A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles

The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input...

Full description

Saved in:
Bibliographic Details
Published inDrones (Basel) Vol. 8; no. 2; p. 43
Main Authors Kouvaras, Loukas, Petropoulos, George P.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2504-446X
2504-446X
DOI10.3390/drones8020043

Cover

Abstract The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input images with object boundary information. After training on sets of data, it is able to set its own object boundaries. In the present study, the algorithm was trained for tree crown detection and segmentation. The test bed consisted of UAV imagery of an agricultural field of tangerine trees in the city of Palermo in Sicily, Italy. The algorithm’s output was the accurate boundary of each tree. The output from the developed algorithm was compared against the results of tree boundary segmentation generated by the Support Vector Machine (SVM) supervised classifier, which has proven to be a very promising object segmentation method. The results from the two methods were compared with the most accurate yet time-consuming method, direct digitalization. For accuracy assessment purposes, the detected area efficiency, skipped area rate, and false area rate were estimated for both methods. The results showed that the Detectron2 algorithm is more efficient in segmenting the relevant data when compared to the SVM model in two out of the three indices. Specifically, the Detectron2 algorithm exhibited a 0.959% and 0.041% fidelity rate on the common detected and skipped area rate, respectively, when compared with the digitalization method. The SVM exhibited 0.902% and 0.097%, respectively. On the other hand, the SVM classification generated better false detected area results, with 0.035% accuracy, compared to the Detectron2 algorithm’s 0.056%. Having an accurate estimation of the tree boundaries from the Detectron2 algorithm, the tree health assessment was evaluated last. For this to happen, three different vegetation indices were produced (NDVI, GLI and VARI). All those indices showed tree health as average. All in all, the results demonstrated the ability of the technique to detect and segment trees from UAV imagery.
AbstractList The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using a machine learning (ML) algorithm named Detectron2. The technique, which was developed in the python programming language, receives as input images with object boundary information. After training on sets of data, it is able to set its own object boundaries. In the present study, the algorithm was trained for tree crown detection and segmentation. The test bed consisted of UAV imagery of an agricultural field of tangerine trees in the city of Palermo in Sicily, Italy. The algorithm’s output was the accurate boundary of each tree. The output from the developed algorithm was compared against the results of tree boundary segmentation generated by the Support Vector Machine (SVM) supervised classifier, which has proven to be a very promising object segmentation method. The results from the two methods were compared with the most accurate yet time-consuming method, direct digitalization. For accuracy assessment purposes, the detected area efficiency, skipped area rate, and false area rate were estimated for both methods. The results showed that the Detectron2 algorithm is more efficient in segmenting the relevant data when compared to the SVM model in two out of the three indices. Specifically, the Detectron2 algorithm exhibited a 0.959% and 0.041% fidelity rate on the common detected and skipped area rate, respectively, when compared with the digitalization method. The SVM exhibited 0.902% and 0.097%, respectively. On the other hand, the SVM classification generated better false detected area results, with 0.035% accuracy, compared to the Detectron2 algorithm’s 0.056%. Having an accurate estimation of the tree boundaries from the Detectron2 algorithm, the tree health assessment was evaluated last. For this to happen, three different vegetation indices were produced (NDVI, GLI and VARI). All those indices showed tree health as average. All in all, the results demonstrated the ability of the technique to detect and segment trees from UAV imagery.
Audience Academic
Author Petropoulos, George P.
Kouvaras, Loukas
Author_xml – sequence: 1
  givenname: Loukas
  surname: Kouvaras
  fullname: Kouvaras, Loukas
– sequence: 2
  givenname: George P.
  orcidid: 0000-0003-1442-1423
  surname: Petropoulos
  fullname: Petropoulos, George P.
BookMark eNp9kU1vEzEQhleoSJTSI3dLnLfYa6_jPYaW0kgBJEgrbqtZe7xxtGsHewPK7-gfrtMgviSQD_aM_T7zeuZ5ceKDx6J4yegF5w19bWKOk6IVpYI_KU6rmopSCPnl5Lfzs-I8pQ2ltKpELRt2WtzPyYfwDQeyQr327usOyRtIaEjw5D3otfNIlgjRO98TGyK5wgn1dIjAG_IZ-xH9Y7iKiIk4T-4w7smN69fkE6Yw7CaXWVeudxMMZDFCn5_ZGEZy60fwPteaY3T57g7XTg-YXhRPLQwJz3_sZ8Xt9dvV5U25_PhucTlfllrQZioFF1ZZ2RnVNMCMZIxykNrWUllmmRJgedOhUkzLTksKtmKm4jNr6kp3hvKzYnHkmgCbdhvdCHHfBnDtYyLEvoU4HSy1mS64AYHWdMKoupFczbQEU2ujAUxmXRxZO7-F_XcYhp9ARtvDhNo_JpQFr46CbQy562lqN2EXff5vy6lQs6qaKfYL20N24bwNUwSdl8HR6cyzLufnMyUoVzUXWcCPAh1DShFtq3PfDyPIQjf800z5l-r_5h8AvnHFiA
CitedBy_id crossref_primary_10_3390_drones8040145
crossref_primary_10_1080_01431161_2024_2370504
crossref_primary_10_3390_land14030643
Cites_doi 10.1016/j.rse.2014.02.014
10.3390/s150715520
10.3390/ijgi10080507
10.1007/s11119-021-09813-y
10.1080/10106049.2013.768300
10.1109/ACCESS.2020.2964540
10.1080/22797254.2017.1365570
10.3390/rs12152426
10.1117/1.JRS.9.096088
10.1080/10106049.2022.2036824
10.1371/journal.pone.0223906
10.3390/s21051617
10.1007/978-3-319-10602-1_48
10.1016/S0034-4257(01)00295-4
10.1109/36.134076
10.3390/rs12040597
10.1016/j.isprsjprs.2018.04.003
10.1101/532952
10.1201/b19478
10.1080/01431161.2020.1841319
10.1016/j.isprsjprs.2018.05.005
10.1016/j.isprsjprs.2021.06.003
10.3390/rs9010022
10.1080/2150704X.2020.1784491
10.1016/S0034-4257(99)00067-X
10.3390/rs16010149
10.3390/f11070750
10.1093/jee/toz268
10.1111/j.1600-0587.1986.tb01224.x
10.1080/01431160110040323
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/drones8020043
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals) eJournal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_d6143da4efdb4d8596387c6ad5cdcaad
10.3390/drones8020043
A784038534
10_3390_drones8020043
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-434f8f6bd899a1d61103a6cf568f1f184af39be881c6bc60af21d237fd52cbd03
IEDL.DBID UNPAY
ISSN 2504-446X
IngestDate Tue Oct 14 14:44:43 EDT 2025
Tue Aug 19 17:03:04 EDT 2025
Fri Jul 25 22:45:02 EDT 2025
Mon Oct 20 17:08:42 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Thu Oct 16 04:39:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-434f8f6bd899a1d61103a6cf568f1f184af39be881c6bc60af21d237fd52cbd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1442-1423
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2504-446X/8/2/43/pdf?version=1706754011
PQID 3048722781
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_d6143da4efdb4d8596387c6ad5cdcaad
unpaywall_primary_10_3390_drones8020043
proquest_journals_3048722781
gale_infotracacademiconefile_A784038534
crossref_citationtrail_10_3390_drones8020043
crossref_primary_10_3390_drones8020043
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ding (ref_9) 2018; 141
Lorenzen (ref_34) 1986; 9
Olariu (ref_28) 2017; 50
Foody (ref_29) 2002; 80
ref_36
ref_13
ref_12
Achille (ref_5) 2015; 15
ref_11
Thenkabail (ref_18) 2000; 71
ref_32
Huang (ref_25) 2002; 23
Gordana (ref_14) 2020; 11
ref_17
Zhang (ref_35) 2021; 22
Heldens (ref_20) 2020; 113
Deng (ref_8) 2018; 145
ref_15
ref_37
Hao (ref_7) 2021; 178
Sandric (ref_16) 2022; 37
Gitelson (ref_19) 2014; 147
Tehrany (ref_27) 2013; 29
Kaufman (ref_33) 1992; 30
Xuan (ref_10) 2020; 8
ref_23
ref_22
ref_21
Petropoulos (ref_31) 2011; 18
ref_1
ref_3
ref_2
Petropoulos (ref_4) 2020; 42
ref_26
Petropoulos (ref_24) 2015; 9
Kontoes (ref_30) 2009; 11
ref_6
References_xml – volume: 147
  start-page: 108
  year: 2014
  ident: ref_19
  article-title: Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.014
– ident: ref_32
– volume: 15
  start-page: 15520
  year: 2015
  ident: ref_5
  article-title: UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy)
  publication-title: Sensors
  doi: 10.3390/s150715520
– ident: ref_3
  doi: 10.3390/ijgi10080507
– volume: 22
  start-page: 2007
  year: 2021
  ident: ref_35
  article-title: Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches
  publication-title: Precis. Agric
  doi: 10.1007/s11119-021-09813-y
– volume: 29
  start-page: 351
  year: 2013
  ident: ref_27
  article-title: A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2013.768300
– volume: 18
  start-page: 344
  year: 2011
  ident: ref_31
  article-title: Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_21
– volume: 8
  start-page: 9325
  year: 2020
  ident: ref_10
  article-title: Attention Mask R-CNN for Ship Detection and Segmentation from Remote Sensing Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964540
– volume: 50
  start-page: 496
  year: 2017
  ident: ref_28
  article-title: Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2017.1365570
– ident: ref_6
  doi: 10.3390/rs12152426
– volume: 9
  start-page: 096088
  year: 2015
  ident: ref_24
  article-title: Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: Case of Athens, Greece
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.9.096088
– volume: 37
  start-page: 10459
  year: 2022
  ident: ref_16
  article-title: Tree’s detection & health’s assessment from ultrahigh resolution UAV imagery and deep learning
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2036824
– ident: ref_13
  doi: 10.1371/journal.pone.0223906
– ident: ref_15
  doi: 10.3390/s21051617
– volume: 11
  start-page: 299
  year: 2009
  ident: ref_30
  article-title: A comparative analysis of a fixed thresholding vs. a classification tree approach for operational burn scar detection and mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_23
  doi: 10.1007/978-3-319-10602-1_48
– volume: 80
  start-page: 185
  year: 2002
  ident: ref_29
  article-title: Status of land cover classification accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00295-4
– volume: 30
  start-page: 261
  year: 1992
  ident: ref_33
  article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/36.134076
– ident: ref_1
  doi: 10.3390/rs12040597
– volume: 145
  start-page: 3
  year: 2018
  ident: ref_8
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.003
– ident: ref_12
  doi: 10.1101/532952
– ident: ref_26
  doi: 10.1201/b19478
– volume: 42
  start-page: 1623
  year: 2020
  ident: ref_4
  article-title: Exploring the use of Unmanned Aerial Vehicles (UAVs) with the simplified ‘triangle’ technique for soil water content and evaporative fraction retrievals in a Mediterranean setting
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1841319
– volume: 141
  start-page: 208
  year: 2018
  ident: ref_9
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.005
– volume: 178
  start-page: 112
  year: 2021
  ident: ref_7
  article-title: Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.06.003
– ident: ref_17
– ident: ref_36
– ident: ref_11
  doi: 10.3390/rs9010022
– ident: ref_22
– volume: 11
  start-page: 847
  year: 2020
  ident: ref_14
  article-title: Tree extraction from multi-scale UAV images using Mask R-CNN with FPN
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2020.1784491
– volume: 71
  start-page: 158
  year: 2000
  ident: ref_18
  article-title: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00067-X
– ident: ref_37
  doi: 10.3390/rs16010149
– ident: ref_2
  doi: 10.3390/f11070750
– volume: 113
  start-page: 1
  year: 2020
  ident: ref_20
  article-title: Drones: Innovative technology for use in precision pest management
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/toz268
– volume: 9
  start-page: 305
  year: 1986
  ident: ref_34
  article-title: Feeding by geese on the Filso Farmland, Denmark, and the effect of grazing on yield structure of Spring Barley
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.1986.tb01224.x
– volume: 23
  start-page: 725
  year: 2002
  ident: ref_25
  article-title: An assessment of support vector machines for land cover classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110040323
SSID ssj0002245691
Score 2.2951193
Snippet The present study proposes a technique for automated tree crown detection and segmentation in digital images derived from unmanned aerial vehicles (UAVs) using...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 43
SubjectTerms Accuracy
Aerial photography
Aircraft
Algorithms
Boundaries
Detectron2
Digital imaging
Digitization
Drone aircraft
Geospatial data
Image resolution
Image segmentation
Machine learning
Neural networks
Programming languages
Python
Remote sensing systems
Support vector machines
tree detection
Trees
trees health
UAVs
Unmanned aerial vehicles
Vegetation
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDAgFioUVzQHAhqh07Xue4fakgtRd2UW-Wn0vRNq12t6D-jv7hziTZ1VYIuHBM5Dgjz-d5JONvGHsfTcIwP_BCqWgK9MemMLoui6zRO6vgeZnpNPLpmT6ZqC_n1flGqy-qCevogbuF24voP2R0KuXocbqKADMM2sUqxOBcJOvLTb2RTP1oSV0wMKhFR6opMa_fi3PivjecUCEfOKGWq_93i_yEbd801-72l5vNNlzO8TP2tI8VYdTJ-Jw9Ss0LdjeCs6ufaQbjFfsq7KMninDVwGlbGZmgJ02dAkakcJjoPwFduSbC1zRtC4TwcjxPaQEXDXxL81uggg-gj_kdFOHwYkr9RODzJVqcBdAxFJg0l47sMoxa3OKD39uqupdscnw0Pjgp-s4KRcB8bok6Udlk7SNmW07gEgsunQ650iaLjEmfy7L2yRgRtA-au1yKWMphjlUZfOTyFdtqcD1fMxAml2XMjuuUlS6V5yZWRkifnRIm1gP2abXUNvS049T9YmYx_SDN2AeaGbAP6-HXHd_Gnwbuk97Wg4gmu72B4LE9eOy_wDNgH0nrljYzChVcfyYB30O0WHY0xPxXYkSjBmxnBQzb7_KFlWj-hnSWWOBEa7D8Xe43_0Put-xxicFVVz2-w7aW85u0i8HR0r9r98E9pwIQzw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IBAgyga6BwQvREscx3UfEGrZpoG0CkGL9hY5PrtM6tKSdkP7O_iHuctHYULs0ZHjOL7zfdh3vxPiFRpPZr6LI6XQRKSPTWT0UEZBk3ZWrohl4Gzk04k-malPZ9nZjph0uTAcVtnJxFpQ49LxGfkBud1mwHmbyfvVj4irRvHtaldCw7alFfBdDTF2R-xKRsbqid3x0eTzl-2pi-R7vmHSgG2m5O8fYMWY-CZmbklvKKcaw_9fSX1f3L0sV_b6p10s_lJFxw_Fg9aGhFFD9Edix5ePxa8RTJZXfgHTDpUVxqShEJYlnNYRkx5aMNU5kKUKh57vD7hlS4Svfl4HDlFzWnm_hvMSvvnqGjgQBPiQv2FRODyfc50R-HhBkmgNnJ4Cs_LCsryGUc3P9OL3OtruiZgdH00_nERtxYXIkZ-3IVqpYIIukLwwm6Am2yC12oVMm5AEcgZtSIeFNyZxunA6tkEmKNNBwEy6AuP0qeiVtJ7PBCQmSInBxtoHpaUqYoOZSdIiWJUYHPbF226pc9fCkXNVjEVObglTJr9Bmb54ve2-anA4_tdxzHTbdmL47PrBsprn7W7M6c9Uilb5gAXxaMZSaOC0xcyhsxb74g1TPedNTpNyts1VoO8wXFY-GpBfnJKlo_piv2OMvN396_wPr9JAW2a5fd7Pbx9oT9yTZE418eL7orepLv0LMoc2xcuWx38DWuMM0g
  priority: 102
  providerName: ProQuest
Title A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles
URI https://www.proquest.com/docview/3048722781
https://www.mdpi.com/2504-446X/8/2/43/pdf?version=1706754011
https://doaj.org/article/d6143da4efdb4d8596387c6ad5cdcaad
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW9gAceAjQFpbKBwQXsnnYcV0JCaXslgVpqxW0qBxQ5PhRKrpplbaLlr_BH2Ymj4oFgRDHRE7iaMYz39gz3xDyxEgLMF8HHudGeuCPpSdFP_KcAO_MdRZEDquRT0fiZMLfTuPpHnnR1MJgWiWE4vPSSCO9FrxETH3pRz5n_sq4lxf1PhLyvvQAb2Bhb1vEgMRbpD0ZnSUfsZ9c82RFq8kgsvdNgez3MkC9YFfcUMnW_7tNvkmub_OVuvyqFoufnM7wNvnUTLfKNflyuN1kh_rbL0yO__s_d8itGo3SpFKfu2TP5vfI94SOlhd2QccNvysdgK8zdJnT0zL30tKalnVGAfPSI4snEXilckPf21mZggSX48LaNZ3n9IMtLimmlFA8LqiUnR7NZ9ixhL45B5u2pljoQif5uULLT5NyZcCDn8u8vftkMjwevzrx6t4NnoaIcQNS5046kRmI51RoBKAMpoR2sZAudBBWKsf6mZUy1CLTIlAuCk3Ees7Ekc5MwB6QVg7y2ic0lC6KjFOBsI6LiGeBNLEMWeYUD6Xpd8jzRpSpronNsb_GIoUAByWfXpF8hzzdDV9VjB5_GjhAvdgNQiLu8saymKX1uk7hzzgziltnMtD2GO1ZTwtlYm20UqZDnqFWpWguYFJa1VUP8B0k3kqTHkTYDDAT75CDRvHS2o6sUwYGtofVyiG8aKeMf5_3w38e-YjciACjVUnoB6S1Kbb2MWCsTdYl1-TwdZe0B8ejs3fdcqeiWy-vHyF1J-s
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IBAgAgXmwOOCVXu93qwPFUpIq4Q2EYIE9WbW-wiVUickKVV-B_-H38aMYwcqRG892lqv1ztv78w3jL20yqGbb8JACKsCtMcqUDLlgZdonYXJQ-6pGrk_kN2R-HCanG6xX3UtDKVV1jqxVNR2augf-T6G3apJdZvRu9n3gLpG0elq3UJDV60V7EEJMVYVdhy71SWGcIuDXgfp_Yrzo8Ph-25QdRkIDMY2S1yf8MrL3GLkoSMr0R7GWhqfSOUjjwGQ9nGaO6UiI3MjQ-15ZHnc9DbhJrdhjPPeYjs4TYrB3077cPDx0-YvD6dzxTRag3vGcRru2zlh8KuQuDO-YgzLngH_WoY7bPeimOnVpZ5M_jJ9R_fY3cpnhdaaye6zLVc8YD9bMJj-cBMY1iiw0EaLaGFaQL_M0HRQgbeOAT1j6Dg6r6ArXVj47MZlohJeDufOLeCsgC9uvgJKPAE6VFiLBHTOxtTXBHrnqPkWQOUwMCrONdkHaJXygw9-K7P7HrLRjez9I7Zd4H4-ZhApz7n1OpTOC8lFHiqbqCjOvRaRsmmDva23OjMV_Dl14ZhkGAYRZbIrlGmw15vhszXux_8Gtolum0EE113emM7HWSX9GX6ZiK0WztscZSIhrdc0UtvEWKO1bbA3RPWMlAouyuiqNgLfQ_BcWauJcXiMnpVosL2aMbJK2yyyP7KBE22Y5fp1P7l-ohdstzvsn2QnvcHxU3aboyu3zlXfY9vL-YV7hq7YMn9e8TuwrzctYr8B1uRKVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IBAgAgXmwOOCFXu93mwOCKWE0FAaIZGg3sx6H6FS6gQnpcrv4N_013XGj0CF6K1HW-v1euftnfmGsRdWOXTzTRgIYVWA9lgFSnZ54CVaZ2GykHuqRj4Yyb2J-HSYHG6xs6YWhtIqG51YKmo7N_SPvI1ht-pQ3WbU9nVaxJf-4N3iZ0AdpOiktWmnUbHIvlufYvi2fDvsI61fcj74MH6_F9QdBgKDcc0K1ya88jKzGHXoyEq0hbGWxidS-chj8KN93M2cUpGRmZGh9jyyPO54m3CT2TDGea-x6x1Ccacq9cHHzf8dTieK3aiC9Yzjbti2BaHvq5D4Mr5gBstuAf_ahNvs5km-0OtTPZv9ZfQGd9md2luFXsVe99iWy--z3z0YzX-5GYwb_FfYRVtoYZ7DQZmb6aCGbZ0C-sTQd3RSQVc6t_DVTcsUJbwcF84t4SiHb65YA6WcAB0nVMIA_aMpdTSB4THqvCVQIQxM8mNNlgF6peTggz_KvL4HbHIlO_-Qbee4n48YRMpzbr0OpfNCcpGFyiYqijOvRaRst8XeNFudmhr4nPpvzFIMgIgy6QXKtNirzfBFhfjxv4G7RLfNIALqLm_Mi2lay32KXyZiq4XzNkNpSEjfdYzUNjHWaG1b7DVRPSV1gosyuq6KwPcQMFfa62AEHqNPJVpsp2GMtNYzy_SPVOBEG2a5fN2PL5_oObuBgpV-Ho72n7BbHH24Kkl9h22vihP3FH2wVfasZHZg369aus4B4k5H7g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7gF4YCBAFAbyA4IXsiS247jSJJQxpoG0CokWlQcUOf7oKrq0Stuh8W_wD3OXj4qBQIjHRLZj6853v4vvfibkmVUOYL6JAiGsCsAfq0DJAQu8BO8sTBExj9XIZ0N5OhbvJslkhxx2tTCYVgmh-Kw20kivBYPISahCFgoeLq1_ddn-R0LelxTwBhb27soEkHiP7I6H77NPeJ9c17Oh1eQQ2Ye2QvZ7FaFe8GtuqGbr_90m3yI3NuVSX33V8_lPTudkj3zuptvkmnw52KyLA_PtFybH_13PHXK7RaM0a9TnLtlx5T3yPaPDxaWb01HH70qPwNdZuijpWZ176WhLyzqlgHnpscOTCHzSpaUf3LROQYLHUeXcis5K-tFVVxRTSigeFzTKTo9nU7yxhL69AJu2oljoQsflhUbLT7N6Z0DH8zpv7z4Zn7wZvT4N2rsbAgMR4xqkLrzysrAQz-nYSkAZXEvjE6l87CGs1J4PCqdUbGRhZKQ9iy3jqbcJM4WN-APSK0FeDwmNlWfMeh1J54VkooiUTVTMC69FrOygT152osxNS2yO92vMcwhwUPL5Ncn3yfNt82XD6PGnhkeoF9tGSMRdv1hU07zd1zmsTHCrhfO2AG1P0J6lRmqbGGu0tn3yArUqR3MBkzK6rXqA7yDxVp6lEGFzwEyiT_Y7xctbO7LKORjYFKuVYxhoq4x_n_ejf275mNxkgNGaJPR90ltXG_cEMNa6eNpupR8uCiR2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Technique+Based+on+Machine+Learning+for+Detecting+and+Segmenting+Trees+in+Very+High+Resolution+Digital+Images+from+Unmanned+Aerial+Vehicles&rft.jtitle=Drones+%28Basel%29&rft.au=Kouvaras%2C+Loukas&rft.au=Petropoulos%2C+George+P.&rft.date=2024-02-01&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=8&rft.issue=2&rft.spage=43&rft_id=info:doi/10.3390%2Fdrones8020043&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_drones8020043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon