Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism
In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic p...
Saved in:
| Published in | IEEE access Vol. 12; pp. 51942 - 51965 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3385099 |
Cover
| Abstract | In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic process and symptoms that are similar to those of other skin diseases, making early detection and isolation challenging. To address this, the deployment of deep learning models on edge devices presents a viable solution for the rapid and accurate detection of monkeypox. However, the resource constraints of edge devices require the use of lightweight deep learning models. The limitation of these models often involves a trade-off with accuracy, which is unacceptable in the context of medical diagnostics. Therefore, the development of optimized deep learning models that are both resource-efficient for edge computing and highly accurate becomes imperative. To this end, an attention-based MobileNetV2 model for monkeypox detection, capitalizing on the inherent lightweight design of MobileNetV2 for effective deployment on edge devices, is proposed. This model, enhanced with both spatial and channel attention mechanisms, is tailored for rapid and early-stage diagnosis of monkeypox with better accuracy. We significantly improved the Monkeypox Skin Images Dataset (MSID) by incorporating a broader range of classes for similar skin diseases, thereby substantially enriching and diversifying the training dataset. This helps better distinguish monkeypox from other similar skin diseases, particularly in its early stages or when a detailed medical examination is unavailable. To ensure transparency and interpretability, we incorporated Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into the model's diagnostic reasoning. Finally, to comprehensively assess the performance of our model, we employed a range of evaluation metrics, including Cohen's Kappa, Matthews Correlation Coefficient, and Youden's J Index, alongside traditional measures like accuracy, F1-score, precision, recall, sensitivity, and specificity. The attention-based MobileNetV2 model demonstrated impressive results, outperforming the baseline models by achieving 92.28% accuracy in the extended MSID dataset, 98.19% in the original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset. |
|---|---|
| AbstractList | In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic process and symptoms that are similar to those of other skin diseases, making early detection and isolation challenging. To address this, the deployment of deep learning models on edge devices presents a viable solution for the rapid and accurate detection of monkeypox. However, the resource constraints of edge devices require the use of lightweight deep learning models. The limitation of these models often involves a trade-off with accuracy, which is unacceptable in the context of medical diagnostics. Therefore, the development of optimized deep learning models that are both resource-efficient for edge computing and highly accurate becomes imperative. To this end, an attention-based MobileNetV2 model for monkeypox detection, capitalizing on the inherent lightweight design of MobileNetV2 for effective deployment on edge devices, is proposed. This model, enhanced with both spatial and channel attention mechanisms, is tailored for rapid and early-stage diagnosis of monkeypox with better accuracy. We significantly improved the Monkeypox Skin Images Dataset (MSID) by incorporating a broader range of classes for similar skin diseases, thereby substantially enriching and diversifying the training dataset. This helps better distinguish monkeypox from other similar skin diseases, particularly in its early stages or when a detailed medical examination is unavailable. To ensure transparency and interpretability, we incorporated Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into the model's diagnostic reasoning. Finally, to comprehensively assess the performance of our model, we employed a range of evaluation metrics, including Cohen's Kappa, Matthews Correlation Coefficient, and Youden's J Index, alongside traditional measures like accuracy, F1-score, precision, recall, sensitivity, and specificity. The attention-based MobileNetV2 model demonstrated impressive results, outperforming the baseline models by achieving 92.28% accuracy in the extended MSID dataset, 98.19% in the original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset. |
| Author | Adhikary, Apurba Qiao, Yu Bairagi, Anupam Kumar Islam, Sheikh Mohammed Shariful Debnath, Rameswar Hassan, Md. Mehedi Raha, Avi Deb Gain, Mrityunjoy |
| Author_xml | – sequence: 1 givenname: Avi Deb surname: Raha fullname: Raha, Avi Deb organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – sequence: 2 givenname: Mrityunjoy orcidid: 0000-0002-1771-0100 surname: Gain fullname: Gain, Mrityunjoy organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – sequence: 3 givenname: Rameswar orcidid: 0000-0002-1214-6133 surname: Debnath fullname: Debnath, Rameswar organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – sequence: 4 givenname: Apurba orcidid: 0000-0003-3970-1878 surname: Adhikary fullname: Adhikary, Apurba organization: Department of Information and Communication Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh – sequence: 5 givenname: Yu orcidid: 0000-0003-4045-8473 surname: Qiao fullname: Qiao, Yu organization: Department of Artificial Intelligence, Kyung Hee University, Yongin, Republic of Korea – sequence: 6 givenname: Md. Mehedi orcidid: 0000-0002-9890-0968 surname: Hassan fullname: Hassan, Md. Mehedi organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – sequence: 7 givenname: Anupam Kumar orcidid: 0009-0000-9132-8893 surname: Bairagi fullname: Bairagi, Anupam Kumar email: anupam@cse.ku.ac.bd organization: Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – sequence: 8 givenname: Sheikh Mohammed Shariful orcidid: 0000-0001-7926-9368 surname: Islam fullname: Islam, Sheikh Mohammed Shariful email: shariful.islam@deakin.edu.au organization: Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia |
| BookMark | eNptkU1PGzEQhq2KSqWUX0APK_Wc4M_ddW9RSiESqAfgbLzeMXW62FvbEc2_x2ERoKi-2JqZ552Z15_RgQ8eEDoheE4IlqeL5fLs-npOMeVzxlqBpfyADimp5YwJVh-8e39CxymtcTltCYnmEN0tcgafXfBVDtVV8H9gO4Z_36uFr1Y-QxwjZN0N8JarfkAG84zcgPnt3d8NVLfJ-fvqTeyqZLR36eEL-mj1kOD45T5Ctz_PbpYXs8tf56vl4nJmOJZ5RiVrrWEdtBhq2kvLLRWkxw0W1pqOytr0LTeNAduJBmoAwUFSqnmnmeUtO0KrSbcPeq3G6B503KqgnXoOhHivdMzODKA6sE1HGwaSEG51K0UPTcew7Osety0tWnzS2vhRbx_1MLwKEqx2pittDKSkdqarF9ML9m3CxhiKJymrddhEX7ZWDHOMRanbVcmpysSQUgSrjMt6Z1qO2g2vHaZv3e_A9tj9uf5PfZ0oBwDvCC4JLQM9AdP7sGg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_057415 crossref_primary_10_1016_j_engappai_2025_110257 crossref_primary_10_32628_IJSRST241161119 crossref_primary_10_58496_ADSA_2024_012 crossref_primary_10_1186_s12879_025_10811_y crossref_primary_10_1109_ACCESS_2024_3448708 crossref_primary_10_3390_diagnostics15020130 crossref_primary_10_3934_math_20241412 crossref_primary_10_1007_s12652_024_04940_6 |
| Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/ic-ETITE47903.2020.152 10.1109/tai.2023.3327981 10.1109/ICSC56524.2022.10009571 10.1504/IJEH.2023.128605 10.1109/CVPR.2018.00474 10.1007/978-981-99-3608-3_32 10.1007/s00521-023-08568-z 10.1016/j.compbiomed.2022.105812 10.1109/IBSSC56953.2022.10037374 10.1016/j.patcog.2020.107498 10.17148/iarjset.2015.2305 10.3390/cancers15164044 10.52549/ijeei.v11i1.4302 10.1109/ACCESS.2023.3263948 10.32604/csse.2023.034809 10.1186/s40779-020-0233-6 10.1109/ACCESS.2023.3253868 10.1109/ICCV.2019.00679 10.1007/978-3-030-01234-2_1 10.1371/journal.pone.0281815 10.1109/TUFFC.2020.2972573 10.1109/CVPR.2016.90 10.1007/978-3-030-01264-9_8 10.3390/healthcare10030541 10.1109/ACCESS.2023.3300793 10.1186/s13040-023-00322-4 10.5815/ijigsp.2020.06.03 10.1007/s10916-022-01863-7 10.3390/ijerph20054422 10.1016/j.eswa.2022.119483 10.1145/3318216.3363316 10.3390/math11194055 10.4108/eetpht.9.4313 10.1007/s11042-024-18416-4 10.1109/INCET57972.2023.10170232 10.1109/ICCV.2017.74 10.1016/j.pmcj.2023.101874 10.3390/computation12020033 10.1016/j.bspc.2023.104722 10.1007/s10916-022-01868-2 10.1016/j.neunet.2023.02.022 10.3390/s19092164 10.1016/j.cageo.2021.104940 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3385099 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 51965 |
| ExternalDocumentID | oai_doaj_org_article_bef7b273e9114fa895de7b309d6d0882 10.1109/access.2024.3385099 10_1109_ACCESS_2024_3385099 10491259 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-2938fc3be80e62d9f4f251d0705ffcb296cd84c7cefb57e6ee54e922a4ba3f483 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:47 EDT 2025 Wed Oct 01 15:18:17 EDT 2025 Mon Jun 30 12:33:21 EDT 2025 Wed Oct 01 04:52:27 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Wed Aug 27 01:53:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-2938fc3be80e62d9f4f251d0705ffcb296cd84c7cefb57e6ee54e922a4ba3f483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-9132-8893 0000-0003-3970-1878 0000-0001-7926-9368 0000-0002-1771-0100 0000-0003-4045-8473 0000-0002-9890-0968 0000-0002-1214-6133 |
| OpenAccessLink | https://doaj.org/article/bef7b273e9114fa895de7b309d6d0882 |
| PQID | 3040053859 |
| PQPubID | 4845423 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2024_3385099 crossref_primary_10_1109_ACCESS_2024_3385099 proquest_journals_3040053859 ieee_primary_10491259 doaj_primary_oai_doaj_org_article_bef7b273e9114fa895de7b309d6d0882 unpaywall_primary_10_1109_access_2024_3385099 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 Deb Raha (ref21) ref51 ref50 ref46 ref45 ref48 Deb Raha (ref17) 2023 ref42 ref44 ref43 ref49 Gain (ref8) ref7 ref9 ref3 ref6 ref5 ref40 ref34 Chicco (ref47) 2023; 16 (ref4) 2023 ref37 ref36 Alazab (ref12) 2020; 12 ref31 ref30 ref33 (ref28) 2023 ref2 ref1 ref39 ref38 Simonyan (ref32) 2014 Krizhevsky (ref35); 25 ref24 Nafisa Ali (ref14) 2022 ref23 ref26 ref25 ref20 ref22 Alghazzawi (ref41) 2022; 12 ref27 Dey (ref29) 2018 |
| References_xml | – ident: ref36 doi: 10.1109/CVPR.2015.7298594 – ident: ref11 doi: 10.1109/ic-ETITE47903.2020.152 – ident: ref10 doi: 10.1109/tai.2023.3327981 – ident: ref2 doi: 10.1109/ICSC56524.2022.10009571 – ident: ref46 doi: 10.1504/IJEH.2023.128605 – ident: ref34 doi: 10.1109/CVPR.2018.00474 – volume: 12 start-page: 50 year: 2022 ident: ref41 article-title: Sensor-based human activity recognition in smart homes using depthwise separable convolutions publication-title: Hum.-Centric Comput. Inf. Sci. – volume: 25 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref35 article-title: ImageNet classification with deep convolutional neural networks – ident: ref18 doi: 10.1007/978-981-99-3608-3_32 – ident: ref45 doi: 10.1007/s00521-023-08568-z – ident: ref9 doi: 10.1016/j.compbiomed.2022.105812 – ident: ref22 doi: 10.1109/IBSSC56953.2022.10037374 – ident: ref43 doi: 10.1016/j.patcog.2020.107498 – ident: ref30 doi: 10.17148/iarjset.2015.2305 – ident: ref48 doi: 10.3390/cancers15164044 – ident: ref52 doi: 10.52549/ijeei.v11i1.4302 – ident: ref6 doi: 10.1109/ACCESS.2023.3263948 – ident: ref7 doi: 10.32604/csse.2023.034809 – ident: ref40 doi: 10.1186/s40779-020-0233-6 – volume-title: Dermnet year: 2023 ident: ref28 – ident: ref5 doi: 10.1109/ACCESS.2023.3253868 – volume: 12 start-page: 168 year: 2020 ident: ref12 article-title: COVID-19 prediction and detection using deep learning publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl. – ident: ref38 doi: 10.1109/ICCV.2019.00679 – ident: ref42 doi: 10.1007/978-3-030-01234-2_1 – ident: ref20 doi: 10.1371/journal.pone.0281815 – year: 2014 ident: ref32 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref39 doi: 10.1109/TUFFC.2020.2972573 – ident: ref33 doi: 10.1109/CVPR.2016.90 – ident: ref37 doi: 10.1007/978-3-030-01264-9_8 – ident: ref13 doi: 10.3390/healthcare10030541 – volume-title: Hands-On Image Processing With Python: Expert Techniques for Advanced Image Analysis and Effective Interpretation of Image Data year: 2018 ident: ref29 – ident: ref23 doi: 10.1109/ACCESS.2023.3300793 – volume: 16 start-page: 1 issue: 1 year: 2023 ident: ref47 article-title: The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification publication-title: BioData Mining doi: 10.1186/s13040-023-00322-4 – start-page: 113 volume-title: Proc. 24st Asia–Pacific Netw. Operations Manage. Symp. (APNOMS) ident: ref21 article-title: Segment anything model aided beam prediction for the millimeter wave communication – ident: ref31 doi: 10.5815/ijigsp.2020.06.03 – ident: ref51 doi: 10.1007/s10916-022-01863-7 – ident: ref3 doi: 10.3390/ijerph20054422 – year: 2022 ident: ref14 article-title: Monkeypox skin lesion detection using deep learning models: A feasibility study publication-title: arXiv:2207.03342 – ident: ref25 doi: 10.1016/j.eswa.2022.119483 – ident: ref16 doi: 10.1145/3318216.3363316 – ident: ref54 doi: 10.3390/math11194055 – ident: ref19 doi: 10.4108/eetpht.9.4313 – ident: ref24 doi: 10.1007/s11042-024-18416-4 – ident: ref49 doi: 10.1109/INCET57972.2023.10170232 – ident: ref53 doi: 10.1109/ICCV.2017.74 – ident: ref27 doi: 10.1016/j.pmcj.2023.101874 – ident: ref26 doi: 10.3390/computation12020033 – start-page: 1377 volume-title: Proc. Korea Comput. Congr. ident: ref8 article-title: Transfer learning based face mask detection using deep neural networks – year: 2023 ident: ref17 article-title: Generative AI-driven semantic communication framework for NextG wireless network publication-title: arXiv:2310.09021 – ident: ref55 doi: 10.1016/j.bspc.2023.104722 – ident: ref50 doi: 10.1007/s10916-022-01868-2 – ident: ref1 doi: 10.1016/j.neunet.2023.02.022 – volume-title: Multi-Country Outbreak of Mpox year: 2023 ident: ref4 – ident: ref15 doi: 10.3390/s19092164 – ident: ref44 doi: 10.1016/j.cageo.2021.104940 |
| SSID | ssj0000816957 |
| Score | 2.502226 |
| Snippet | In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While less severe than COVID-19, its increasing spread underscores the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51942 |
| SubjectTerms | Accuracy Adaptation models Attention channel attention Computational modeling Correlation coefficients COVID-19 Datasets Deep learning Detection algorithms Diagnostic systems Disease control Diseases Edge computing Image edge detection Medical diagnostic imaging MobileNetv2 Monkeypox Mpox Pandemics Physical examinations ResNet Signs and symptoms Skin skin disease classification Skin diseases spatial attention VGG |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxELBfnAkSwbPxKb27JQVUjtqZV6M36MJcQ2u6JZ8fj1jB3vCwTiFsVOYuvzeGacmW8IeQXBR8Yh4OKNyUHhdWWVtJXVSgquZMN9yh0-O29OL8XHK3lVktVzLgwA5OAzGKfL_C8_LPwqHZWhhAuNClkfkINWNUOy1uZAJVWQ0LItzEL1RL-ZzmY4CfQBmRijJ4aqUe9pn0zSX6qq7BmYt1fd0v74ZufzHV1zcp-cr0c5hJh8Ga96N_Y_fyNw_O9pPCD3itVJp8MyeUhuQfeI3N3hInxMPk37fgh9pP2CoqijdC8X39_SaUe3kYluDts2-h76HMnV0Ys1FSzNMQh0-7IzSLnFn2-uj8jlyYeL2WlVyi9UHp2-vkJDQEXPHagJNCzoKCIaQwH3CBmjd0w3PijhWw_RyRYaAClAM2aFszwKxZ-Qw27RwVNCY42GjWU11Ba1ISBUtkm0P86CZEHGEWFrWIwv3OSpRMbcZB9los2ApUlYmoLliLzePLQcqDn-3f1dwnvTNfFq5xuIjSliahzE1qFFB6gDRLRKywCt4xMdmpCckRE5SnjufG-AckSO18vHlE3gxvC0QaJCSc3VZkn9MVabK2PujfXZXz7znNxJ3YYjoGNy2H9dwQs0inr3MgvDL1dtCM0 priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBaxpSAfOJLsJn4k5hYWqgqpFYeuVE7BdsZSRciuaFa0_HrGjvcFEhLcosRJHM3rm3j8DSGvobEuZ9Cg8jqfoLAs0aXQiVal4KwUklm_d_jsXJ7O-cdLcRl_uIW9MAAQis8g9YdhLf8K2ptiInNPnqYmEkM8Jglo7lxhdFbpsnF3yYEUiMVH5GB-_qn67DvKZVIlLKxNvojEmhMdehBiUpjzFFMzjJVqLxwF1v7YZmUPcd5bdUt9-0O37U7wOXlI6vW0h5qTr-mqN6n9-Ruj4_9_1yPyIOJSWg2K9Jjcge4Jub_DVviUfKn6fiiOpP2CojNA-18ubt7SqqPb2kXTwvYafQ99qPXq6MWaLJaGKgW6fdgZ-N3HV9ffDsn85MPF7DSJDRoSi2lhnyBUKJ1lBsopyLxRjjuESw16EeGcNbmStim5LSw4IwqQAIKDynPNjWaOl-wZGXWLDp4T6jKEPjrPINMYLwGBipaeGMhoEHkj3JjkaznVNrKX-yYabR2ymKmqq9kMVbb2wq2jcMfkzeam5UDe8ffh77wCbIZ65u1wAoVVR0OuDbjCIOYDjBLc6VKJBgrDpqqRjU9XxuTQC3jnfYM4x-R4rU91dBPXNfMuFEOOv5xsdOyPuQ56uzfXo38cf0xG_fcVvEQE1ZtX0Ux-AXmkFn8 priority: 102 providerName: Unpaywall |
| Title | Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism |
| URI | https://ieeexplore.ieee.org/document/10491259 https://www.proquest.com/docview/3040053859 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10491259.pdf https://doaj.org/article/bef7b273e9114fa895de7b309d6d0882 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOFY8iFtqVDxwJTWI7sbmlW6oKqRWHrlROxo-xhLTNrmiqwr9n7GR3s0KCC9c4cSbjGX8z0fgbQt6Bd6Fk4NF4Q0xQWJEZKUxmlBScSVExF88OX15VF3P--UbcjFp9xZqwnh64V9yJhVBbxFhAr-TBSCU81Jblylc-hodx982lGiVTaQ-WRaVEPdAMFbk6aWYz_CJMCEv-AdMyxEm1A0WJsX9osbITbT6-b1fm14NZLEbAc_6MHAwRI216SZ-TR9C-IE9HPIIvybem6_qyRdotKbopeuZq-fMjbVq6rSq0C9iO0TPoUhVWS6_XNK401Q_Q7WSXEM8Ff7-7PSTz80_Xs4tsaJ2QOUzYugxBXAbHLMgcqtKrwAMGMh79W4TgbKkq5yV3tYNgRQ0VgOCgytJwa1jgkr0ie-2yhdeEhgKDElMWUBhEMkDNmipS9lgDovQiTEi51qJ2A694bG-x0Cm_yJXuVa-j6vWg-gl5v3lo1dNq_P3207g8m1sjJ3a6gJaiB0vR_7KUCTmMizt6H1cY3uHkR-vV1oMD32kWNzcEgzicbSzgD1lN6mq5I-ub_yHrW_Ikztn_6zkie92PezjG6Kez02To03RQcUr251dfmq-_AUrnAa4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC6isIAPHElpYjuJ91YKqwLbnrrS3owfY2lFSSs2FY9fv2PHfYFA3KLETmx9Hs-MM_MNIa_AWV8wcLh4fXBQWJ7pWuhMy1pwVouS2ZA7PJmW43P-8UJcpGT1mAsDADH4DPrhMv7Ldwu7CkdlKOFcokKWN8ktwTkXXbrW5kgl1JCQokrcQvlAvhmORjgN9AIL3kdfDJWj3NM_kaY_1VXZMzEPV81S__yu5_MdbXN6j0zX4-yCTL70V63p21-_UTj-90Tuk7vJ7qTDbqE8IDegeUju7LARPiKfh23bBT_SdkFR2FG-l4sfJ3TY0G1sopnD9hl9B22M5WrobE0GS2MUAt2-bAIhu_jy6usROT99PxuNs1SAIbPo9rUZmgK1t8xAPYCycNJzj-aQw11CeG9NIUvram4rC96ICkoAwUEWheZGM89r9pgcNIsGnhDqczRtdJFDrlEfAkKly0D8YzSIwgnfI8UaFmUTO3kokjFX0UsZSNVhqQKWKmHZI683nZYdOce_m78NeG-aBmbteAOxUUlQlQFfGbTpALUA97qWwkFl2EC60gV3pEeOAp473-ug7JHj9fJRaRu4UixskahSwuNss6T-GKuOtTH3xvr0L595SQ7Hs8mZOvsw_fSM3A5dugOhY3LQflvBczSRWvMiCsY1UV8MGg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBaxpSAfOJLsJn4k5hYWqgqpFYeuVE7BdsZSRciuaFa0_HrGjvcFEhLcosRJHM3rm3j8DSGvobEuZ9Cg8jqfoLAs0aXQiVal4KwUklm_d_jsXJ7O-cdLcRl_uIW9MAAQis8g9YdhLf8K2ptiInNPnqYmEkM8Jglo7lxhdFbpsnF3yYEUiMVH5GB-_qn67DvKZVIlLKxNvojEmhMdehBiUpjzFFMzjJVqLxwF1v7YZmUPcd5bdUt9-0O37U7wOXlI6vW0h5qTr-mqN6n9-Ruj4_9_1yPyIOJSWg2K9Jjcge4Jub_DVviUfKn6fiiOpP2CojNA-18ubt7SqqPb2kXTwvYafQ99qPXq6MWaLJaGKgW6fdgZ-N3HV9ffDsn85MPF7DSJDRoSi2lhnyBUKJ1lBsopyLxRjjuESw16EeGcNbmStim5LSw4IwqQAIKDynPNjWaOl-wZGXWLDp4T6jKEPjrPINMYLwGBipaeGMhoEHkj3JjkaznVNrKX-yYabR2ymKmqq9kMVbb2wq2jcMfkzeam5UDe8ffh77wCbIZ65u1wAoVVR0OuDbjCIOYDjBLc6VKJBgrDpqqRjU9XxuTQC3jnfYM4x-R4rU91dBPXNfMuFEOOv5xsdOyPuQ56uzfXo38cf0xG_fcVvEQE1ZtX0Ux-AXmkFn8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+to+Monkeypox%3A+An+Interpretable+Monkeypox+Detection+Technique+Using+Attention+Mechanism&rft.jtitle=IEEE+access&rft.au=Raha%2C+Avi+Deb&rft.au=Gain%2C+Mrityunjoy&rft.au=Debnath%2C+Rameswar&rft.au=Adhikary%2C+Apurba&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=51942&rft.epage=51965&rft_id=info:doi/10.1109%2FACCESS.2024.3385099&rft.externalDocID=10491259 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |