A Novel Fault Diagnosis of GIS Partial Discharge Based on Improved Whale Optimization Algorithm
Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposi...
Saved in:
| Published in | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3349410 |
Cover
| Abstract | Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter K and penalty factor α). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems. |
|---|---|
| AbstractList | Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter <tex-math notation="LaTeX">$K$ </tex-math> and penalty factor <tex-math notation="LaTeX">$\alpha $ </tex-math>). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems. Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter [Formula Omitted] and penalty factor [Formula Omitted]). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems. Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter K and penalty factor α). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems. |
| Author | Sun, Wei Wang, Sihan Ma, Hongzhong |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-8660-1426 surname: Sun fullname: Sun, Wei organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China – sequence: 2 givenname: Hongzhong surname: Ma fullname: Ma, Hongzhong organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China – sequence: 3 givenname: Sihan surname: Wang fullname: Wang, Sihan organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China |
| BookMark | eNptkcFuEzEQhleoSJTSJ4CDJc4Jtmft2McQ2hKpokgBcbRmbW_iaLMO9qaoPD1Ot6qqCF9szcz3z8zvt9VZH3tfVe8ZnTJG9af5YnG1Wk055fUUoNY1o6-qc86knoAAefbi_aa6zHlLy1ElJGbnlZmTb_Hed-QaD91AvgRc9zGHTGJLbpYr8h3TELAriWw3mNaefMbsHYk9We72qaCO_Npg58ndfgi78BeHUHLzbh1TGDa7d9XrFrvsL5_ui-rn9dWPxdfJ7d3NcjG_ndia6mECIBrNwCtuudKykQCNFo5Sr6ivWyGwcUpbFEwBcuBcOiVZ28jGWecbBxfVctR1Ebdmn8IO04OJGMxjIKa1OW5iO2-YACGc961TbQ1OqVkjlZMN9QyF0li06lHr0O_x4Q923bMgo-bouUFrfc7m6Ll58rxgH0es2PL74PNgtvGQ-rK14ZpxDSBhVqr0WGVTzDn51tgwPJo2JAzdc4fxV087wAl7Otf_qQ8jFbz3LwiYaUUp_APXFa25 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_4018_IJMCMC_370404 crossref_primary_10_3390_en17112443 crossref_primary_10_3390_app14198624 |
| Cites_doi | 10.1515/mms-2015-0025 10.1007/s00034-021-01842-2 10.3390/e23060774 10.1016/j.advengsoft.2016.01.008 10.1016/j.ymssp.2016.05.009 10.1109/JSYST.2021.3057334 10.1016/j.epsr.2003.07.006 10.3390/sym14112464 10.1016/j.apacoust.2016.09.026 10.3390/en13010061 10.1109/TDEI.2023.3269725 10.1109/TIM.2022.3162284 10.3390/e20010073 10.1109/SSP53291.2023.10208030 10.1016/j.epsr.2022.107854 10.1049/iet-smt.2018.5432 10.1109/ACCESS.2019.2903204 10.1109/TSP.2013.2288675 10.3390/e24070954 10.1016/j.measurement.2011.10.010 10.1109/ICSPIS48135.2019.9045901 10.1016/j.measurement.2022.111154 10.1109/TPWRD.2019.2906086 10.3390/e21010081 10.1109/TDEI.2015.005543 10.1016/j.est.2023.107575 10.1088/1361-6501/ac27e8 10.1016/j.measurement.2021.109425 10.1109/TIM.2023.3277980 10.3390/en13164103 10.1109/TCST.2018.2865413 10.1049/gtd2.12508 10.1109/ICIEA.2019.8834081 10.1109/ACCESS.2023.3296465 10.1142/s1793536909000047 10.1049/cit2.12087 10.3390/s18030793 10.1007/s42835-022-01260-7 10.1109/TIE.2017.2650873 10.1098/rsif.2005.0058 10.1109/JSEN.2022.3214239 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3349410 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_15355deefd8f43d887b68d6b0e1a589a 10.1109/access.2024.3349410 10_1109_ACCESS_2024_3349410 10379800 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-335b913e82c2896b633b95d00e80e4f55abd89ca5183a23226d861fb6bdcdebd3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:20:14 EDT 2025 Tue Aug 19 20:16:04 EDT 2025 Mon Jun 30 07:10:46 EDT 2025 Wed Oct 01 04:52:12 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Wed Aug 27 02:24:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-335b913e82c2896b633b95d00e80e4f55abd89ca5183a23226d861fb6bdcdebd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8660-1426 0009-0005-2700-6933 0009-0005-6434-064X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10379800 |
| PQID | 2912933637 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2024_3349410 crossref_primary_10_1109_ACCESS_2024_3349410 proquest_journals_2912933637 doaj_primary_oai_doaj_org_article_15355deefd8f43d887b68d6b0e1a589a ieee_primary_10379800 crossref_citationtrail_10_1109_ACCESS_2024_3349410 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref18 doi: 10.1515/mms-2015-0025 – ident: ref15 doi: 10.1007/s00034-021-01842-2 – ident: ref12 doi: 10.3390/e23060774 – ident: ref39 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref26 doi: 10.1016/j.ymssp.2016.05.009 – ident: ref31 doi: 10.1109/JSYST.2021.3057334 – ident: ref41 doi: 10.1016/j.epsr.2003.07.006 – ident: ref4 doi: 10.3390/sym14112464 – ident: ref28 doi: 10.1016/j.apacoust.2016.09.026 – ident: ref13 doi: 10.3390/en13010061 – ident: ref34 doi: 10.1109/TDEI.2023.3269725 – ident: ref2 doi: 10.1109/TIM.2022.3162284 – ident: ref37 doi: 10.3390/e20010073 – ident: ref38 doi: 10.1109/SSP53291.2023.10208030 – ident: ref6 doi: 10.1016/j.epsr.2022.107854 – ident: ref16 doi: 10.1049/iet-smt.2018.5432 – ident: ref30 doi: 10.1109/ACCESS.2019.2903204 – ident: ref27 doi: 10.1109/TSP.2013.2288675 – ident: ref8 doi: 10.3390/e24070954 – ident: ref24 doi: 10.1016/j.measurement.2011.10.010 – ident: ref36 doi: 10.1109/ICSPIS48135.2019.9045901 – ident: ref9 doi: 10.1016/j.measurement.2022.111154 – ident: ref14 doi: 10.1109/TPWRD.2019.2906086 – ident: ref33 doi: 10.3390/e21010081 – ident: ref1 doi: 10.1109/TDEI.2015.005543 – ident: ref17 doi: 10.1016/j.est.2023.107575 – ident: ref11 doi: 10.1088/1361-6501/ac27e8 – ident: ref25 doi: 10.1016/j.measurement.2021.109425 – ident: ref3 doi: 10.1109/TIM.2023.3277980 – ident: ref5 doi: 10.3390/en13164103 – ident: ref40 doi: 10.1109/TCST.2018.2865413 – ident: ref10 doi: 10.1049/gtd2.12508 – ident: ref32 doi: 10.1109/ICIEA.2019.8834081 – ident: ref21 doi: 10.1109/ACCESS.2023.3296465 – ident: ref23 doi: 10.1142/s1793536909000047 – ident: ref35 doi: 10.1049/cit2.12087 – ident: ref20 doi: 10.3390/s18030793 – ident: ref7 doi: 10.1007/s42835-022-01260-7 – ident: ref19 doi: 10.1109/TIE.2017.2650873 – ident: ref22 doi: 10.1098/rsif.2005.0058 – ident: ref29 doi: 10.1109/JSEN.2022.3214239 |
| SSID | ssj0000816957 |
| Score | 2.3411236 |
| Snippet | Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS),... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Correlation coefficients Discharge Discharges (electric) Entropy Fault detection Fault diagnosis Feature extraction Gas insulation GIS improved whale optimization algorithm Local optimization Optimization algorithms Optimization models Parameters Partial discharge Permutations Principal components analysis Signal resolution Support vector machines Switchgear VMD |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SgipVQ-9EioY8eOfdxu2bZIFCSo6M3yK3SlNKm62Vb8e8aJu0qFBBduUeQ44_GM5xvL_gah_arilFgqcs48y8syqFxKw_MgLAQXrwy18Tby5zNxcl5-uuAXk1Jf8UzYSA88Ku4APJJzH0LtZV0yDz5hhfTCklAYLtUAjYhUk2RqWINlIRSvEs1QQdTBbD6HEUFCSMsPLHKyxDuzk1A0MPanEisP0ObjdXttft2ZppkEnsVz9CwhRjwbJX2BHoX2JXo64RF8hfQMn3W3ocELs256fDQen1uucFfj49Nv-GscJvRxtFwNzEgBH0Lw8rhr8bipAM8_LiFU4C-wglylq5l41vzsbpb95dU2Ol98_D4_yVPlhNxBvtbnjHGrChYkdZBQCSsYs4p7QoIkoaw5N9ZL5QwHhzaAqajwUhS1FdY7H6xnr9FW27XhDcK2oMLwYCsnXemIs8QV0sjgS2sqz1WG6L0StUu04rG6RaOH9IIoPWpeR83rpPkMvd98dD2yavy9-WGcnU3TSIk9vABD0clQ9L8MJUPbcW4n_2OVAricod37ydbJf1eaqoiDmGBVhvKNAfwhqxmKWj6Qded_yPoWPYl9jls9u2irv1mHdwB-ers32Plv1K39Pg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAe-ByibCA_8EjSJI4d-zHrKAOJMgkqxpPlj8tWkaXVmvL112MnbtWBhARvTuQkju589zvb9zuEXhQFzRKdsYgSS6I8BxFxrmgETDvnYoXKtM9GfjdlJ7P87Rk9CwtuXS4MAHSHzyD2zW4vfw7192LEMk-eJkbMuXgXJIx8gptwcCde2uom2mPUYfEB2ptNT8vPvqJcykREur3Jg0CsOVJdDUIXFGZ5TDwvi8-b3XFHHWt_KLNyDXHeWjdL9eObqusd5zO5h-Rm2P2Zky_xutWx-fkbo-P__9d9dDfgUlz2ivQA3YDmIbqzw1b4CMkSTxdfocYTta5bfNwf0puv8KLCr998wKdeC907juerjn8J8JFzkRYvGtwvXbj2pwvnkPB7Z6cuQwIoLuvzxdW8vbjcR7PJq4_jkyjUZ4iMiwrbiBCqRUqAZ8aFbUwzQrSgNkmAJ5BXlCptuTCKOrOhHHLLmOUsrTTT1ljQljxGg2bRwBOEdZoxRUEXhpvcJEYnJuWKg821KiwVQ5RtxCRNIC_3NTRq2QUxiZDleOw0VnrZyiDbIXq5fWjZc3f8vfuRl_-2qyfe7m44Wckwj6VzEJRagMryKifWmWjNuGU6gVRRLtQQ7Xv57nyvl-YQHW7USQYrsZKZ8GiLMFIMUbRVsT_G2qvttbE-_cf-B-i2v-zXjg7RoL1awzOHplr9PEyZX1PGFl0 priority: 102 providerName: Unpaywall |
| Title | A Novel Fault Diagnosis of GIS Partial Discharge Based on Improved Whale Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/10379800 https://www.proquest.com/docview/2912933637 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10379800.pdf https://doaj.org/article/15355deefd8f43d887b68d6b0e1a589a |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOUAPPItIKSsfOJJtEseOfUy3LAWJpRKsKKfIj1m6Ik2qbgKCX4_teFdbEIibFTmxrW88M554vkHoRVHQLFEZiykxJM5zEDHnksbAlDUuRshMuWzkdzN2Os_fntPzkKzuc2EAwF8-g7Fr-n_5ptW9C5UduZw2YT2cHbRTcDYka20CKq6ChKBFYBZKE3FUTiZ2EfYMmOVj4mhYXJrslvXxJP2hqsoNB_NO31zJH99lXW_Zmul9NFvPcrhi8nXcd2qsf_5G4Pjfy3iA7gWvE5eDmDxEt6B5hPa2uAgfo6rEs_Yb1Hgq-7rDJ8MVvOUKtwv8-s0HfOZkzH7jZLny7EqAj60BNLht8BCYsO1PF9bc4PdWC12G9E5c1l_a62V3cbmP5tNXHyencai-EGt75utiQqgSKQGeaXsoY4oRogQ1SQI8gXxBqVSGCy2pVQrS-mUZM5ylC8WU0QaUIU_QbtM28BRhlWZMUlCF5jrXiVaJTrnkYHIlC0NFhLI1KpUO1OSuQkZd-SNKIqoByspBWQUoI_Ry89LVwMzx7-7HDu5NV0er7R9YaKqwSyur_ik1AAvDFzkxVgErxg1TCaSSciEjtO_g3BpvQDJCh2vpqYIOWFWZcL4UYaSIULyRqD_mKn1hzBtzPfjLMM_QXddtiAAdot3uuofn1ifq1MjHEkZ-R4zQ7fnsrPz8C8_oCVE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHnkUECvjAkWyT-BH7uN2ybKFdkGhFb5YfE7oiTapuAoJfj51kV1sQiJsVxbGtbzwznni-QehVnrMsMRmPGXEkphRkLIRmMXDjjYuTOjMhG_l4zmen9N0ZOxuS1btcGADoLp_BKDS7f_mutm0Ile2FnDbpPZyb6BajlLI-XWsdUgk1JCTLB26hNJF748nEL8OfAjM6IoGIJSTKbtifjqZ_qKtyzcXcbqtL_eO7LssNazO9h-arefaXTL6O2saM7M_fKBz_eyH30d3B78TjXlAeoBtQPUR3NtgIHyE1xvP6G5R4qtuywQf9JbzFEtcFfnv4CX8MUua_cbBYdvxKgPe9CXS4rnAfmvDtz-fe4OAPXg9dDAmeeFx-qa8WzfnFDjqdvjmZzOKh_kJs_amviQlhRqYERGb9sYwbToiRzCUJiARowZg2TkirmVcL2ntmGXeCp4XhxlkHxpHHaKuqK3iCsEkzrhmY3ApLbWJNYlOhBThqdO6YjFC2QkXZgZw81MgoVXdISaTqoVQBSjVAGaHX606XPTfHv1_fD3CvXw3E2t0DD40a9qnyBoAxB1A4UVDivAo2XDhuEkg1E1JHaCfAuTFej2SEdlfSowYtsFSZDN4U4SSPULyWqD_mqrvSmNfm-vQvw7xE27OT4yN1dDh__wzdDl36eNAu2mquWnjuPaTGvOj2xS9CSgn5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAe-ByibCA_8EjSJI4d-zHrKAOJMgkqxpPlj8tWkaXVmvL112MnbtWBhARvTuQkju589zvb9zuEXhQFzRKdsYgSS6I8BxFxrmgETDvnYoXKtM9GfjdlJ7P87Rk9CwtuXS4MAHSHzyD2zW4vfw7192LEMk-eJkbMuXgXJIx8gptwcCde2uom2mPUYfEB2ptNT8vPvqJcykREur3Jg0CsOVJdDUIXFGZ5TDwvi8-b3XFHHWt_KLNyDXHeWjdL9eObqusd5zO5h-Rm2P2Zky_xutWx-fkbo-P__9d9dDfgUlz2ivQA3YDmIbqzw1b4CMkSTxdfocYTta5bfNwf0puv8KLCr998wKdeC907juerjn8J8JFzkRYvGtwvXbj2pwvnkPB7Z6cuQwIoLuvzxdW8vbjcR7PJq4_jkyjUZ4iMiwrbiBCqRUqAZ8aFbUwzQrSgNkmAJ5BXlCptuTCKOrOhHHLLmOUsrTTT1ljQljxGg2bRwBOEdZoxRUEXhpvcJEYnJuWKg821KiwVQ5RtxCRNIC_3NTRq2QUxiZDleOw0VnrZyiDbIXq5fWjZc3f8vfuRl_-2qyfe7m44Wckwj6VzEJRagMryKifWmWjNuGU6gVRRLtQQ7Xv57nyvl-YQHW7USQYrsZKZ8GiLMFIMUbRVsT_G2qvttbE-_cf-B-i2v-zXjg7RoL1awzOHplr9PEyZX1PGFl0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+of+GIS+Partial+Discharge+Based+on+Improved+Whale+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Sun%2C+Wei&rft.au=Ma%2C+Hongzhong&rft.au=Wang%2C+Sihan&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3349410&rft.externalDocID=10379800 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |