Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism

In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic p...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 51942 - 51965
Main Authors Raha, Avi Deb, Gain, Mrityunjoy, Debnath, Rameswar, Adhikary, Apurba, Qiao, Yu, Hassan, Md. Mehedi, Bairagi, Anupam Kumar, Islam, Sheikh Mohammed Shariful
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3385099

Cover

Abstract In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic process and symptoms that are similar to those of other skin diseases, making early detection and isolation challenging. To address this, the deployment of deep learning models on edge devices presents a viable solution for the rapid and accurate detection of monkeypox. However, the resource constraints of edge devices require the use of lightweight deep learning models. The limitation of these models often involves a trade-off with accuracy, which is unacceptable in the context of medical diagnostics. Therefore, the development of optimized deep learning models that are both resource-efficient for edge computing and highly accurate becomes imperative. To this end, an attention-based MobileNetV2 model for monkeypox detection, capitalizing on the inherent lightweight design of MobileNetV2 for effective deployment on edge devices, is proposed. This model, enhanced with both spatial and channel attention mechanisms, is tailored for rapid and early-stage diagnosis of monkeypox with better accuracy. We significantly improved the Monkeypox Skin Images Dataset (MSID) by incorporating a broader range of classes for similar skin diseases, thereby substantially enriching and diversifying the training dataset. This helps better distinguish monkeypox from other similar skin diseases, particularly in its early stages or when a detailed medical examination is unavailable. To ensure transparency and interpretability, we incorporated Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into the model's diagnostic reasoning. Finally, to comprehensively assess the performance of our model, we employed a range of evaluation metrics, including Cohen's Kappa, Matthews Correlation Coefficient, and Youden's J Index, alongside traditional measures like accuracy, F1-score, precision, recall, sensitivity, and specificity. The attention-based MobileNetV2 model demonstrated impressive results, outperforming the baseline models by achieving 92.28% accuracy in the extended MSID dataset, 98.19% in the original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset.
AbstractList In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic process and symptoms that are similar to those of other skin diseases, making early detection and isolation challenging. To address this, the deployment of deep learning models on edge devices presents a viable solution for the rapid and accurate detection of monkeypox. However, the resource constraints of edge devices require the use of lightweight deep learning models. The limitation of these models often involves a trade-off with accuracy, which is unacceptable in the context of medical diagnostics. Therefore, the development of optimized deep learning models that are both resource-efficient for edge computing and highly accurate becomes imperative. To this end, an attention-based MobileNetV2 model for monkeypox detection, capitalizing on the inherent lightweight design of MobileNetV2 for effective deployment on edge devices, is proposed. This model, enhanced with both spatial and channel attention mechanisms, is tailored for rapid and early-stage diagnosis of monkeypox with better accuracy. We significantly improved the Monkeypox Skin Images Dataset (MSID) by incorporating a broader range of classes for similar skin diseases, thereby substantially enriching and diversifying the training dataset. This helps better distinguish monkeypox from other similar skin diseases, particularly in its early stages or when a detailed medical examination is unavailable. To ensure transparency and interpretability, we incorporated Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into the model's diagnostic reasoning. Finally, to comprehensively assess the performance of our model, we employed a range of evaluation metrics, including Cohen's Kappa, Matthews Correlation Coefficient, and Youden's J Index, alongside traditional measures like accuracy, F1-score, precision, recall, sensitivity, and specificity. The attention-based MobileNetV2 model demonstrated impressive results, outperforming the baseline models by achieving 92.28% accuracy in the extended MSID dataset, 98.19% in the original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset.
Author Adhikary, Apurba
Qiao, Yu
Bairagi, Anupam Kumar
Islam, Sheikh Mohammed Shariful
Debnath, Rameswar
Hassan, Md. Mehedi
Raha, Avi Deb
Gain, Mrityunjoy
Author_xml – sequence: 1
  givenname: Avi Deb
  surname: Raha
  fullname: Raha, Avi Deb
  organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– sequence: 2
  givenname: Mrityunjoy
  orcidid: 0000-0002-1771-0100
  surname: Gain
  fullname: Gain, Mrityunjoy
  organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– sequence: 3
  givenname: Rameswar
  orcidid: 0000-0002-1214-6133
  surname: Debnath
  fullname: Debnath, Rameswar
  organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– sequence: 4
  givenname: Apurba
  orcidid: 0000-0003-3970-1878
  surname: Adhikary
  fullname: Adhikary, Apurba
  organization: Department of Information and Communication Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
– sequence: 5
  givenname: Yu
  orcidid: 0000-0003-4045-8473
  surname: Qiao
  fullname: Qiao, Yu
  organization: Department of Artificial Intelligence, Kyung Hee University, Yongin, Republic of Korea
– sequence: 6
  givenname: Md. Mehedi
  orcidid: 0000-0002-9890-0968
  surname: Hassan
  fullname: Hassan, Md. Mehedi
  organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– sequence: 7
  givenname: Anupam Kumar
  orcidid: 0009-0000-9132-8893
  surname: Bairagi
  fullname: Bairagi, Anupam Kumar
  email: anupam@cse.ku.ac.bd
  organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– sequence: 8
  givenname: Sheikh Mohammed Shariful
  orcidid: 0000-0001-7926-9368
  surname: Islam
  fullname: Islam, Sheikh Mohammed Shariful
  email: shariful.islam@deakin.edu.au
  organization: Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
BookMark eNptkU1PGzEQhq2KSqWUX0APK_Wc4M_ddW9RSiESqAfgbLzeMXW62FvbEc2_x2ERoKi-2JqZ552Z15_RgQ8eEDoheE4IlqeL5fLs-npOMeVzxlqBpfyADimp5YwJVh-8e39CxymtcTltCYnmEN0tcgafXfBVDtVV8H9gO4Z_36uFr1Y-QxwjZN0N8JarfkAG84zcgPnt3d8NVLfJ-fvqTeyqZLR36eEL-mj1kOD45T5Ctz_PbpYXs8tf56vl4nJmOJZ5RiVrrWEdtBhq2kvLLRWkxw0W1pqOytr0LTeNAduJBmoAwUFSqnmnmeUtO0KrSbcPeq3G6B503KqgnXoOhHivdMzODKA6sE1HGwaSEG51K0UPTcew7Osety0tWnzS2vhRbx_1MLwKEqx2pittDKSkdqarF9ML9m3CxhiKJymrddhEX7ZWDHOMRanbVcmpysSQUgSrjMt6Z1qO2g2vHaZv3e_A9tj9uf5PfZ0oBwDvCC4JLQM9AdP7sGg
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2024_057415
crossref_primary_10_1016_j_engappai_2025_110257
crossref_primary_10_32628_IJSRST241161119
crossref_primary_10_58496_ADSA_2024_012
crossref_primary_10_1186_s12879_025_10811_y
crossref_primary_10_1109_ACCESS_2024_3448708
crossref_primary_10_3390_diagnostics15020130
crossref_primary_10_3934_math_20241412
crossref_primary_10_1007_s12652_024_04940_6
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/ic-ETITE47903.2020.152
10.1109/tai.2023.3327981
10.1109/ICSC56524.2022.10009571
10.1504/IJEH.2023.128605
10.1109/CVPR.2018.00474
10.1007/978-981-99-3608-3_32
10.1007/s00521-023-08568-z
10.1016/j.compbiomed.2022.105812
10.1109/IBSSC56953.2022.10037374
10.1016/j.patcog.2020.107498
10.17148/iarjset.2015.2305
10.3390/cancers15164044
10.52549/ijeei.v11i1.4302
10.1109/ACCESS.2023.3263948
10.32604/csse.2023.034809
10.1186/s40779-020-0233-6
10.1109/ACCESS.2023.3253868
10.1109/ICCV.2019.00679
10.1007/978-3-030-01234-2_1
10.1371/journal.pone.0281815
10.1109/TUFFC.2020.2972573
10.1109/CVPR.2016.90
10.1007/978-3-030-01264-9_8
10.3390/healthcare10030541
10.1109/ACCESS.2023.3300793
10.1186/s13040-023-00322-4
10.5815/ijigsp.2020.06.03
10.1007/s10916-022-01863-7
10.3390/ijerph20054422
10.1016/j.eswa.2022.119483
10.1145/3318216.3363316
10.3390/math11194055
10.4108/eetpht.9.4313
10.1007/s11042-024-18416-4
10.1109/INCET57972.2023.10170232
10.1109/ICCV.2017.74
10.1016/j.pmcj.2023.101874
10.3390/computation12020033
10.1016/j.bspc.2023.104722
10.1007/s10916-022-01868-2
10.1016/j.neunet.2023.02.022
10.3390/s19092164
10.1016/j.cageo.2021.104940
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3385099
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 51965
ExternalDocumentID oai_doaj_org_article_bef7b273e9114fa895de7b309d6d0882
10.1109/access.2024.3385099
10_1109_ACCESS_2024_3385099
10491259
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-2938fc3be80e62d9f4f251d0705ffcb296cd84c7cefb57e6ee54e922a4ba3f483
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:47 EDT 2025
Wed Oct 01 15:18:17 EDT 2025
Mon Jun 30 12:33:21 EDT 2025
Wed Oct 01 04:52:27 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Wed Aug 27 01:53:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-2938fc3be80e62d9f4f251d0705ffcb296cd84c7cefb57e6ee54e922a4ba3f483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-9132-8893
0000-0003-3970-1878
0000-0001-7926-9368
0000-0002-1771-0100
0000-0003-4045-8473
0000-0002-9890-0968
0000-0002-1214-6133
OpenAccessLink https://doaj.org/article/bef7b273e9114fa895de7b309d6d0882
PQID 3040053859
PQPubID 4845423
PageCount 24
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2024_3385099
crossref_primary_10_1109_ACCESS_2024_3385099
proquest_journals_3040053859
ieee_primary_10491259
doaj_primary_oai_doaj_org_article_bef7b273e9114fa895de7b309d6d0882
unpaywall_primary_10_1109_access_2024_3385099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Deb Raha (ref21)
ref51
ref50
ref46
ref45
ref48
Deb Raha (ref17) 2023
ref42
ref44
ref43
ref49
Gain (ref8)
ref7
ref9
ref3
ref6
ref5
ref40
ref34
Chicco (ref47) 2023; 16
(ref4) 2023
ref37
ref36
Alazab (ref12) 2020; 12
ref31
ref30
ref33
(ref28) 2023
ref2
ref1
ref39
ref38
Simonyan (ref32) 2014
Krizhevsky (ref35); 25
ref24
Nafisa Ali (ref14) 2022
ref23
ref26
ref25
ref20
ref22
Alghazzawi (ref41) 2022; 12
ref27
Dey (ref29) 2018
References_xml – ident: ref36
  doi: 10.1109/CVPR.2015.7298594
– ident: ref11
  doi: 10.1109/ic-ETITE47903.2020.152
– ident: ref10
  doi: 10.1109/tai.2023.3327981
– ident: ref2
  doi: 10.1109/ICSC56524.2022.10009571
– ident: ref46
  doi: 10.1504/IJEH.2023.128605
– ident: ref34
  doi: 10.1109/CVPR.2018.00474
– volume: 12
  start-page: 50
  year: 2022
  ident: ref41
  article-title: Sensor-based human activity recognition in smart homes using depthwise separable convolutions
  publication-title: Hum.-Centric Comput. Inf. Sci.
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref18
  doi: 10.1007/978-981-99-3608-3_32
– ident: ref45
  doi: 10.1007/s00521-023-08568-z
– ident: ref9
  doi: 10.1016/j.compbiomed.2022.105812
– ident: ref22
  doi: 10.1109/IBSSC56953.2022.10037374
– ident: ref43
  doi: 10.1016/j.patcog.2020.107498
– ident: ref30
  doi: 10.17148/iarjset.2015.2305
– ident: ref48
  doi: 10.3390/cancers15164044
– ident: ref52
  doi: 10.52549/ijeei.v11i1.4302
– ident: ref6
  doi: 10.1109/ACCESS.2023.3263948
– ident: ref7
  doi: 10.32604/csse.2023.034809
– ident: ref40
  doi: 10.1186/s40779-020-0233-6
– volume-title: Dermnet
  year: 2023
  ident: ref28
– ident: ref5
  doi: 10.1109/ACCESS.2023.3253868
– volume: 12
  start-page: 168
  year: 2020
  ident: ref12
  article-title: COVID-19 prediction and detection using deep learning
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl.
– ident: ref38
  doi: 10.1109/ICCV.2019.00679
– ident: ref42
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref20
  doi: 10.1371/journal.pone.0281815
– year: 2014
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref39
  doi: 10.1109/TUFFC.2020.2972573
– ident: ref33
  doi: 10.1109/CVPR.2016.90
– ident: ref37
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref13
  doi: 10.3390/healthcare10030541
– volume-title: Hands-On Image Processing With Python: Expert Techniques for Advanced Image Analysis and Effective Interpretation of Image Data
  year: 2018
  ident: ref29
– ident: ref23
  doi: 10.1109/ACCESS.2023.3300793
– volume: 16
  start-page: 1
  issue: 1
  year: 2023
  ident: ref47
  article-title: The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
  publication-title: BioData Mining
  doi: 10.1186/s13040-023-00322-4
– start-page: 113
  volume-title: Proc. 24st Asia–Pacific Netw. Operations Manage. Symp. (APNOMS)
  ident: ref21
  article-title: Segment anything model aided beam prediction for the millimeter wave communication
– ident: ref31
  doi: 10.5815/ijigsp.2020.06.03
– ident: ref51
  doi: 10.1007/s10916-022-01863-7
– ident: ref3
  doi: 10.3390/ijerph20054422
– year: 2022
  ident: ref14
  article-title: Monkeypox skin lesion detection using deep learning models: A feasibility study
  publication-title: arXiv:2207.03342
– ident: ref25
  doi: 10.1016/j.eswa.2022.119483
– ident: ref16
  doi: 10.1145/3318216.3363316
– ident: ref54
  doi: 10.3390/math11194055
– ident: ref19
  doi: 10.4108/eetpht.9.4313
– ident: ref24
  doi: 10.1007/s11042-024-18416-4
– ident: ref49
  doi: 10.1109/INCET57972.2023.10170232
– ident: ref53
  doi: 10.1109/ICCV.2017.74
– ident: ref27
  doi: 10.1016/j.pmcj.2023.101874
– ident: ref26
  doi: 10.3390/computation12020033
– start-page: 1377
  volume-title: Proc. Korea Comput. Congr.
  ident: ref8
  article-title: Transfer learning based face mask detection using deep neural networks
– year: 2023
  ident: ref17
  article-title: Generative AI-driven semantic communication framework for NextG wireless network
  publication-title: arXiv:2310.09021
– ident: ref55
  doi: 10.1016/j.bspc.2023.104722
– ident: ref50
  doi: 10.1007/s10916-022-01868-2
– ident: ref1
  doi: 10.1016/j.neunet.2023.02.022
– volume-title: Multi-Country Outbreak of Mpox
  year: 2023
  ident: ref4
– ident: ref15
  doi: 10.3390/s19092164
– ident: ref44
  doi: 10.1016/j.cageo.2021.104940
SSID ssj0000816957
Score 2.502226
Snippet In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51942
SubjectTerms Accuracy
Adaptation models
Attention
channel attention
Computational modeling
Correlation coefficients
COVID-19
Datasets
Deep learning
Detection algorithms
Diagnostic systems
Disease control
Diseases
Edge computing
Image edge detection
Medical diagnostic imaging
MobileNetv2
Monkeypox
Mpox
Pandemics
Physical examinations
ResNet
Signs and symptoms
Skin
skin disease classification
Skin diseases
spatial attention
VGG
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxELBfnAkSwbPxKb27JQVUjtqZV6M36MJcQ2u6JZ8fj1jB3vCwTiFsVOYuvzeGacmW8IeQXBR8Yh4OKNyUHhdWWVtJXVSgquZMN9yh0-O29OL8XHK3lVktVzLgwA5OAzGKfL_C8_LPwqHZWhhAuNClkfkINWNUOy1uZAJVWQ0LItzEL1RL-ZzmY4CfQBmRijJ4aqUe9pn0zSX6qq7BmYt1fd0v74ZufzHV1zcp-cr0c5hJh8Ga96N_Y_fyNw_O9pPCD3itVJp8MyeUhuQfeI3N3hInxMPk37fgh9pP2CoqijdC8X39_SaUe3kYluDts2-h76HMnV0Ys1FSzNMQh0-7IzSLnFn2-uj8jlyYeL2WlVyi9UHp2-vkJDQEXPHagJNCzoKCIaQwH3CBmjd0w3PijhWw_RyRYaAClAM2aFszwKxZ-Qw27RwVNCY42GjWU11Ba1ISBUtkm0P86CZEHGEWFrWIwv3OSpRMbcZB9los2ApUlYmoLliLzePLQcqDn-3f1dwnvTNfFq5xuIjSliahzE1qFFB6gDRLRKywCt4xMdmpCckRE5SnjufG-AckSO18vHlE3gxvC0QaJCSc3VZkn9MVabK2PujfXZXz7znNxJ3YYjoGNy2H9dwQs0inr3MgvDL1dtCM0
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBaxpSAfOJLsJn4k5hYWqgqpFYeuVE7BdsZSRciuaFa0_HrGjvcFEhLcosRJHM3rm3j8DSGvobEuZ9Cg8jqfoLAs0aXQiVal4KwUklm_d_jsXJ7O-cdLcRl_uIW9MAAQis8g9YdhLf8K2ptiInNPnqYmEkM8Jglo7lxhdFbpsnF3yYEUiMVH5GB-_qn67DvKZVIlLKxNvojEmhMdehBiUpjzFFMzjJVqLxwF1v7YZmUPcd5bdUt9-0O37U7wOXlI6vW0h5qTr-mqN6n9-Ruj4_9_1yPyIOJSWg2K9Jjcge4Jub_DVviUfKn6fiiOpP2CojNA-18ubt7SqqPb2kXTwvYafQ99qPXq6MWaLJaGKgW6fdgZ-N3HV9ffDsn85MPF7DSJDRoSi2lhnyBUKJ1lBsopyLxRjjuESw16EeGcNbmStim5LSw4IwqQAIKDynPNjWaOl-wZGXWLDp4T6jKEPjrPINMYLwGBipaeGMhoEHkj3JjkaznVNrKX-yYabR2ymKmqq9kMVbb2wq2jcMfkzeam5UDe8ffh77wCbIZ65u1wAoVVR0OuDbjCIOYDjBLc6VKJBgrDpqqRjU9XxuTQC3jnfYM4x-R4rU91dBPXNfMuFEOOv5xsdOyPuQ56uzfXo38cf0xG_fcVvEQE1ZtX0Ux-AXmkFn8
  priority: 102
  providerName: Unpaywall
Title Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism
URI https://ieeexplore.ieee.org/document/10491259
https://www.proquest.com/docview/3040053859
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10491259.pdf
https://doaj.org/article/bef7b273e9114fa895de7b309d6d0882
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOFY8iFtqVDxwJTWI7sbmlW6oKqRWHrlROxo-xhLTNrmiqwr9n7GR3s0KCC9c4cSbjGX8z0fgbQt6Bd6Fk4NF4Q0xQWJEZKUxmlBScSVExF88OX15VF3P--UbcjFp9xZqwnh64V9yJhVBbxFhAr-TBSCU81Jblylc-hodx982lGiVTaQ-WRaVEPdAMFbk6aWYz_CJMCEv-AdMyxEm1A0WJsX9osbITbT6-b1fm14NZLEbAc_6MHAwRI216SZ-TR9C-IE9HPIIvybem6_qyRdotKbopeuZq-fMjbVq6rSq0C9iO0TPoUhVWS6_XNK401Q_Q7WSXEM8Ff7-7PSTz80_Xs4tsaJ2QOUzYugxBXAbHLMgcqtKrwAMGMh79W4TgbKkq5yV3tYNgRQ0VgOCgytJwa1jgkr0ie-2yhdeEhgKDElMWUBhEMkDNmipS9lgDovQiTEi51qJ2A694bG-x0Cm_yJXuVa-j6vWg-gl5v3lo1dNq_P3207g8m1sjJ3a6gJaiB0vR_7KUCTmMizt6H1cY3uHkR-vV1oMD32kWNzcEgzicbSzgD1lN6mq5I-ub_yHrW_Ikztn_6zkie92PezjG6Kez02To03RQcUr251dfmq-_AUrnAa4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC6isIAPHElpYjuJ91YKqwLbnrrS3owfY2lFSSs2FY9fv2PHfYFA3KLETmx9Hs-MM_MNIa_AWV8wcLh4fXBQWJ7pWuhMy1pwVouS2ZA7PJmW43P-8UJcpGT1mAsDADH4DPrhMv7Ldwu7CkdlKOFcokKWN8ktwTkXXbrW5kgl1JCQokrcQvlAvhmORjgN9AIL3kdfDJWj3NM_kaY_1VXZMzEPV81S__yu5_MdbXN6j0zX4-yCTL70V63p21-_UTj-90Tuk7vJ7qTDbqE8IDegeUju7LARPiKfh23bBT_SdkFR2FG-l4sfJ3TY0G1sopnD9hl9B22M5WrobE0GS2MUAt2-bAIhu_jy6usROT99PxuNs1SAIbPo9rUZmgK1t8xAPYCycNJzj-aQw11CeG9NIUvram4rC96ICkoAwUEWheZGM89r9pgcNIsGnhDqczRtdJFDrlEfAkKly0D8YzSIwgnfI8UaFmUTO3kokjFX0UsZSNVhqQKWKmHZI683nZYdOce_m78NeG-aBmbteAOxUUlQlQFfGbTpALUA97qWwkFl2EC60gV3pEeOAp473-ug7JHj9fJRaRu4UixskahSwuNss6T-GKuOtTH3xvr0L595SQ7Hs8mZOvsw_fSM3A5dugOhY3LQflvBczSRWvMiCsY1UV8MGg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBaxpSAfOJLsJn4k5hYWqgqpFYeuVE7BdsZSRciuaFa0_HrGjvcFEhLcosRJHM3rm3j8DSGvobEuZ9Cg8jqfoLAs0aXQiVal4KwUklm_d_jsXJ7O-cdLcRl_uIW9MAAQis8g9YdhLf8K2ptiInNPnqYmEkM8Jglo7lxhdFbpsnF3yYEUiMVH5GB-_qn67DvKZVIlLKxNvojEmhMdehBiUpjzFFMzjJVqLxwF1v7YZmUPcd5bdUt9-0O37U7wOXlI6vW0h5qTr-mqN6n9-Ruj4_9_1yPyIOJSWg2K9Jjcge4Jub_DVviUfKn6fiiOpP2CojNA-18ubt7SqqPb2kXTwvYafQ99qPXq6MWaLJaGKgW6fdgZ-N3HV9ffDsn85MPF7DSJDRoSi2lhnyBUKJ1lBsopyLxRjjuESw16EeGcNbmStim5LSw4IwqQAIKDynPNjWaOl-wZGXWLDp4T6jKEPjrPINMYLwGBipaeGMhoEHkj3JjkaznVNrKX-yYabR2ymKmqq9kMVbb2wq2jcMfkzeam5UDe8ffh77wCbIZ65u1wAoVVR0OuDbjCIOYDjBLc6VKJBgrDpqqRjU9XxuTQC3jnfYM4x-R4rU91dBPXNfMuFEOOv5xsdOyPuQ56uzfXo38cf0xG_fcVvEQE1ZtX0Ux-AXmkFn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+to+Monkeypox%3A+An+Interpretable+Monkeypox+Detection+Technique+Using+Attention+Mechanism&rft.jtitle=IEEE+access&rft.au=Raha%2C+Avi+Deb&rft.au=Gain%2C+Mrityunjoy&rft.au=Debnath%2C+Rameswar&rft.au=Adhikary%2C+Apurba&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=51942&rft.epage=51965&rft_id=info:doi/10.1109%2FACCESS.2024.3385099&rft.externalDocID=10491259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon