Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis
One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction met...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 58; no. 12; pp. 3418 - 3428 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.12.2011
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2011.2167621 | 
Cover
| Abstract | One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules. | 
    
|---|---|
| AbstractList | One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules. One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung structures, such as vessels or pleura. In this report, we address the problem of vessels attachments by proposing an automated correction method applied to an initial rough segmentation of the lung nodule. The method is based on a local shape analysis of the initial segmentation making use of 3-D geodesic distance map representations. The correction method has the advantage that it locally refines the nodule segmentation along recognized vessel attachments only, without modifying the nodule boundary elsewhere. The method was tested using a simple initial rough segmentation, obtained by a fixed image thresholding. The validation of the complete segmentation algorithm was carried out on small lung nodules, identified in the ITALUNG screening trial and on small nodules of the lung image database consortium (LIDC) dataset. In fully automated mode, 217/256 (84.8%) lung nodules of ITALUNG and 139/157 (88.5%) individual marks of lung nodules of LIDC were correctly outlined and an excellent reproducibility was also observed. By using an additional interactive mode, based on a controlled manual interaction, 233/256 (91.0%) lung nodules of ITALUNG and 144/157 (91.7%) individual marks of lung nodules of LIDC were overall correctly segmented. The proposed correction method could also be usefully applied to any existent nodule segmentation algorithm for improving the segmentation quality of juxta-vascular nodules.  | 
    
| Author | Mascalchi, Mario Picozzi, Giulia Lombardo, Simone Diciotti, Stefano Falchini, Massimo  | 
    
| Author_xml | – sequence: 1 givenname: Stefano surname: Diciotti fullname: Diciotti, Stefano email: stefano.diciotti@unifi.it organization: Department of Clinical Physiopathology and with the Department of Electronics and Telecommunications of the University of Florence , Italy – sequence: 2 givenname: Simone surname: Lombardo fullname: Lombardo, Simone email: lombardo.s@tin.it organization: Department of Clinical Physiopathology of the University of Florence, Italy – sequence: 3 givenname: Massimo surname: Falchini fullname: Falchini, Massimo email: m.falchini@dfc.unifi.it organization: Department of Clinical Physiopathology of the University of Florence, Italy – sequence: 4 givenname: Giulia surname: Picozzi fullname: Picozzi, Giulia email: giuliapicozzi@hotmail.com organization: Azienda USL 4 Prato, "Misericordia e Dolce" Hospital, Prato, Italy – sequence: 5 givenname: Mario surname: Mascalchi fullname: Mascalchi, Mario email: m.mascalchi@dfc.unifi.it organization: Department of Clinical Physiopathology of the University of Florence, Italy  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21914567$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNkUFv1DAQhS1URLeFH4CQkIWEOGXxJLEdH5dVW5AWkNjlxMGynUlxldjbODnsvydhtyD1gDiNRvre08x7F-QsxICEvAS2BGDq_e7D56tlzgCWOQgpcnhCFsB5leW8gDOyYAyqTOWqPCcXKd1Na1mV4hk5z0FByYVckB-rcYidGbCmW7ztMAxm8DHQb9j4gPNOY0O3nWlbuhnDLf0S67HFRH2g6x3dOhMStQe6ic60dPvT7JGugmkPyafn5Glj2oQvTvOSfL--2q0_ZpuvN5_Wq03mSqaGrHC2LFgj68ZOJ1m0dc4a4ZyVhlvJamstNxIaRFVWUnGphAXLjLXoalblxSV5d_Td9_F-xDTozieHbWsCxjFpBQCikuV_kIxXspjSm8g3j8i7OPbTY7NdIVSpqmqCXp-g0XZY633vO9Mf9EO8E_D2BJg05dP0Jjif_nK8kEL85uSRc31MqcdGO38sYuiNbzUwPReu58L1XLg-FT4p4ZHywfxfmldHjUfEP7xgIIHx4hfTwLRd | 
    
| CODEN | IEBEAX | 
    
| CitedBy_id | crossref_primary_10_1109_TPAMI_2012_245 crossref_primary_10_1016_j_ymeth_2024_04_008 crossref_primary_10_1109_TBME_2013_2262099 crossref_primary_10_1016_j_eswa_2018_11_010 crossref_primary_10_1155_2013_515386 crossref_primary_10_1142_S1793524513500435 crossref_primary_10_1109_TMI_2017_2720119 crossref_primary_10_1007_s11517_022_02667_0 crossref_primary_10_3390_diagnostics13132197 crossref_primary_10_1109_TMI_2015_2474119 crossref_primary_10_1186_s12938_015_0003_y crossref_primary_10_2147_JMDH_S456167 crossref_primary_10_1016_j_compbiomed_2014_08_005 crossref_primary_10_1118_1_4869265 crossref_primary_10_1007_s13042_018_0825_6 crossref_primary_10_1016_j_compbiomed_2024_108674 crossref_primary_10_1016_j_media_2017_06_014 crossref_primary_10_1038_s41598_022_24900_4 crossref_primary_10_1002_mp_16900 crossref_primary_10_1007_s11227_021_03845_x crossref_primary_10_1155_2013_942353 crossref_primary_10_1002_mp_15810 crossref_primary_10_3390_diagnostics13081406 crossref_primary_10_1002_mp_13349 crossref_primary_10_1016_j_cmpb_2016_07_031 crossref_primary_10_1038_s41598_020_69817_y crossref_primary_10_1109_TIP_2013_2282899 crossref_primary_10_1007_s10278_015_9801_9 crossref_primary_10_1109_TMI_2018_2876510 crossref_primary_10_1117_1_JMI_4_2_027503 crossref_primary_10_2174_1574893613666181029100249 crossref_primary_10_1109_ACCESS_2020_2968936 crossref_primary_10_1109_JBHI_2014_2303511 crossref_primary_10_1016_j_cmpb_2020_105902 crossref_primary_10_4018_IJBCE_2019010102 crossref_primary_10_1007_s11771_012_1435_1 crossref_primary_10_3390_math9131457 crossref_primary_10_1007_s40846_017_0317_2 crossref_primary_10_1016_j_neucom_2022_12_003 crossref_primary_10_1002_ima_22515 crossref_primary_10_1109_TCSVT_2018_2818072 crossref_primary_10_1186_s12938_020_00793_0 crossref_primary_10_1186_s12938_016_0164_3 crossref_primary_10_1049_iet_ipr_2019_0178 crossref_primary_10_1109_TETCI_2021_3051910 crossref_primary_10_1016_j_ibmed_2024_100166 crossref_primary_10_1016_j_asoc_2019_105934 crossref_primary_10_1109_JBHI_2022_3220430 crossref_primary_10_32604_cmc_2022_026855 crossref_primary_10_1007_s11554_017_0710_7 crossref_primary_10_1007_s00779_021_01637_x crossref_primary_10_1038_s41598_025_85199_5 crossref_primary_10_1016_j_jneumeth_2020_108751 crossref_primary_10_1002_mp_14068 crossref_primary_10_1007_s11227_019_03002_5 crossref_primary_10_1016_j_jksuci_2019_02_009 crossref_primary_10_1007_s10278_014_9732_x crossref_primary_10_1016_j_eswa_2016_05_024 crossref_primary_10_1049_iet_ipr_2019_1054 crossref_primary_10_1007_s11042_024_18485_5 crossref_primary_10_1049_iet_ipr_2016_1014 crossref_primary_10_1016_j_media_2016_09_002 crossref_primary_10_1148_rg_2015140232 crossref_primary_10_3390_s23041989 crossref_primary_10_1109_JBHI_2024_3405907 crossref_primary_10_1109_TMI_2023_3332944  | 
    
| Cites_doi | 10.1109/TMI.2003.817785 10.1109/TMI.2006.871547 10.1016/j.acra.2007.07.021 10.1109/34.56205 10.1016/j.acra.2007.08.006 10.1118/1.3528204 10.1109/34.87344 10.1016/j.acra.2007.09.005 10.1378/chest.125.4.1522 10.1191/096228099673819272 10.1117/1.602176 10.1016/S0140-6736(86)90837-8 10.1007/s00330-008-1229-x 10.1016/j.media.2010.08.005 10.1109/TMI.2006.871548 10.1109/TMI.2004.843172 10.1109/TMI.2009.2032542 10.1118/1.2799885 10.1259/bjr/20861881 10.1016/j.lungcan.2008.07.003 10.1097/01.rli.0000242837.11436.6e 10.1109/TITB.2007.899504 10.1109/TMI.2007.907555 10.1117/12.274185 10.1118/1.2207129 10.1118/1.1656593  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| DOI | 10.1109/TBME.2011.2167621 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | Engineering Research Database Materials Research Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore DIgital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering Applied Sciences  | 
    
| EISSN | 1558-2531 | 
    
| EndPage | 3428 | 
    
| ExternalDocumentID | 2553085831 21914567 25376667 10_1109_TBME_2011_2167621 6017105  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| ID | FETCH-LOGICAL-c409t-3cb430f7dfb567bebd20f6ccb7a5b70dbbb5a71fee948795796b1b0abbecd0823 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9294 1558-2531  | 
    
| IngestDate | Tue Oct 07 09:08:38 EDT 2025 Sun Sep 28 07:42:55 EDT 2025 Mon Jun 30 08:33:52 EDT 2025 Thu Apr 03 07:09:21 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Wed Oct 01 02:57:13 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Aug 27 02:53:46 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | Lung disease Radiodiagnosis Segmentation Image processing Respiratory disease Refinement method lung nodules shape analysis CT Morphological analysis Lung nodule Medical imagery Computerized axial tomography Diagnostic aid Pattern analysis Computer-aided diagnosis Biomedical engineering  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c409t-3cb430f7dfb567bebd20f6ccb7a5b70dbbb5a71fee948795796b1b0abbecd0823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2  | 
    
| PMID | 21914567 | 
    
| PQID | 913694988 | 
    
| PQPubID | 85474 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_913694988 proquest_miscellaneous_905873253 crossref_primary_10_1109_TBME_2011_2167621 crossref_citationtrail_10_1109_TBME_2011_2167621 proquest_miscellaneous_911168742 pascalfrancis_primary_25376667 ieee_primary_6017105 pubmed_primary_21914567  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-12-01 | 
    
| PublicationDateYYYYMMDD | 2011-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on biomedical engineering | 
    
| PublicationTitleAbbrev | TBME | 
    
| PublicationTitleAlternate | IEEE Trans Biomed Eng | 
    
| PublicationYear | 2011 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 kostis (ref8) 2000; 217p (ref20) 0 ref14 ref31 ref30 ref11 ref32 ref10 3rd (ref23) 2011; 38 ref2 ref1 ref17 ref16 ref18 (ref28) 0 ref24 ref25 ref22 ref21 diciotti (ref15) 2007; 2 (supplement 1) ref27 ref29 reeves (ref26) 2007; 14 ref7 ref9 ref4 ref3 ref6 ref5 picozzi (ref19) 2005; 109  | 
    
| References_xml | – ident: ref3 doi: 10.1109/TMI.2003.817785 – ident: ref2 doi: 10.1109/TMI.2006.871547 – ident: ref22 doi: 10.1016/j.acra.2007.07.021 – ident: ref17 doi: 10.1109/34.56205 – volume: 217p start-page: 549 year: 2000 ident: ref8 article-title: Three-dimensional curvature analysis of small pulmonary nodules in helical CT scans publication-title: Suppl Radiol – ident: ref21 doi: 10.1016/j.acra.2007.08.006 – volume: 38 start-page: 915 year: 2011 ident: ref23 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A complete reference database of lung nodules on CT scans publication-title: Med Phys doi: 10.1118/1.3528204 – ident: ref16 doi: 10.1109/34.87344 – volume: 14 start-page: 1475 year: 2007 ident: ref26 article-title: The lung image database consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements publication-title: Acad Radiol doi: 10.1016/j.acra.2007.09.005 – ident: ref1 doi: 10.1378/chest.125.4.1522 – ident: ref25 doi: 10.1191/096228099673819272 – ident: ref6 doi: 10.1117/1.602176 – year: 0 ident: ref20 – volume: 2 (supplement 1) start-page: 516s year: 2007 ident: ref15 article-title: Refinement of juxta-vascular lung nodules segmentation in CT scans by means of 3D geodesic shape analysis publication-title: Int J Comput Assist Radiol Surg – ident: ref24 doi: 10.1016/S0140-6736(86)90837-8 – ident: ref14 doi: 10.1016/j.acra.2007.07.021 – ident: ref31 doi: 10.1007/s00330-008-1229-x – ident: ref11 doi: 10.1016/j.media.2010.08.005 – ident: ref4 doi: 10.1109/TMI.2006.871548 – ident: ref30 doi: 10.1109/TMI.2004.843172 – ident: ref18 doi: 10.1109/TMI.2009.2032542 – ident: ref27 doi: 10.1118/1.2799885 – volume: 109 start-page: 17 year: 2005 ident: ref19 article-title: Screening of lung cancer with low dose spiral CT. Results of a three year pilot study and design of the randomized clinical trial 'Italung-CT' publication-title: La Radiologia Medica – ident: ref29 doi: 10.1259/bjr/20861881 – ident: ref13 doi: 10.1016/j.lungcan.2008.07.003 – ident: ref32 doi: 10.1097/01.rli.0000242837.11436.6e – ident: ref12 doi: 10.1109/TITB.2007.899504 – year: 0 ident: ref28 – ident: ref10 doi: 10.1109/TMI.2007.907555 – ident: ref7 doi: 10.1117/12.274185 – ident: ref9 doi: 10.1118/1.2207129 – ident: ref5 doi: 10.1118/1.1656593  | 
    
| SSID | ssj0014846 | 
    
| Score | 2.3430855 | 
    
| Snippet | One of the most important problems in the segmentation of lung nodules in CT imaging arises from possible attachments occurring between nodules and other lung... | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3418 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Automation Biological and medical sciences Computed tomography Computer-aided diagnosis Databases, Factual Educational institutions Exact sciences and technology Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Information, signal and communications theory Lung Neoplasms - diagnostic imaging lung nodules Lungs Materials Medical sciences Pattern recognition Pneumology Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results segmentation Shape shape analysis Signal processing Studies Telecommunications and information theory Tomography, X-Ray Computed - methods Tumors of the respiratory system and mediastinum  | 
    
| Title | Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis | 
    
| URI | https://ieeexplore.ieee.org/document/6017105 https://www.ncbi.nlm.nih.gov/pubmed/21914567 https://www.proquest.com/docview/913694988 https://www.proquest.com/docview/905873253 https://www.proquest.com/docview/911168742  | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore DIgital Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoVD5wAmRre04fhxL1apC3R7YrVSJQ5TxAxDbpGKTA_x67MQbKIKKWyI7iZOZycx4Zr5B6HVwSWpgrs45A51zZU2uLPjcUWp4SZz2PNY7z8_F6QV_f1lebqG3Uy2Mc25IPnOzeDjE8m1r-rhVdiAiuEsELL0jlRhrtaaIAVdjUQ6hQYCZ5imCSYk-WL6bH49gnYyKIPx0QADWNNgO8oY6GvqrxOzIeh0-kB87W_zb9BxU0MlDNN8sfsw8-TrrO5iZH3_gOv7v2z1CD5Itig9H5nmMtlyzg-7_hlC4g-7OU-x9F3087Ls22LfO4oX7dJVqlhr8wfkwHs9x6_Hiql6t8Fn4heDz1vYrt8ZfGny0xItAwzWG7_gsak-8-FxfO7yBRHmCLk6Ol0eneWrNkJvgEHZ5YYAXxEvrIXxEcGAZ8cIYkHUJklgAKGtJvXOax3bmUgugQGoILGNjcO8p2m7axj1HGAoTXJrgp1nJuC-kMsC8Yjbo1Ghw0gyRDYUqk3DLY_uMVTX4L0RXkb5VpG-V6JuhN9Ml1yNox22TdyMtpomJDBnav8EG0ziLADhCyAztbfiiSnK_rjQthOZaqQzhaTQIbIzC1I1r-zCFlEoW4S63TAkKSCjJWYaejQz36-mJb1_8fdV76N6w6T3k27xE29233r0KVlMH-4O4_AS7kRAB | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFCCYXiAydEtrbjxPGxVK0W2OyB3UqVOETxC1C3ScUmB_j12Ik3UAQVt0R2Eiczk5nxzHwD8Mq5JJWkpooZlSJmuVZxrqWNDSGKpdgIy3y9czHPpmfs_Xl6vgVvxloYY0yffGYm_rCP5etGdX6r7DDz4C4esPRWyhhLh2qtMWbA8qEsBxMnwlSwEMMkWBwu3xYnA1wnJZkTf9JjAAvirAd-TSH1HVZ8fmS1dp_IDr0t_m189kro9AEUm-UPuScXk66VE_XjD2TH_32_h3A_WKPoaGCfR7Bl6h249xtG4Q7cLkL0fRc-HXVt4yxco9HCfL4MVUs1-misG_fnqLFocVmtVmjmfiJo3uhuZdboa42Ol2jhqLhG8juaef2JFl-qK4M2oCiP4ez0ZHk8jUNzhlg5l7CNEyVZgi3XVrqPKI3UFNtMKcmrVHKspZRpxYk1RjDf0JyLTBKJK-mYRvvw3hPYrpvaPAUkE-WcGuepaU6ZTXiuJLU51U6repOTRIA3FCpVQC73DTRWZe_BYFF6-paevmWgbwSvx0uuBtiOmybvelqMEwMZIji4xgbjOPUQOFnGI9jf8EUZJH9dCpJkgok8jwCNo05kfRymqk3TuSk4zXni7nLDFKeCspwzGsHewHC_nh749tnfV_0S7kyXxaycvZt_2Ie7_RZ4n33zHLbbb5154WyoVh70ovMTGdgTTg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Segmentation+Refinement+of+Small+Lung+Nodules+in+CT+Scans+by+Local+Shape+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Diciotti%2C+Stefano&rft.au=Lombardo%2C+Simone&rft.au=Falchini%2C+Massimo&rft.au=Picozzi%2C+Giulia&rft.date=2011-12-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=58&rft.issue=12&rft.spage=3418&rft.epage=3428&rft_id=info:doi/10.1109%2FTBME.2011.2167621&rft_id=info%3Apmid%2F21914567&rft.externalDocID=6017105 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |