Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis

One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction met...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 58; no. 12; pp. 3418 - 3428
Main Authors Diciotti, Stefano, Lombardo, Simone, Falchini, Massimo, Picozzi, Giulia, Mascalchi, Mario
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2167621

Cover

Abstract One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.
AbstractList One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.
One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.
Author Mascalchi, Mario
Picozzi, Giulia
Lombardo, Simone
Diciotti, Stefano
Falchini, Massimo
Author_xml – sequence: 1
  givenname: Stefano
  surname: Diciotti
  fullname: Diciotti, Stefano
  email: stefano.diciotti@unifi.it
  organization: Department of Clinical Physiopathology and with the Department of Electronics and Telecommunications of the University of Florence , Italy
– sequence: 2
  givenname: Simone
  surname: Lombardo
  fullname: Lombardo, Simone
  email: lombardo.s@tin.it
  organization: Department of Clinical Physiopathology of the University of Florence, Italy
– sequence: 3
  givenname: Massimo
  surname: Falchini
  fullname: Falchini, Massimo
  email: m.falchini@dfc.unifi.it
  organization: Department of Clinical Physiopathology of the University of Florence, Italy
– sequence: 4
  givenname: Giulia
  surname: Picozzi
  fullname: Picozzi, Giulia
  email: giuliapicozzi@hotmail.com
  organization: Azienda USL 4 Prato, "Misericordia e Dolce" Hospital, Prato, Italy
– sequence: 5
  givenname: Mario
  surname: Mascalchi
  fullname: Mascalchi, Mario
  email: m.mascalchi@dfc.unifi.it
  organization: Department of Clinical Physiopathology of the University of Florence, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376667$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21914567$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFH4CQkIWEOGXxJLEdH5dVW5AWkNjlxMGynUlxldjbODnsvydhtyD1gDiNRvre08x7F-QsxICEvAS2BGDq_e7D56tlzgCWOQgpcnhCFsB5leW8gDOyYAyqTOWqPCcXKd1Na1mV4hk5z0FByYVckB-rcYidGbCmW7ztMAxm8DHQb9j4gPNOY0O3nWlbuhnDLf0S67HFRH2g6x3dOhMStQe6ic60dPvT7JGugmkPyafn5Glj2oQvTvOSfL--2q0_ZpuvN5_Wq03mSqaGrHC2LFgj68ZOJ1m0dc4a4ZyVhlvJamstNxIaRFVWUnGphAXLjLXoalblxSV5d_Td9_F-xDTozieHbWsCxjFpBQCikuV_kIxXspjSm8g3j8i7OPbTY7NdIVSpqmqCXp-g0XZY633vO9Mf9EO8E_D2BJg05dP0Jjif_nK8kEL85uSRc31MqcdGO38sYuiNbzUwPReu58L1XLg-FT4p4ZHywfxfmldHjUfEP7xgIIHx4hfTwLRd
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TPAMI_2012_245
crossref_primary_10_1016_j_ymeth_2024_04_008
crossref_primary_10_1109_TBME_2013_2262099
crossref_primary_10_1016_j_eswa_2018_11_010
crossref_primary_10_1155_2013_515386
crossref_primary_10_1142_S1793524513500435
crossref_primary_10_1109_TMI_2017_2720119
crossref_primary_10_1007_s11517_022_02667_0
crossref_primary_10_3390_diagnostics13132197
crossref_primary_10_1109_TMI_2015_2474119
crossref_primary_10_1186_s12938_015_0003_y
crossref_primary_10_2147_JMDH_S456167
crossref_primary_10_1016_j_compbiomed_2014_08_005
crossref_primary_10_1118_1_4869265
crossref_primary_10_1007_s13042_018_0825_6
crossref_primary_10_1016_j_compbiomed_2024_108674
crossref_primary_10_1016_j_media_2017_06_014
crossref_primary_10_1038_s41598_022_24900_4
crossref_primary_10_1002_mp_16900
crossref_primary_10_1007_s11227_021_03845_x
crossref_primary_10_1155_2013_942353
crossref_primary_10_1002_mp_15810
crossref_primary_10_3390_diagnostics13081406
crossref_primary_10_1002_mp_13349
crossref_primary_10_1016_j_cmpb_2016_07_031
crossref_primary_10_1038_s41598_020_69817_y
crossref_primary_10_1109_TIP_2013_2282899
crossref_primary_10_1007_s10278_015_9801_9
crossref_primary_10_1109_TMI_2018_2876510
crossref_primary_10_1117_1_JMI_4_2_027503
crossref_primary_10_2174_1574893613666181029100249
crossref_primary_10_1109_ACCESS_2020_2968936
crossref_primary_10_1109_JBHI_2014_2303511
crossref_primary_10_1016_j_cmpb_2020_105902
crossref_primary_10_4018_IJBCE_2019010102
crossref_primary_10_1007_s11771_012_1435_1
crossref_primary_10_3390_math9131457
crossref_primary_10_1007_s40846_017_0317_2
crossref_primary_10_1016_j_neucom_2022_12_003
crossref_primary_10_1002_ima_22515
crossref_primary_10_1109_TCSVT_2018_2818072
crossref_primary_10_1186_s12938_020_00793_0
crossref_primary_10_1186_s12938_016_0164_3
crossref_primary_10_1049_iet_ipr_2019_0178
crossref_primary_10_1109_TETCI_2021_3051910
crossref_primary_10_1016_j_ibmed_2024_100166
crossref_primary_10_1016_j_asoc_2019_105934
crossref_primary_10_1109_JBHI_2022_3220430
crossref_primary_10_32604_cmc_2022_026855
crossref_primary_10_1007_s11554_017_0710_7
crossref_primary_10_1007_s00779_021_01637_x
crossref_primary_10_1038_s41598_025_85199_5
crossref_primary_10_1016_j_jneumeth_2020_108751
crossref_primary_10_1002_mp_14068
crossref_primary_10_1007_s11227_019_03002_5
crossref_primary_10_1016_j_jksuci_2019_02_009
crossref_primary_10_1007_s10278_014_9732_x
crossref_primary_10_1016_j_eswa_2016_05_024
crossref_primary_10_1049_iet_ipr_2019_1054
crossref_primary_10_1007_s11042_024_18485_5
crossref_primary_10_1049_iet_ipr_2016_1014
crossref_primary_10_1016_j_media_2016_09_002
crossref_primary_10_1148_rg_2015140232
crossref_primary_10_3390_s23041989
crossref_primary_10_1109_JBHI_2024_3405907
crossref_primary_10_1109_TMI_2023_3332944
Cites_doi 10.1109/TMI.2003.817785
10.1109/TMI.2006.871547
10.1016/j.acra.2007.07.021
10.1109/34.56205
10.1016/j.acra.2007.08.006
10.1118/1.3528204
10.1109/34.87344
10.1016/j.acra.2007.09.005
10.1378/chest.125.4.1522
10.1191/096228099673819272
10.1117/1.602176
10.1016/S0140-6736(86)90837-8
10.1007/s00330-008-1229-x
10.1016/j.media.2010.08.005
10.1109/TMI.2006.871548
10.1109/TMI.2004.843172
10.1109/TMI.2009.2032542
10.1118/1.2799885
10.1259/bjr/20861881
10.1016/j.lungcan.2008.07.003
10.1097/01.rli.0000242837.11436.6e
10.1109/TITB.2007.899504
10.1109/TMI.2007.907555
10.1117/12.274185
10.1118/1.2207129
10.1118/1.1656593
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2011.2167621
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore DIgital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
EISSN 1558-2531
EndPage 3428
ExternalDocumentID 2553085831
21914567
25376667
10_1109_TBME_2011_2167621
6017105
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c409t-3cb430f7dfb567bebd20f6ccb7a5b70dbbb5a71fee948795796b1b0abbecd0823
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Oct 07 09:08:38 EDT 2025
Sun Sep 28 07:42:55 EDT 2025
Mon Jun 30 08:33:52 EDT 2025
Thu Apr 03 07:09:21 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Wed Oct 01 02:57:13 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Lung disease
Radiodiagnosis
Segmentation
Image processing
Respiratory disease
Refinement method
lung nodules
shape analysis
CT
Morphological analysis
Lung nodule
Medical imagery
Computerized axial tomography
Diagnostic aid
Pattern analysis
Computer-aided diagnosis
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-3cb430f7dfb567bebd20f6ccb7a5b70dbbb5a71fee948795796b1b0abbecd0823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
PMID 21914567
PQID 913694988
PQPubID 85474
PageCount 11
ParticipantIDs proquest_journals_913694988
proquest_miscellaneous_905873253
crossref_primary_10_1109_TBME_2011_2167621
crossref_citationtrail_10_1109_TBME_2011_2167621
proquest_miscellaneous_911168742
pascalfrancis_primary_25376667
ieee_primary_6017105
pubmed_primary_21914567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
kostis (ref8) 2000; 217p
(ref20) 0
ref14
ref31
ref30
ref11
ref32
ref10
3rd (ref23) 2011; 38
ref2
ref1
ref17
ref16
ref18
(ref28) 0
ref24
ref25
ref22
ref21
diciotti (ref15) 2007; 2 (supplement 1)
ref27
ref29
reeves (ref26) 2007; 14
ref7
ref9
ref4
ref3
ref6
ref5
picozzi (ref19) 2005; 109
References_xml – ident: ref3
  doi: 10.1109/TMI.2003.817785
– ident: ref2
  doi: 10.1109/TMI.2006.871547
– ident: ref22
  doi: 10.1016/j.acra.2007.07.021
– ident: ref17
  doi: 10.1109/34.56205
– volume: 217p
  start-page: 549
  year: 2000
  ident: ref8
  article-title: Three-dimensional curvature analysis of small pulmonary nodules in helical CT scans
  publication-title: Suppl Radiol
– ident: ref21
  doi: 10.1016/j.acra.2007.08.006
– volume: 38
  start-page: 915
  year: 2011
  ident: ref23
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A complete reference database of lung nodules on CT scans
  publication-title: Med Phys
  doi: 10.1118/1.3528204
– ident: ref16
  doi: 10.1109/34.87344
– volume: 14
  start-page: 1475
  year: 2007
  ident: ref26
  article-title: The lung image database consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2007.09.005
– ident: ref1
  doi: 10.1378/chest.125.4.1522
– ident: ref25
  doi: 10.1191/096228099673819272
– ident: ref6
  doi: 10.1117/1.602176
– year: 0
  ident: ref20
– volume: 2 (supplement 1)
  start-page: 516s
  year: 2007
  ident: ref15
  article-title: Refinement of juxta-vascular lung nodules segmentation in CT scans by means of 3D geodesic shape analysis
  publication-title: Int J Comput Assist Radiol Surg
– ident: ref24
  doi: 10.1016/S0140-6736(86)90837-8
– ident: ref14
  doi: 10.1016/j.acra.2007.07.021
– ident: ref31
  doi: 10.1007/s00330-008-1229-x
– ident: ref11
  doi: 10.1016/j.media.2010.08.005
– ident: ref4
  doi: 10.1109/TMI.2006.871548
– ident: ref30
  doi: 10.1109/TMI.2004.843172
– ident: ref18
  doi: 10.1109/TMI.2009.2032542
– ident: ref27
  doi: 10.1118/1.2799885
– volume: 109
  start-page: 17
  year: 2005
  ident: ref19
  article-title: Screening of lung cancer with low dose spiral CT. Results of a three year pilot study and design of the randomized clinical trial 'Italung-CT'
  publication-title: La Radiologia Medica
– ident: ref29
  doi: 10.1259/bjr/20861881
– ident: ref13
  doi: 10.1016/j.lungcan.2008.07.003
– ident: ref32
  doi: 10.1097/01.rli.0000242837.11436.6e
– ident: ref12
  doi: 10.1109/TITB.2007.899504
– year: 0
  ident: ref28
– ident: ref10
  doi: 10.1109/TMI.2007.907555
– ident: ref7
  doi: 10.1117/12.274185
– ident: ref9
  doi: 10.1118/1.2207129
– ident: ref5
  doi: 10.1118/1.1656593
SSID ssj0014846
Score 2.3430855
Snippet One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3418
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Automation
Biological and medical sciences
Computed tomography
Computer-aided diagnosis
Databases, Factual
Educational institutions
Exact sciences and technology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Information, signal and communications theory
Lung Neoplasms - diagnostic imaging
lung nodules
Lungs
Materials
Medical sciences
Pattern recognition
Pneumology
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
segmentation
Shape
shape analysis
Signal processing
Studies
Telecommunications and information theory
Tomography, X-Ray Computed - methods
Tumors of the respiratory system and mediastinum
Title Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis
URI https://ieeexplore.ieee.org/document/6017105
https://www.ncbi.nlm.nih.gov/pubmed/21914567
https://www.proquest.com/docview/913694988
https://www.proquest.com/docview/905873253
https://www.proquest.com/docview/911168742
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore DIgital Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoVD5wAmRre04fhxL1apC3R7YrVSJQ5TxAxDbpGKTA_x67MQbKIKKWyI7iZOZycx4Zr5B6HVwSWpgrs45A51zZU2uLPjcUWp4SZz2PNY7z8_F6QV_f1lebqG3Uy2Mc25IPnOzeDjE8m1r-rhVdiAiuEsELL0jlRhrtaaIAVdjUQ6hQYCZ5imCSYk-WL6bH49gnYyKIPx0QADWNNgO8oY6GvqrxOzIeh0-kB87W_zb9BxU0MlDNN8sfsw8-TrrO5iZH3_gOv7v2z1CD5Itig9H5nmMtlyzg-7_hlC4g-7OU-x9F3087Ls22LfO4oX7dJVqlhr8wfkwHs9x6_Hiql6t8Fn4heDz1vYrt8ZfGny0xItAwzWG7_gsak-8-FxfO7yBRHmCLk6Ol0eneWrNkJvgEHZ5YYAXxEvrIXxEcGAZ8cIYkHUJklgAKGtJvXOax3bmUgugQGoILGNjcO8p2m7axj1HGAoTXJrgp1nJuC-kMsC8Yjbo1Ghw0gyRDYUqk3DLY_uMVTX4L0RXkb5VpG-V6JuhN9Ml1yNox22TdyMtpomJDBnav8EG0ziLADhCyAztbfiiSnK_rjQthOZaqQzhaTQIbIzC1I1r-zCFlEoW4S63TAkKSCjJWYaejQz36-mJb1_8fdV76N6w6T3k27xE29233r0KVlMH-4O4_AS7kRAB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFCCYXiAydEtrbjxPGxVK0W2OyB3UqVOETxC1C3ScUmB_j12Ik3UAQVt0R2Eiczk5nxzHwD8Mq5JJWkpooZlSJmuVZxrqWNDSGKpdgIy3y9czHPpmfs_Xl6vgVvxloYY0yffGYm_rCP5etGdX6r7DDz4C4esPRWyhhLh2qtMWbA8qEsBxMnwlSwEMMkWBwu3xYnA1wnJZkTf9JjAAvirAd-TSH1HVZ8fmS1dp_IDr0t_m189kro9AEUm-UPuScXk66VE_XjD2TH_32_h3A_WKPoaGCfR7Bl6h249xtG4Q7cLkL0fRc-HXVt4yxco9HCfL4MVUs1-misG_fnqLFocVmtVmjmfiJo3uhuZdboa42Ol2jhqLhG8juaef2JFl-qK4M2oCiP4ez0ZHk8jUNzhlg5l7CNEyVZgi3XVrqPKI3UFNtMKcmrVHKspZRpxYk1RjDf0JyLTBKJK-mYRvvw3hPYrpvaPAUkE-WcGuepaU6ZTXiuJLU51U6repOTRIA3FCpVQC73DTRWZe_BYFF6-paevmWgbwSvx0uuBtiOmybvelqMEwMZIji4xgbjOPUQOFnGI9jf8EUZJH9dCpJkgok8jwCNo05kfRymqk3TuSk4zXni7nLDFKeCspwzGsHewHC_nh749tnfV_0S7kyXxaycvZt_2Ie7_RZ4n33zHLbbb5154WyoVh70ovMTGdgTTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Segmentation+Refinement+of+Small+Lung+Nodules+in+CT+Scans+by+Local+Shape+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Diciotti%2C+Stefano&rft.au=Lombardo%2C+Simone&rft.au=Falchini%2C+Massimo&rft.au=Picozzi%2C+Giulia&rft.date=2011-12-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=58&rft.issue=12&rft.spage=3418&rft.epage=3428&rft_id=info:doi/10.1109%2FTBME.2011.2167621&rft_id=info%3Apmid%2F21914567&rft.externalDocID=6017105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon