Real-Time Prognostics and Health Management Without Run-to-Failure Data on Railway Assets
Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successf...
Saved in:
| Published in | IEEE access Vol. 11; pp. 28724 - 28734 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3259221 |
Cover
| Abstract | Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successful prognostic applications remain scarce. This is due to the lack of available run-to-failure data to build the prediction model as maintenance is usually conducted regularly to avoid significant defects. This paper proposes a novel prognosis method that can be applied to real-world railway maintenance planning without employing run-to-failure data. The key idea is that the fault severity assessment and approximate remaining time prediction are often all that is needed in order to plan maintenance. Firstly, using motor current signals, a degradation indicator on railway door systems is generated based on the dynamic time warping method to measure similarity between typical normal and faulty behaviour. Then, the K-means algorithm is applied to assess fault severity, followed by the representative time estimation for each level of fault severity. This estimation thus allows the remaining time prediction until reaching the critical fault severity level without using run-to-failure data. As a result, the proposed method enables predictive maintenance planning for railway door systems. In addition, the fault severity threshold can be updated by additional operational data, enabling the remaining time prediction to be more reliable. Furthermore, the proposed method can be applied to conventional railway assets and other electro-mechanical actuators as motor current signals are primarily available from the controller or motor drive without additional sensors. |
|---|---|
| AbstractList | Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successful prognostic applications remain scarce. This is due to the lack of available run-to-failure data to build the prediction model as maintenance is usually conducted regularly to avoid significant defects. This paper proposes a novel prognosis method that can be applied to real-world railway maintenance planning without employing run-to-failure data. The key idea is that the fault severity assessment and approximate remaining time prediction are often all that is needed in order to plan maintenance. Firstly, using motor current signals, a degradation indicator on railway door systems is generated based on the dynamic time warping method to measure similarity between typical normal and faulty behaviour. Then, the K-means algorithm is applied to assess fault severity, followed by the representative time estimation for each level of fault severity. This estimation thus allows the remaining time prediction until reaching the critical fault severity level without using run-to-failure data. As a result, the proposed method enables predictive maintenance planning for railway door systems. In addition, the fault severity threshold can be updated by additional operational data, enabling the remaining time prediction to be more reliable. Furthermore, the proposed method can be applied to conventional railway assets and other electro-mechanical actuators as motor current signals are primarily available from the controller or motor drive without additional sensors. |
| Author | Shimizu, Minoru Perinpanayagam, Suresh Starr, Andrew Namoano, Bernadin |
| Author_xml | – sequence: 1 givenname: Minoru orcidid: 0000-0002-2041-5110 surname: Shimizu fullname: Shimizu, Minoru email: minoru.shimizu@cranfield.ac.uk organization: Integrated Vehicle Health Management Centre, Cranfield University, Cranfield, Bedfordshire, U.K – sequence: 2 givenname: Suresh surname: Perinpanayagam fullname: Perinpanayagam, Suresh organization: School of Physics, Engineering and Technology, University of York, Heslington, York, U.K – sequence: 3 givenname: Bernadin surname: Namoano fullname: Namoano, Bernadin organization: Digital Engineering and Manufacturing Centre, Cranfield Universit, Cranfieldy, Bedfordshire, U.K – sequence: 4 givenname: Andrew orcidid: 0000-0001-9046-560X surname: Starr fullname: Starr, Andrew organization: Centre for Life-cycle Engineering and Management, Cranfield University, Cranfield, Bedfordshire, U.K |
| BookMark | eNptkU1rGzEQhkVJoWmSX9AeBD2vq--1jsbNF6Q0OCkhJzGr1Tpr1pIraQn-91W6IQRTXaQZzfOO5tVndOSDdwh9oWRGKdHfF8vl-d3djBHGZ5xJzRj9gI4ZVbrikqujd-dP6CylDSlrXlKyPkaPKwdDdd9vHb6NYe1Dyr1NGHyLr8pNfsI_wcPabZ3P-KHPT2HMeDX6KofqAvphjA7_gAw4eLwq8TPs8SIll9Mp-tjBkNzZ636Cfl-c3y-vqptfl9fLxU1lBdG5YjVoSpVjnRZWi27eUNWBqjuYN0wQ0MpxQblkSlFpFWFd3baSskbSmpKu4SfoetJtA2zMLvZbiHsToDf_EiGuDcQy1OCMIFZIIqUFogVpmjkhqqFFWYKtGW2Llpi0Rr-D_TMMw5sgJebFbQPWupTMi9vm1e2CfZuwXQx_Rpey2YQx-jK1YbUuBUIoXqr0VGVjSCm6ztg-Q-6Dz7E499Zh-s_DDvyAPXzX_6mvE9U7594RpFaC1fwv8NaqBw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3413138 crossref_primary_10_1109_TR_2023_3349205 crossref_primary_10_1007_s42835_024_02003_6 |
| Cites_doi | 10.1080/09537280412331309208 10.1016/j.apacoust.2016.10.012 10.1109/AERO53065.2022.9843627 10.1109/TPEL.2014.2376413 10.1016/j.ymssp.2019.106486 10.1016/j.compind.2021.103523 10.3390/s19235160 10.2514/1.I010171 10.1109/ICASSP.2019.8683763 10.1016/j.ejor.2010.11.018 10.1109/AERO.2010.5446822 10.1007/s00170-009-2482-0 10.1109/TNNLS.2016.2582798 10.36001/ijphm.2017.v8i2.2633 10.1177/03611981211064893 10.1007/978-3-319-44742-1 10.1109/AERO.2009.4839661 10.1109/SYSTOL.2010.5675984 10.1007/978-3-319-24211-8_9 10.1109/ACCESS.2021.3077192 10.2514/6.2011-1518 10.1109/TASSP.1978.1163055 10.1007/978-3-540-74048-3_4 10.1007/s12206-018-0507-z 10.1002/9780470117842.ch6 10.1109/ACCESS.2020.3047928 10.1016/j.jmsy.2018.04.008 10.1016/j.ress.2013.02.019 10.1109/TSMCA.2012.2207109 10.1109/ACCESS.2021.3116264 10.1016/j.eswa.2010.08.083 10.1002/j.1538-7305.1981.tb00272.x 10.1016/j.microrel.2017.03.021 10.1016/j.ymssp.2009.11.005 10.1016/j.ymssp.2012.07.018 10.1109/AERO.2004.1368175 10.1017/S0890060401154089 10.36001/ijphm.2019.v10i2.2727 10.1109/TII.2018.2868687 10.1016/j.ress.2010.08.009 10.2514/6.2019-2210 10.1155/2018/3813029 10.1155/2020/9601389 10.1109/TR.2014.2299152 10.1016/j.ymssp.2015.03.004 10.1016/j.neucom.2017.05.063 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3259221 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 28734 |
| ExternalDocumentID | oai_doaj_org_article_40c45055ca0940bb8006b12665ac721d 10.1109/access.2023.3259221 10_1109_ACCESS_2023_3259221 10076427 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/T518104/1 funderid: 10.13039/501100000266 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-27a9116e2f94c94f8b16fa67fa8b240a96e3413526615c602f7dd512b51710fb3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:16 EDT 2025 Sun Oct 26 03:53:12 EDT 2025 Sun Jun 29 15:52:01 EDT 2025 Wed Oct 01 03:26:36 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Wed Aug 27 02:22:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-27a9116e2f94c94f8b16fa67fa8b240a96e3413526615c602f7dd512b51710fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9046-560X 0000-0002-2041-5110 |
| OpenAccessLink | https://doaj.org/article/40c45055ca0940bb8006b12665ac721d |
| PQID | 2792134463 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2792134463 unpaywall_primary_10_1109_access_2023_3259221 ieee_primary_10076427 doaj_primary_oai_doaj_org_article_40c45055ca0940bb8006b12665ac721d crossref_primary_10_1109_ACCESS_2023_3259221 crossref_citationtrail_10_1109_ACCESS_2023_3259221 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 arthur (ref48) 2007 ref10 ref17 ref16 ref19 ref18 ref46 ref45 namoano (ref41) 2020 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 (ref3) 2003 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref16 doi: 10.1080/09537280412331309208 – ident: ref47 doi: 10.1016/j.apacoust.2016.10.012 – ident: ref40 doi: 10.1109/AERO53065.2022.9843627 – ident: ref12 doi: 10.1109/TPEL.2014.2376413 – ident: ref28 doi: 10.1016/j.ymssp.2019.106486 – ident: ref38 doi: 10.1016/j.compind.2021.103523 – ident: ref46 doi: 10.3390/s19235160 – ident: ref35 doi: 10.2514/1.I010171 – ident: ref18 doi: 10.1109/ICASSP.2019.8683763 – ident: ref13 doi: 10.1016/j.ejor.2010.11.018 – ident: ref11 doi: 10.1109/AERO.2010.5446822 – ident: ref2 doi: 10.1007/s00170-009-2482-0 – ident: ref21 doi: 10.1109/TNNLS.2016.2582798 – year: 2020 ident: ref41 article-title: Fault diagnosis in time series data with application to railway assets – ident: ref32 doi: 10.36001/ijphm.2017.v8i2.2633 – ident: ref39 doi: 10.1177/03611981211064893 – ident: ref1 doi: 10.1007/978-3-319-44742-1 – ident: ref49 doi: 10.1109/AERO.2009.4839661 – ident: ref10 doi: 10.1109/SYSTOL.2010.5675984 – ident: ref45 doi: 10.1007/978-3-319-24211-8_9 – ident: ref23 doi: 10.1109/ACCESS.2021.3077192 – ident: ref34 doi: 10.2514/6.2011-1518 – ident: ref43 doi: 10.1109/TASSP.1978.1163055 – ident: ref44 doi: 10.1007/978-3-540-74048-3_4 – ident: ref31 doi: 10.1007/s12206-018-0507-z – ident: ref4 doi: 10.1002/9780470117842.ch6 – ident: ref24 doi: 10.1109/ACCESS.2020.3047928 – ident: ref19 doi: 10.1016/j.jmsy.2018.04.008 – year: 2003 ident: ref3 publication-title: Train Derailment at Potters Bar-10 May 2002-A Progress Report by the HSE Investigation Board May 2003 – ident: ref8 doi: 10.1016/j.ress.2013.02.019 – start-page: 1027 year: 2007 ident: ref48 article-title: K-means++: The advantages of careful seeding publication-title: Proc 17th Ann ACM-SIAM Symp Discrete Algorithms (SODA) – ident: ref9 doi: 10.1109/TSMCA.2012.2207109 – ident: ref15 doi: 10.1109/ACCESS.2021.3116264 – ident: ref27 doi: 10.1016/j.eswa.2010.08.083 – ident: ref42 doi: 10.1002/j.1538-7305.1981.tb00272.x – ident: ref36 doi: 10.1016/j.microrel.2017.03.021 – ident: ref29 doi: 10.1016/j.ymssp.2009.11.005 – ident: ref26 doi: 10.1016/j.ymssp.2012.07.018 – ident: ref33 doi: 10.1109/AERO.2004.1368175 – ident: ref14 doi: 10.1017/S0890060401154089 – ident: ref5 doi: 10.36001/ijphm.2019.v10i2.2727 – ident: ref17 doi: 10.1109/TII.2018.2868687 – ident: ref7 doi: 10.1016/j.ress.2010.08.009 – ident: ref37 doi: 10.2514/6.2019-2210 – ident: ref20 doi: 10.1155/2018/3813029 – ident: ref25 doi: 10.1155/2020/9601389 – ident: ref6 doi: 10.1109/TR.2014.2299152 – ident: ref30 doi: 10.1016/j.ymssp.2015.03.004 – ident: ref22 doi: 10.1016/j.neucom.2017.05.063 |
| SSID | ssj0000816957 |
| Score | 2.294479 |
| Snippet | Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 28724 |
| SubjectTerms | Actuators Algorithms Component reliability Data models Degradation door systems electro-mechanical actuators EMAs Estimation Failure Fault detection linear actuator PHM Prediction models Predictive maintenance Predictive models Prognosis Prognostics and health management Rail transportation railway remaining useful life signal processing Structural health monitoring |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxGhBfnAEadxHnZyLAurCokKragop8hPUXWVVK2jqvz6ziTeZRcE4pZETmxrPJlv7JlvCHnreC6lLjhTGdes1EIwbUDxrCgk4o3cSUwU_nwijk_LT2fVWUxWH3NhnHNj8JlL8XI8y7e9GXCr7BBP9AEvyx2yI2sxJWutN1SwgkRTycgsxLPm8Gg2g0mkWCA8LQDm5znfsj4jSX-sqrIFMO8P3aW6vVHL5YatmT8mJ6tRTiEmF-kQdGp-_kbg-N_TeEIeRdRJj6Zl8pTcc90z8nCDi_A5-b4AyMgwI4R-ueox_A4JnKnqLJ1SleivSBn67Tz86IdAF0PHQs_m6hyj2-kHFRTtO7qA-xt1S_FEOVzvkdP5x6-zYxbrLjAD3l5guVTwCxQu901pmtLXmguvhPSq1gAAVCMc2r4KbXtlRJZ7aS0AB11xwCteFy_Ibtd37iWh1hY68wJrmfmykk2dwRd8pkwmrRN1k5B8JY_WRFJyrI2xbEfnJGvaSYgtCrGNQkzIu_VLlxMnx7-bv0dBr5siofb4AITSRv1sy8yUAAYro5BQUGvA0UJzmGGlDDjJNiF7KMiN_iYZJuRgtW7aqP3XLZIy8gIc7SIhbL2W_hirGktibo311V-62ScPsNm093NAdsPV4F4DGgr6zagFdwoqAf0 priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC4isCAfOOI0T7s5lkK1QmK1qqjYPVl-iooqqXYTLcuvZyZxSwsSEtySyElszTjzTWbmG0LeuDQTQucpU0mqWaE5Z9rAxrM8F4g3MiewUPjTGT9dFh8vyovww62vhXHO9clnLsbDPpa_cuvvYswzJE-rxhxMPDgJYwzvA3gW8cb6u-SIl4DFR-RoeXY-vcSOcimvWN7HJl8GYs2x6nsQxtgxPM4B92dZemCOetb-0GblAHHe6-qNur1R6_We8Zk_JHI77SHn5FvctTo2P35jdPz_dT0iDwIupdNBkR6TO65-Qu7vsRU-JZcLAJUMa0bo-VWDCXpI8UxVbelQzER_5dLQL6v2a9O1dNHVrG3YXK0w_52-V62iTU0XcH6jbinGnNvrY7Kcf_g8O2WhMwMz4A-2LBMKPpLcZb4qTFX4iU65V1x4NdEAEVTFHVrHEq1_aXiSeWEtQAtdpoBovM6fkVHd1O45odbmOvEcu535ohTVJIEn-ESZRFjHJ1VEsq2ApAm05dg9Yy179yWp5HQ2A12VKFUZpBqRt7ubNgNrx9-Hv0PJ74Yi5XZ_AaQkww6WRWIKgIulUUg5qDUgba5TWGGpDLjRNiLHKNm99w1yjMjJVpFk-D5cS6RtTHNwxfOIsJ1y_THXQWEP5vriH8efkFF71blXAJ1a_Trsj5-Tyg-m priority: 102 providerName: Unpaywall |
| Title | Real-Time Prognostics and Health Management Without Run-to-Failure Data on Railway Assets |
| URI | https://ieeexplore.ieee.org/document/10076427 https://www.proquest.com/docview/2792134463 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10076427.pdf https://doaj.org/article/40c45055ca0940bb8006b12665ac721d |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqemg5oFKoCNCVDxxrsPNhx8dl2xVCAqFVV4WTZTuxirRKEGSF-PfMJGGbFVK5cEyUOM7M2PMmmXlDyFEpYqVcIpjlwrHUScmch4VXyEQh3ohLhYXCF5fybJ6eX2fXg1ZfmBPW0QN3gjtJuU_BS2feItObcwBwpBPgVjLrIXopcPfluR4EU-0enAupM9XTDAmuT8aTCbzRMXYLP04A88exWHNFLWN_32JlDW1-WlZ39unRLhYDxzP9QrZ6xEjH3Uy3yYey-ko2BzyCO-RmBnCPYTUHvbqvMXUOyZeprQralRnRf1ku9M9t87deNnS2rFhTs6m9xcx0-tM2ltYVncHxo32i-De4edgl8-mv35Mz1vdMYB4itYbFysL2Jcs46NTrNOROyGClCjZ34LytliX6rQz9cuYlj4MqCnD6LhOANYJLvpGNqq7KPUKLInE8SOxDFtJM6ZzDCIFbz1VRylxHJH4Rn_E9oTj2tViYNrDg2nQyNyhz08s8Ij9WN911fBr_v_wU9bK6FMmw2xNgIqY3EfOWiURkF7U6eB5XEHapiBy-qNn0K_fBIKGiSCBITiLCVqp_NVfbtrNcm-v-e8z1gHzGMbuPPIdko7lflt8B9jRu1Fr4qK1QHJGP88ur8c0z2lH5Yw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQO5dWKlAI-cMRpnPixOZaF1QLtCq1aUU6W7TiiYpVUbaKq_Ho8SXbZBYG4JZGd2BpP5ht75huA156lStmMUZMwS7mVkloXFK-QmUK8kXqFicInMzk94x_PxfmQrN7lwnjvu-AzH-Nld5Zf1K7FrbJDPNEPeFndhXuCcy76dK3VlgrWkMiFGriFWJIfHo3HYRoxlgiPswD005Rt2J-Opn-oq7IBMbfb6tLc3pjFYs3aTB7CbDnOPsjke9w2NnY_fqNw_O-JPIKdAXeSo36hPIY7vnoCD9bYCJ_C13kAjRRzQsjnqxoD8JDCmZiqIH2yEvkVK0O-XDTf6rYh87aiTU0n5gLj28k70xhSV2Qe7m_MLcEz5eZ6F84m70_HUzpUXqAu-HsNTZUJP0Hp0zLnLuflyDJZGqlKM7IBAphcerR-Aq27cDJJS1UUATpYwQJiKW22B1tVXflnQIois0kpsZpZyYXKR0l4Q5kYl6jCy1EeQbqUh3YDLTlWx1jozj1Jct0LUaMQ9SDECN6sOl32rBz_bv4WBb1qipTa3YMgFD1oqOaJ4wEOCmeQUtDagKSlZWGGwrjgJhcR7KIg177XyzCCg-W60YP-X2ukZWRZcLWzCOhqLf0xVtMVxdwY6_5fPvMKtqenJ8f6-MPs03O4j136naAD2GquWv8iYKPGvuw04ieu0AVK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC4isCAfOOI0T7s5lkK1QmK1qqjYPVl-iooqqXYTLcuvZyZxSwsSEtySyElszTjzTWbmG0LeuDQTQucpU0mqWaE5Z9rAxrM8F4g3MiewUPjTGT9dFh8vyovww62vhXHO9clnLsbDPpa_cuvvYswzJE-rxhxMPDgJYwzvA3gW8cb6u-SIl4DFR-RoeXY-vcSOcimvWN7HJl8GYs2x6nsQxtgxPM4B92dZemCOetb-0GblAHHe6-qNur1R6_We8Zk_JHI77SHn5FvctTo2P35jdPz_dT0iDwIupdNBkR6TO65-Qu7vsRU-JZcLAJUMa0bo-VWDCXpI8UxVbelQzER_5dLQL6v2a9O1dNHVrG3YXK0w_52-V62iTU0XcH6jbinGnNvrY7Kcf_g8O2WhMwMz4A-2LBMKPpLcZb4qTFX4iU65V1x4NdEAEVTFHVrHEq1_aXiSeWEtQAtdpoBovM6fkVHd1O45odbmOvEcu535ohTVJIEn-ESZRFjHJ1VEsq2ApAm05dg9Yy179yWp5HQ2A12VKFUZpBqRt7ubNgNrx9-Hv0PJ74Yi5XZ_AaQkww6WRWIKgIulUUg5qDUgba5TWGGpDLjRNiLHKNm99w1yjMjJVpFk-D5cS6RtTHNwxfOIsJ1y_THXQWEP5vriH8efkFF71blXAJ1a_Trsj5-Tyg-m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Prognostics+and+Health+Management+Without+Run-to-Failure+Data+on+Railway+Assets&rft.jtitle=IEEE+access&rft.au=Shimizu%2C+Minoru&rft.au=Perinpanayagam%2C+Suresh&rft.au=Namoano%2C+Bernadin&rft.au=Starr%2C+Andrew&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=28724&rft.epage=28734&rft_id=info:doi/10.1109%2FACCESS.2023.3259221&rft.externalDocID=10076427 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |