ref_29 article-title: Status of land cover classification accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00295-4 – volume: 30 start-page: 261 year: 1992 ident: ref_33 article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sensing doi: 10.1109/36.134076 – ident: ref_1 doi: 10.3390/rs12040597 – volume: 145 start-page: 3 year: 2018 ident: ref_8 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.003 – ident: ref_12 doi: 10.1101/532952 – ident: ref_26 doi: 10.1201/b19478 – volume: 42 start-page: 1623 year: 2020 ident: ref_4 article-title: Exploring the use of Unmanned Aerial Vehicles (UAVs) with the simplified ‘triangle’ technique for soil water content and evaporative fraction retrievals in a Mediterranean setting publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1841319 – volume: 141 start-page: 208 year: 2018 ident: ref_9 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.005 – volume: 178 start-page: 112 year: 2021 ident: ref_7 article-title: Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.06.003 – ident: ref_17 – ident: ref_36 – ident: ref_11 doi: 10.3390/rs9010022 – ident: ref_22 – volume: 11 start-page: 847 year: 2020 ident: ref_14 article-title: Tree extraction from multi-scale UAV images using Mask R-CNN with FPN publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2020.1784491 – volume: 71 start-page: 158 year: 2000 ident: ref_18 article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00067-X – ident: ref_37 doi: 10.3390/rs16010149 – ident: ref_2 doi: 10.3390/f11070750 – volume: 113 start-page: 1 year: 2020 ident: ref_20 article-title: Drones: Innovative technology for use in precision pest management publication-title: J. Econ. Entomol. doi: 10.1093/jee/toz268 – volume: 9 start-page: 305 year: 1986 ident: ref_34 article-title: Feeding by geese on the Filso Farmland, Denmark, and the effect of grazing on yield structure of Spring Barley publication-title: Ecography doi: 10.1111/j.1600-0587.1986.tb01224.x – volume: 23 start-page: 725 year: 2002 ident: ref_25 article-title: An assessment of support vector machines for land cover classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110040323 |
| SSID | ssj0002245691 |
| Score | 2.2951193 |
| Snippet | The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 43 |
| SubjectTerms | Accuracy Aerial photography Aircraft Algorithms Boundaries Detectron2 Digital imaging Digitization Drone aircraft Geospatial data Image resolution Image segmentation Machine learning Neural networks Programming languages Python Remote sensing systems Support vector machines tree detection Trees trees health UAVs Unmanned aerial vehicles Vegetation Vegetation index |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDAgFioUVzQHAhqh07Xue4fakgtRd2UW-Wn0vRNq12t6D-jv7hziTZ1VYIuHBM5Dgjz-d5JONvGHsfTcIwP_BCqWgK9MemMLoui6zRO6vgeZnpNPLpmT6ZqC_n1flGqy-qCevogbuF24voP2R0KuXocbqKADMM2sUqxOBcJOvLTb2RTP1oSV0wMKhFR6opMa_fi3PivjecUCEfOKGWq_93i_yEbd801-72l5vNNlzO8TP2tI8VYdTJ-Jw9Ss0LdjeCs6ufaQbjFfsq7KMninDVwGlbGZmgJ02dAkakcJjoPwFduSbC1zRtC4TwcjxPaQEXDXxL81uggg-gj_kdFOHwYkr9RODzJVqcBdAxFJg0l47sMoxa3OKD39uqupdscnw0Pjgp-s4KRcB8bok6Udlk7SNmW07gEgsunQ650iaLjEmfy7L2yRgRtA-au1yKWMphjlUZfOTyFdtqcD1fMxAml2XMjuuUlS6V5yZWRkifnRIm1gP2abXUNvS049T9YmYx_SDN2AeaGbAP6-HXHd_Gnwbuk97Wg4gmu72B4LE9eOy_wDNgH0nrljYzChVcfyYB30O0WHY0xPxXYkSjBmxnBQzb7_KFlWj-hnSWWOBEa7D8Xe43_0Put-xxicFVVz2-w7aW85u0i8HR0r9r98E9pwIQzw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IBAgyga6BwQvREscx3UfEGrZpoG0CkGL9hY5PrtM6tKSdkP7O_iHuctHYULs0ZHjOL7zfdh3vxPiFRpPZr6LI6XQRKSPTWT0UEZBk3ZWrohl4Gzk04k-malPZ9nZjph0uTAcVtnJxFpQ49LxGfkBud1mwHmbyfvVj4irRvHtaldCw7alFfBdDTF2R-xKRsbqid3x0eTzl-2pi-R7vmHSgG2m5O8fYMWY-CZmbklvKKcaw_9fSX1f3L0sV_b6p10s_lJFxw_Fg9aGhFFD9Edix5ePxa8RTJZXfgHTDpUVxqShEJYlnNYRkx5aMNU5kKUKh57vD7hlS4Svfl4HDlFzWnm_hvMSvvnqGjgQBPiQv2FRODyfc50R-HhBkmgNnJ4Cs_LCsryGUc3P9OL3OtruiZgdH00_nERtxYXIkZ-3IVqpYIIukLwwm6Am2yC12oVMm5AEcgZtSIeFNyZxunA6tkEmKNNBwEy6AuP0qeiVtJ7PBCQmSInBxtoHpaUqYoOZSdIiWJUYHPbF226pc9fCkXNVjEVObglTJr9Bmb54ve2-anA4_tdxzHTbdmL47PrBsprn7W7M6c9Uilb5gAXxaMZSaOC0xcyhsxb74g1TPedNTpNyts1VoO8wXFY-GpBfnJKlo_piv2OMvN396_wPr9JAW2a5fd7Pbx9oT9yTZE418eL7orepLv0LMoc2xcuWx38DWuMM0g priority: 102 providerName: ProQuest |
| Title | A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles |
| URI | https://www.proquest.com/docview/3048722781 https://www.mdpi.com/2504-446X/8/2/43/pdf?version=1706754011 https://doaj.org/article/d6143da4efdb4d8596387c6ad5cdcaad |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW9gAceAjQFpbKBwQXsnnYcV0JCaXslgVpqxW0qBxQ5PhRKrpplbaLlr_BH2Ymj4oFgRDHRE7iaMYz39gz3xDyxEgLMF8HHudGeuCPpSdFP_KcAO_MdRZEDquRT0fiZMLfTuPpHnnR1MJgWiWE4vPSSCO9FrxETH3pRz5n_sq4lxf1PhLyvvQAb2Bhb1vEgMRbpD0ZnSUfsZ9c82RFq8kgsvdNgez3MkC9YFfcUMnW_7tNvkmub_OVuvyqFoufnM7wNvnUTLfKNflyuN1kh_rbL0yO__s_d8itGo3SpFKfu2TP5vfI94SOlhd2QccNvysdgK8zdJnT0zL30tKalnVGAfPSI4snEXilckPf21mZggSX48LaNZ3n9IMtLimmlFA8LqiUnR7NZ9ixhL45B5u2pljoQif5uULLT5NyZcCDn8u8vftkMjwevzrx6t4NnoaIcQNS5046kRmI51RoBKAMpoR2sZAudBBWKsf6mZUy1CLTIlAuCk3Ees7Ekc5MwB6QVg7y2ic0lC6KjFOBsI6LiGeBNLEMWeYUD6Xpd8jzRpSpronNsb_GIoUAByWfXpF8hzzdDV9VjB5_GjhAvdgNQiLu8saymKX1uk7hzzgziltnMtD2GO1ZTwtlYm20UqZDnqFWpWguYFJa1VUP8B0k3kqTHkTYDDAT75CDRvHS2o6sUwYGtofVyiG8aKeMf5_3w38e-YjciACjVUnoB6S1Kbb2MWCsTdYl1-TwdZe0B8ejs3fdcqeiWy-vHyF1J-s |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IBAgAgXmwOOCVXu93qwPFUpIq4Q2EYIE9WbW-wiVUickKVV-B_-H38aMYwcqRG892lqv1ztv78w3jL20yqGbb8JACKsCtMcqUDLlgZdonYXJQ-6pGrk_kN2R-HCanG6xX3UtDKVV1jqxVNR2augf-T6G3apJdZvRu9n3gLpG0elq3UJDV60V7EEJMVYVdhy71SWGcIuDXgfp_Yrzo8Ph-25QdRkIDMY2S1yf8MrL3GLkoSMr0R7GWhqfSOUjjwGQ9nGaO6UiI3MjQ-15ZHnc9DbhJrdhjPPeYjs4TYrB3077cPDx0-YvD6dzxTRag3vGcRru2zlh8KuQuDO-YgzLngH_WoY7bPeimOnVpZ5M_jJ9R_fY3cpnhdaaye6zLVc8YD9bMJj-cBMY1iiw0EaLaGFaQL_M0HRQgbeOAT1j6Dg6r6ArXVj47MZlohJeDufOLeCsgC9uvgJKPAE6VFiLBHTOxtTXBHrnqPkWQOUwMCrONdkHaJXygw9-K7P7HrLRjez9I7Zd4H4-ZhApz7n1OpTOC8lFHiqbqCjOvRaRsmmDva23OjMV_Dl14ZhkGAYRZbIrlGmw15vhszXux_8Gtolum0EE113emM7HWSX9GX6ZiK0WztscZSIhrdc0UtvEWKO1bbA3RPWMlAouyuiqNgLfQ_BcWauJcXiMnpVosL2aMbJK2yyyP7KBE22Y5fp1P7l-ohdstzvsn2QnvcHxU3aboyu3zlXfY9vL-YV7hq7YMn9e8TuwrzctYr8B1uRKVA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IBAgAgXmwOOCFXu93mwOCKWE0FAaIZGg3sx6H6FS6gQnpcrv4N_013XGj0CF6K1HW-v1euftnfmGsRdWOXTzTRgIYVWA9lgFSnZ54CVaZ2GykHuqRj4Yyb2J-HSYHG6xs6YWhtIqG51YKmo7N_SPvI1ht-pQ3WbU9nVaxJf-4N3iZ0AdpOiktWmnUbHIvlufYvi2fDvsI61fcj74MH6_F9QdBgKDcc0K1ya88jKzGHXoyEq0hbGWxidS-chj8KN93M2cUpGRmZGh9jyyPO54m3CT2TDGea-x6x1Ccacq9cHHzf8dTieK3aiC9Yzjbti2BaHvq5D4Mr5gBstuAf_ahNvs5km-0OtTPZv9ZfQGd9md2luFXsVe99iWy--z3z0YzX-5GYwb_FfYRVtoYZ7DQZmb6aCGbZ0C-sTQd3RSQVc6t_DVTcsUJbwcF84t4SiHb65YA6WcAB0nVMIA_aMpdTSB4THqvCVQIQxM8mNNlgF6peTggz_KvL4HbHIlO_-Qbee4n48YRMpzbr0OpfNCcpGFyiYqijOvRaRst8XeNFudmhr4nPpvzFIMgIgy6QXKtNirzfBFhfjxv4G7RLfNIALqLm_Mi2lay32KXyZiq4XzNkNpSEjfdYzUNjHWaG1b7DVRPSV1gosyuq6KwPcQMFfa62AEHqNPJVpsp2GMtNYzy_SPVOBEG2a5fN2PL5_oObuBgpV-Ho72n7BbHH24Kkl9h22vihP3FH2wVfasZHZg369aus4B4k5H7g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7gF4YCBAFAbyA4IXsiS247jSJJQxpoG0CokWlQcUOf7oKrq0Stuh8W_wD3OXj4qBQIjHRLZj6853v4vvfibkmVUOYL6JAiGsCsAfq0DJAQu8BO8sTBExj9XIZ0N5OhbvJslkhxx2tTCYVgmh-Kw20kivBYPISahCFgoeLq1_ddn-R0LelxTwBhb27soEkHiP7I6H77NPeJ9c17Oh1eQQ2Ye2QvZ7FaFe8GtuqGbr_90m3yI3NuVSX33V8_lPTudkj3zuptvkmnw52KyLA_PtFybH_13PHXK7RaM0a9TnLtlx5T3yPaPDxaWb01HH70qPwNdZuijpWZ176WhLyzqlgHnpscOTCHzSpaUf3LROQYLHUeXcis5K-tFVVxRTSigeFzTKTo9nU7yxhL69AJu2oljoQsflhUbLT7N6Z0DH8zpv7z4Zn7wZvT4N2rsbAgMR4xqkLrzysrAQz-nYSkAZXEvjE6l87CGs1J4PCqdUbGRhZKQ9iy3jqbcJM4WN-APSK0FeDwmNlWfMeh1J54VkooiUTVTMC69FrOygT152osxNS2yO92vMcwhwUPL5Ncn3yfNt82XD6PGnhkeoF9tGSMRdv1hU07zd1zmsTHCrhfO2AG1P0J6lRmqbGGu0tn3yArUqR3MBkzK6rXqA7yDxVp6lEGFzwEyiT_Y7xctbO7LKORjYFKuVYxhoq4x_n_ejf275mNxkgNGaJPR90ltXG_cEMNa6eNpupR8uCiR2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Technique+Based+on+Machine+Learning+for+Detecting+and+Segmenting+Trees+in+Very+High+Resolution+Digital+Images+from+Unmanned+Aerial+Vehicles&rft.jtitle=Drones+%28Basel%29&rft.au=Kouvaras%2C+Loukas&rft.au=Petropoulos%2C+George+P.&rft.date=2024-02-01&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=8&rft.issue=2&rft.spage=43&rft_id=info:doi/10.3390%2Fdrones8020043&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_drones8020043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |