A Novel Fault Diagnosis of GIS Partial Discharge Based on Improved Whale Optimization Algorithm

Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Sun, Wei, Ma, Hongzhong, Wang, Sihan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3349410

Cover

Abstract Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter K and penalty factor α). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems.
AbstractList Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter <tex-math notation="LaTeX">$K$ </tex-math> and penalty factor <tex-math notation="LaTeX">$\alpha $ </tex-math>). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems.
Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter [Formula Omitted] and penalty factor [Formula Omitted]). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems.
Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS), a GIS PD fault diagnosis method based on improved whale optimization algorithm (IWOA) is proposed, which optimizes variational mode decomposition (VMD) and support vector machine (SVM) to adaptively determine the appropriate parameters and further enhance performance. A laboratory GIS PD platform is built to collect four types of PD fault signals (point discharge, particle discharge, floating discharge, and air-gap discharge). Firstly, a nonlinear arctangent convergence factor and adaptive weight are proposed to address the issue of local optimization in the WOA optimization process. Then, IWOA is used to optimize parameters of VMD (mode parameter K and penalty factor α). Next, effective intrinsic mode functions (IMFs) are screened through correlation coefficients which are greater than 0.2. Because a single scale cannot fully reflect all signal information, and more important information is distributed in other scales, multiscale permutation entropy (MPE) is introduced for feature extraction. Furthermore, the principal component analysis (PCA) method is employed for dimension reduction of initial feature vectors, which reduces the dimension of 33 feature vectors to 7. Finally, SVM based on IWOA is applied to train and test the experimental data to identify different types of PD faults, and achieve diagnosis of GIS PD. Through experimental analysis and comparison with other methods such as EMD-MPE, WOA-VMD-MSE, etc., the proposed method has good diagnostic effects. Also, it proves the robustness and feasibility of the presented solution. The optimization model provides a reference for solving fault diagnosis of GIS PD problems.
Author Sun, Wei
Wang, Sihan
Ma, Hongzhong
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-8660-1426
  surname: Sun
  fullname: Sun, Wei
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China
– sequence: 2
  givenname: Hongzhong
  surname: Ma
  fullname: Ma, Hongzhong
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China
– sequence: 3
  givenname: Sihan
  surname: Wang
  fullname: Wang, Sihan
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing, China
BookMark eNptkcFuEzEQhleoSJTSJ4CDJc4Jtmft2McQ2hKpokgBcbRmbW_iaLMO9qaoPD1Ot6qqCF9szcz3z8zvt9VZH3tfVe8ZnTJG9af5YnG1Wk055fUUoNY1o6-qc86knoAAefbi_aa6zHlLy1ElJGbnlZmTb_Hed-QaD91AvgRc9zGHTGJLbpYr8h3TELAriWw3mNaefMbsHYk9We72qaCO_Npg58ndfgi78BeHUHLzbh1TGDa7d9XrFrvsL5_ui-rn9dWPxdfJ7d3NcjG_ndia6mECIBrNwCtuudKykQCNFo5Sr6ivWyGwcUpbFEwBcuBcOiVZ28jGWecbBxfVctR1Ebdmn8IO04OJGMxjIKa1OW5iO2-YACGc961TbQ1OqVkjlZMN9QyF0li06lHr0O_x4Q923bMgo-bouUFrfc7m6Ll58rxgH0es2PL74PNgtvGQ-rK14ZpxDSBhVqr0WGVTzDn51tgwPJo2JAzdc4fxV087wAl7Otf_qQ8jFbz3LwiYaUUp_APXFa25
CODEN IAECCG
CitedBy_id crossref_primary_10_4018_IJMCMC_370404
crossref_primary_10_3390_en17112443
crossref_primary_10_3390_app14198624
Cites_doi 10.1515/mms-2015-0025
10.1007/s00034-021-01842-2
10.3390/e23060774
10.1016/j.advengsoft.2016.01.008
10.1016/j.ymssp.2016.05.009
10.1109/JSYST.2021.3057334
10.1016/j.epsr.2003.07.006
10.3390/sym14112464
10.1016/j.apacoust.2016.09.026
10.3390/en13010061
10.1109/TDEI.2023.3269725
10.1109/TIM.2022.3162284
10.3390/e20010073
10.1109/SSP53291.2023.10208030
10.1016/j.epsr.2022.107854
10.1049/iet-smt.2018.5432
10.1109/ACCESS.2019.2903204
10.1109/TSP.2013.2288675
10.3390/e24070954
10.1016/j.measurement.2011.10.010
10.1109/ICSPIS48135.2019.9045901
10.1016/j.measurement.2022.111154
10.1109/TPWRD.2019.2906086
10.3390/e21010081
10.1109/TDEI.2015.005543
10.1016/j.est.2023.107575
10.1088/1361-6501/ac27e8
10.1016/j.measurement.2021.109425
10.1109/TIM.2023.3277980
10.3390/en13164103
10.1109/TCST.2018.2865413
10.1049/gtd2.12508
10.1109/ICIEA.2019.8834081
10.1109/ACCESS.2023.3296465
10.1142/s1793536909000047
10.1049/cit2.12087
10.3390/s18030793
10.1007/s42835-022-01260-7
10.1109/TIE.2017.2650873
10.1098/rsif.2005.0058
10.1109/JSEN.2022.3214239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3349410
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_15355deefd8f43d887b68d6b0e1a589a
10.1109/access.2024.3349410
10_1109_ACCESS_2024_3349410
10379800
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-335b913e82c2896b633b95d00e80e4f55abd89ca5183a23226d861fb6bdcdebd3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:20:14 EDT 2025
Tue Aug 19 20:16:04 EDT 2025
Mon Jun 30 07:10:46 EDT 2025
Wed Oct 01 04:52:12 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Wed Aug 27 02:24:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-335b913e82c2896b633b95d00e80e4f55abd89ca5183a23226d861fb6bdcdebd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8660-1426
0009-0005-2700-6933
0009-0005-6434-064X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10379800
PQID 2912933637
PQPubID 4845423
PageCount 1
ParticipantIDs unpaywall_primary_10_1109_access_2024_3349410
crossref_primary_10_1109_ACCESS_2024_3349410
proquest_journals_2912933637
doaj_primary_oai_doaj_org_article_15355deefd8f43d887b68d6b0e1a589a
ieee_primary_10379800
crossref_citationtrail_10_1109_ACCESS_2024_3349410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref18
  doi: 10.1515/mms-2015-0025
– ident: ref15
  doi: 10.1007/s00034-021-01842-2
– ident: ref12
  doi: 10.3390/e23060774
– ident: ref39
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref26
  doi: 10.1016/j.ymssp.2016.05.009
– ident: ref31
  doi: 10.1109/JSYST.2021.3057334
– ident: ref41
  doi: 10.1016/j.epsr.2003.07.006
– ident: ref4
  doi: 10.3390/sym14112464
– ident: ref28
  doi: 10.1016/j.apacoust.2016.09.026
– ident: ref13
  doi: 10.3390/en13010061
– ident: ref34
  doi: 10.1109/TDEI.2023.3269725
– ident: ref2
  doi: 10.1109/TIM.2022.3162284
– ident: ref37
  doi: 10.3390/e20010073
– ident: ref38
  doi: 10.1109/SSP53291.2023.10208030
– ident: ref6
  doi: 10.1016/j.epsr.2022.107854
– ident: ref16
  doi: 10.1049/iet-smt.2018.5432
– ident: ref30
  doi: 10.1109/ACCESS.2019.2903204
– ident: ref27
  doi: 10.1109/TSP.2013.2288675
– ident: ref8
  doi: 10.3390/e24070954
– ident: ref24
  doi: 10.1016/j.measurement.2011.10.010
– ident: ref36
  doi: 10.1109/ICSPIS48135.2019.9045901
– ident: ref9
  doi: 10.1016/j.measurement.2022.111154
– ident: ref14
  doi: 10.1109/TPWRD.2019.2906086
– ident: ref33
  doi: 10.3390/e21010081
– ident: ref1
  doi: 10.1109/TDEI.2015.005543
– ident: ref17
  doi: 10.1016/j.est.2023.107575
– ident: ref11
  doi: 10.1088/1361-6501/ac27e8
– ident: ref25
  doi: 10.1016/j.measurement.2021.109425
– ident: ref3
  doi: 10.1109/TIM.2023.3277980
– ident: ref5
  doi: 10.3390/en13164103
– ident: ref40
  doi: 10.1109/TCST.2018.2865413
– ident: ref10
  doi: 10.1049/gtd2.12508
– ident: ref32
  doi: 10.1109/ICIEA.2019.8834081
– ident: ref21
  doi: 10.1109/ACCESS.2023.3296465
– ident: ref23
  doi: 10.1142/s1793536909000047
– ident: ref35
  doi: 10.1049/cit2.12087
– ident: ref20
  doi: 10.3390/s18030793
– ident: ref7
  doi: 10.1007/s42835-022-01260-7
– ident: ref19
  doi: 10.1109/TIE.2017.2650873
– ident: ref22
  doi: 10.1098/rsif.2005.0058
– ident: ref29
  doi: 10.1109/JSEN.2022.3214239
SSID ssj0000816957
Score 2.3411236
Snippet Partial discharge (PD) seriously affects the operational safety of power equipment. In order to effectively diagnose the PD in gas insulated switchgear (GIS),...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Correlation coefficients
Discharge
Discharges (electric)
Entropy
Fault detection
Fault diagnosis
Feature extraction
Gas insulation
GIS
improved whale optimization algorithm
Local optimization
Optimization algorithms
Optimization models
Parameters
Partial discharge
Permutations
Principal components analysis
Signal resolution
Support vector machines
Switchgear
VMD
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SgipVQ-9EioY8eOfdxu2bZIFCSo6M3yK3SlNKm62Vb8e8aJu0qFBBduUeQ44_GM5xvL_gah_arilFgqcs48y8syqFxKw_MgLAQXrwy18Tby5zNxcl5-uuAXk1Jf8UzYSA88Ku4APJJzH0LtZV0yDz5hhfTCklAYLtUAjYhUk2RqWINlIRSvEs1QQdTBbD6HEUFCSMsPLHKyxDuzk1A0MPanEisP0ObjdXttft2ZppkEnsVz9CwhRjwbJX2BHoX2JXo64RF8hfQMn3W3ocELs256fDQen1uucFfj49Nv-GscJvRxtFwNzEgBH0Lw8rhr8bipAM8_LiFU4C-wglylq5l41vzsbpb95dU2Ol98_D4_yVPlhNxBvtbnjHGrChYkdZBQCSsYs4p7QoIkoaw5N9ZL5QwHhzaAqajwUhS1FdY7H6xnr9FW27XhDcK2oMLwYCsnXemIs8QV0sjgS2sqz1WG6L0StUu04rG6RaOH9IIoPWpeR83rpPkMvd98dD2yavy9-WGcnU3TSIk9vABD0clQ9L8MJUPbcW4n_2OVAricod37ydbJf1eaqoiDmGBVhvKNAfwhqxmKWj6Qded_yPoWPYl9jls9u2irv1mHdwB-ers32Plv1K39Pg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAe-ByibCA_8EjSJI4d-zHrKAOJMgkqxpPlj8tWkaXVmvL112MnbtWBhARvTuQkju589zvb9zuEXhQFzRKdsYgSS6I8BxFxrmgETDvnYoXKtM9GfjdlJ7P87Rk9CwtuXS4MAHSHzyD2zW4vfw7192LEMk-eJkbMuXgXJIx8gptwcCde2uom2mPUYfEB2ptNT8vPvqJcykREur3Jg0CsOVJdDUIXFGZ5TDwvi8-b3XFHHWt_KLNyDXHeWjdL9eObqusd5zO5h-Rm2P2Zky_xutWx-fkbo-P__9d9dDfgUlz2ivQA3YDmIbqzw1b4CMkSTxdfocYTta5bfNwf0puv8KLCr998wKdeC907juerjn8J8JFzkRYvGtwvXbj2pwvnkPB7Z6cuQwIoLuvzxdW8vbjcR7PJq4_jkyjUZ4iMiwrbiBCqRUqAZ8aFbUwzQrSgNkmAJ5BXlCptuTCKOrOhHHLLmOUsrTTT1ljQljxGg2bRwBOEdZoxRUEXhpvcJEYnJuWKg821KiwVQ5RtxCRNIC_3NTRq2QUxiZDleOw0VnrZyiDbIXq5fWjZc3f8vfuRl_-2qyfe7m44Wckwj6VzEJRagMryKifWmWjNuGU6gVRRLtQQ7Xv57nyvl-YQHW7USQYrsZKZ8GiLMFIMUbRVsT_G2qvttbE-_cf-B-i2v-zXjg7RoL1awzOHplr9PEyZX1PGFl0
  priority: 102
  providerName: Unpaywall
Title A Novel Fault Diagnosis of GIS Partial Discharge Based on Improved Whale Optimization Algorithm
URI https://ieeexplore.ieee.org/document/10379800
https://www.proquest.com/docview/2912933637
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10379800.pdf
https://doaj.org/article/15355deefd8f43d887b68d6b0e1a589a
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOUAPPItIKSsfOJJtEseOfUy3LAWJpRKsKKfIj1m6Ik2qbgKCX4_teFdbEIibFTmxrW88M554vkHoRVHQLFEZiykxJM5zEDHnksbAlDUuRshMuWzkdzN2Os_fntPzkKzuc2EAwF8-g7Fr-n_5ptW9C5UduZw2YT2cHbRTcDYka20CKq6ChKBFYBZKE3FUTiZ2EfYMmOVj4mhYXJrslvXxJP2hqsoNB_NO31zJH99lXW_Zmul9NFvPcrhi8nXcd2qsf_5G4Pjfy3iA7gWvE5eDmDxEt6B5hPa2uAgfo6rEs_Yb1Hgq-7rDJ8MVvOUKtwv8-s0HfOZkzH7jZLny7EqAj60BNLht8BCYsO1PF9bc4PdWC12G9E5c1l_a62V3cbmP5tNXHyencai-EGt75utiQqgSKQGeaXsoY4oRogQ1SQI8gXxBqVSGCy2pVQrS-mUZM5ylC8WU0QaUIU_QbtM28BRhlWZMUlCF5jrXiVaJTrnkYHIlC0NFhLI1KpUO1OSuQkZd-SNKIqoByspBWQUoI_Ry89LVwMzx7-7HDu5NV0er7R9YaKqwSyur_ik1AAvDFzkxVgErxg1TCaSSciEjtO_g3BpvQDJCh2vpqYIOWFWZcL4UYaSIULyRqD_mKn1hzBtzPfjLMM_QXddtiAAdot3uuofn1ifq1MjHEkZ-R4zQ7fnsrPz8C8_oCVE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHnkUECvjAkWyT-BH7uN2ybKFdkGhFb5YfE7oiTapuAoJfj51kV1sQiJsVxbGtbzwznni-QehVnrMsMRmPGXEkphRkLIRmMXDjjYuTOjMhG_l4zmen9N0ZOxuS1btcGADoLp_BKDS7f_mutm0Ile2FnDbpPZyb6BajlLI-XWsdUgk1JCTLB26hNJF748nEL8OfAjM6IoGIJSTKbtifjqZ_qKtyzcXcbqtL_eO7LssNazO9h-arefaXTL6O2saM7M_fKBz_eyH30d3B78TjXlAeoBtQPUR3NtgIHyE1xvP6G5R4qtuywQf9JbzFEtcFfnv4CX8MUua_cbBYdvxKgPe9CXS4rnAfmvDtz-fe4OAPXg9dDAmeeFx-qa8WzfnFDjqdvjmZzOKh_kJs_amviQlhRqYERGb9sYwbToiRzCUJiARowZg2TkirmVcL2ntmGXeCp4XhxlkHxpHHaKuqK3iCsEkzrhmY3ApLbWJNYlOhBThqdO6YjFC2QkXZgZw81MgoVXdISaTqoVQBSjVAGaHX606XPTfHv1_fD3CvXw3E2t0DD40a9qnyBoAxB1A4UVDivAo2XDhuEkg1E1JHaCfAuTFej2SEdlfSowYtsFSZDN4U4SSPULyWqD_mqrvSmNfm-vQvw7xE27OT4yN1dDh__wzdDl36eNAu2mquWnjuPaTGvOj2xS9CSgn5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAe-ByibCA_8EjSJI4d-zHrKAOJMgkqxpPlj8tWkaXVmvL112MnbtWBhARvTuQkju589zvb9zuEXhQFzRKdsYgSS6I8BxFxrmgETDvnYoXKtM9GfjdlJ7P87Rk9CwtuXS4MAHSHzyD2zW4vfw7192LEMk-eJkbMuXgXJIx8gptwcCde2uom2mPUYfEB2ptNT8vPvqJcykREur3Jg0CsOVJdDUIXFGZ5TDwvi8-b3XFHHWt_KLNyDXHeWjdL9eObqusd5zO5h-Rm2P2Zky_xutWx-fkbo-P__9d9dDfgUlz2ivQA3YDmIbqzw1b4CMkSTxdfocYTta5bfNwf0puv8KLCr998wKdeC907juerjn8J8JFzkRYvGtwvXbj2pwvnkPB7Z6cuQwIoLuvzxdW8vbjcR7PJq4_jkyjUZ4iMiwrbiBCqRUqAZ8aFbUwzQrSgNkmAJ5BXlCptuTCKOrOhHHLLmOUsrTTT1ljQljxGg2bRwBOEdZoxRUEXhpvcJEYnJuWKg821KiwVQ5RtxCRNIC_3NTRq2QUxiZDleOw0VnrZyiDbIXq5fWjZc3f8vfuRl_-2qyfe7m44Wckwj6VzEJRagMryKifWmWjNuGU6gVRRLtQQ7Xv57nyvl-YQHW7USQYrsZKZ8GiLMFIMUbRVsT_G2qvttbE-_cf-B-i2v-zXjg7RoL1awzOHplr9PEyZX1PGFl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+of+GIS+Partial+Discharge+Based+on+Improved+Whale+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Sun%2C+Wei&rft.au=Ma%2C+Hongzhong&rft.au=Wang%2C+Sihan&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3349410&rft.externalDocID=10379800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon