Real-Time Prognostics and Health Management Without Run-to-Failure Data on Railway Assets

Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successf...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 28724 - 28734
Main Authors Shimizu, Minoru, Perinpanayagam, Suresh, Namoano, Bernadin, Starr, Andrew
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3259221

Cover

Abstract Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successful prognostic applications remain scarce. This is due to the lack of available run-to-failure data to build the prediction model as maintenance is usually conducted regularly to avoid significant defects. This paper proposes a novel prognosis method that can be applied to real-world railway maintenance planning without employing run-to-failure data. The key idea is that the fault severity assessment and approximate remaining time prediction are often all that is needed in order to plan maintenance. Firstly, using motor current signals, a degradation indicator on railway door systems is generated based on the dynamic time warping method to measure similarity between typical normal and faulty behaviour. Then, the K-means algorithm is applied to assess fault severity, followed by the representative time estimation for each level of fault severity. This estimation thus allows the remaining time prediction until reaching the critical fault severity level without using run-to-failure data. As a result, the proposed method enables predictive maintenance planning for railway door systems. In addition, the fault severity threshold can be updated by additional operational data, enabling the remaining time prediction to be more reliable. Furthermore, the proposed method can be applied to conventional railway assets and other electro-mechanical actuators as motor current signals are primarily available from the controller or motor drive without additional sensors.
AbstractList Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its reliability and performance. Although prognosis research for predictive maintenance is a well-researched topic, practical examples of successful prognostic applications remain scarce. This is due to the lack of available run-to-failure data to build the prediction model as maintenance is usually conducted regularly to avoid significant defects. This paper proposes a novel prognosis method that can be applied to real-world railway maintenance planning without employing run-to-failure data. The key idea is that the fault severity assessment and approximate remaining time prediction are often all that is needed in order to plan maintenance. Firstly, using motor current signals, a degradation indicator on railway door systems is generated based on the dynamic time warping method to measure similarity between typical normal and faulty behaviour. Then, the K-means algorithm is applied to assess fault severity, followed by the representative time estimation for each level of fault severity. This estimation thus allows the remaining time prediction until reaching the critical fault severity level without using run-to-failure data. As a result, the proposed method enables predictive maintenance planning for railway door systems. In addition, the fault severity threshold can be updated by additional operational data, enabling the remaining time prediction to be more reliable. Furthermore, the proposed method can be applied to conventional railway assets and other electro-mechanical actuators as motor current signals are primarily available from the controller or motor drive without additional sensors.
Author Shimizu, Minoru
Perinpanayagam, Suresh
Starr, Andrew
Namoano, Bernadin
Author_xml – sequence: 1
  givenname: Minoru
  orcidid: 0000-0002-2041-5110
  surname: Shimizu
  fullname: Shimizu, Minoru
  email: minoru.shimizu@cranfield.ac.uk
  organization: Integrated Vehicle Health Management Centre, Cranfield University, Cranfield, Bedfordshire, U.K
– sequence: 2
  givenname: Suresh
  surname: Perinpanayagam
  fullname: Perinpanayagam, Suresh
  organization: School of Physics, Engineering and Technology, University of York, Heslington, York, U.K
– sequence: 3
  givenname: Bernadin
  surname: Namoano
  fullname: Namoano, Bernadin
  organization: Digital Engineering and Manufacturing Centre, Cranfield Universit, Cranfieldy, Bedfordshire, U.K
– sequence: 4
  givenname: Andrew
  orcidid: 0000-0001-9046-560X
  surname: Starr
  fullname: Starr, Andrew
  organization: Centre for Life-cycle Engineering and Management, Cranfield University, Cranfield, Bedfordshire, U.K
BookMark eNptkU1rGzEQhkVJoWmSX9AeBD2vq--1jsbNF6Q0OCkhJzGr1Tpr1pIraQn-91W6IQRTXaQZzfOO5tVndOSDdwh9oWRGKdHfF8vl-d3djBHGZ5xJzRj9gI4ZVbrikqujd-dP6CylDSlrXlKyPkaPKwdDdd9vHb6NYe1Dyr1NGHyLr8pNfsI_wcPabZ3P-KHPT2HMeDX6KofqAvphjA7_gAw4eLwq8TPs8SIll9Mp-tjBkNzZ636Cfl-c3y-vqptfl9fLxU1lBdG5YjVoSpVjnRZWi27eUNWBqjuYN0wQ0MpxQblkSlFpFWFd3baSskbSmpKu4SfoetJtA2zMLvZbiHsToDf_EiGuDcQy1OCMIFZIIqUFogVpmjkhqqFFWYKtGW2Llpi0Rr-D_TMMw5sgJebFbQPWupTMi9vm1e2CfZuwXQx_Rpey2YQx-jK1YbUuBUIoXqr0VGVjSCm6ztg-Q-6Dz7E499Zh-s_DDvyAPXzX_6mvE9U7594RpFaC1fwv8NaqBw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TIM_2024_3413138
crossref_primary_10_1109_TR_2023_3349205
crossref_primary_10_1007_s42835_024_02003_6
Cites_doi 10.1080/09537280412331309208
10.1016/j.apacoust.2016.10.012
10.1109/AERO53065.2022.9843627
10.1109/TPEL.2014.2376413
10.1016/j.ymssp.2019.106486
10.1016/j.compind.2021.103523
10.3390/s19235160
10.2514/1.I010171
10.1109/ICASSP.2019.8683763
10.1016/j.ejor.2010.11.018
10.1109/AERO.2010.5446822
10.1007/s00170-009-2482-0
10.1109/TNNLS.2016.2582798
10.36001/ijphm.2017.v8i2.2633
10.1177/03611981211064893
10.1007/978-3-319-44742-1
10.1109/AERO.2009.4839661
10.1109/SYSTOL.2010.5675984
10.1007/978-3-319-24211-8_9
10.1109/ACCESS.2021.3077192
10.2514/6.2011-1518
10.1109/TASSP.1978.1163055
10.1007/978-3-540-74048-3_4
10.1007/s12206-018-0507-z
10.1002/9780470117842.ch6
10.1109/ACCESS.2020.3047928
10.1016/j.jmsy.2018.04.008
10.1016/j.ress.2013.02.019
10.1109/TSMCA.2012.2207109
10.1109/ACCESS.2021.3116264
10.1016/j.eswa.2010.08.083
10.1002/j.1538-7305.1981.tb00272.x
10.1016/j.microrel.2017.03.021
10.1016/j.ymssp.2009.11.005
10.1016/j.ymssp.2012.07.018
10.1109/AERO.2004.1368175
10.1017/S0890060401154089
10.36001/ijphm.2019.v10i2.2727
10.1109/TII.2018.2868687
10.1016/j.ress.2010.08.009
10.2514/6.2019-2210
10.1155/2018/3813029
10.1155/2020/9601389
10.1109/TR.2014.2299152
10.1016/j.ymssp.2015.03.004
10.1016/j.neucom.2017.05.063
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3259221
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 28734
ExternalDocumentID oai_doaj_org_article_40c45055ca0940bb8006b12665ac721d
10.1109/access.2023.3259221
10_1109_ACCESS_2023_3259221
10076427
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/T518104/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-27a9116e2f94c94f8b16fa67fa8b240a96e3413526615c602f7dd512b51710fb3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:16 EDT 2025
Sun Oct 26 03:53:12 EDT 2025
Sun Jun 29 15:52:01 EDT 2025
Wed Oct 01 03:26:36 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Aug 27 02:22:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-27a9116e2f94c94f8b16fa67fa8b240a96e3413526615c602f7dd512b51710fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9046-560X
0000-0002-2041-5110
OpenAccessLink https://doaj.org/article/40c45055ca0940bb8006b12665ac721d
PQID 2792134463
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2792134463
unpaywall_primary_10_1109_access_2023_3259221
ieee_primary_10076427
doaj_primary_oai_doaj_org_article_40c45055ca0940bb8006b12665ac721d
crossref_primary_10_1109_ACCESS_2023_3259221
crossref_citationtrail_10_1109_ACCESS_2023_3259221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
arthur (ref48) 2007
ref10
ref17
ref16
ref19
ref18
ref46
ref45
namoano (ref41) 2020
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
(ref3) 2003
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref16
  doi: 10.1080/09537280412331309208
– ident: ref47
  doi: 10.1016/j.apacoust.2016.10.012
– ident: ref40
  doi: 10.1109/AERO53065.2022.9843627
– ident: ref12
  doi: 10.1109/TPEL.2014.2376413
– ident: ref28
  doi: 10.1016/j.ymssp.2019.106486
– ident: ref38
  doi: 10.1016/j.compind.2021.103523
– ident: ref46
  doi: 10.3390/s19235160
– ident: ref35
  doi: 10.2514/1.I010171
– ident: ref18
  doi: 10.1109/ICASSP.2019.8683763
– ident: ref13
  doi: 10.1016/j.ejor.2010.11.018
– ident: ref11
  doi: 10.1109/AERO.2010.5446822
– ident: ref2
  doi: 10.1007/s00170-009-2482-0
– ident: ref21
  doi: 10.1109/TNNLS.2016.2582798
– year: 2020
  ident: ref41
  article-title: Fault diagnosis in time series data with application to railway assets
– ident: ref32
  doi: 10.36001/ijphm.2017.v8i2.2633
– ident: ref39
  doi: 10.1177/03611981211064893
– ident: ref1
  doi: 10.1007/978-3-319-44742-1
– ident: ref49
  doi: 10.1109/AERO.2009.4839661
– ident: ref10
  doi: 10.1109/SYSTOL.2010.5675984
– ident: ref45
  doi: 10.1007/978-3-319-24211-8_9
– ident: ref23
  doi: 10.1109/ACCESS.2021.3077192
– ident: ref34
  doi: 10.2514/6.2011-1518
– ident: ref43
  doi: 10.1109/TASSP.1978.1163055
– ident: ref44
  doi: 10.1007/978-3-540-74048-3_4
– ident: ref31
  doi: 10.1007/s12206-018-0507-z
– ident: ref4
  doi: 10.1002/9780470117842.ch6
– ident: ref24
  doi: 10.1109/ACCESS.2020.3047928
– ident: ref19
  doi: 10.1016/j.jmsy.2018.04.008
– year: 2003
  ident: ref3
  publication-title: Train Derailment at Potters Bar-10 May 2002-A Progress Report by the HSE Investigation Board May 2003
– ident: ref8
  doi: 10.1016/j.ress.2013.02.019
– start-page: 1027
  year: 2007
  ident: ref48
  article-title: K-means++: The advantages of careful seeding
  publication-title: Proc 17th Ann ACM-SIAM Symp Discrete Algorithms (SODA)
– ident: ref9
  doi: 10.1109/TSMCA.2012.2207109
– ident: ref15
  doi: 10.1109/ACCESS.2021.3116264
– ident: ref27
  doi: 10.1016/j.eswa.2010.08.083
– ident: ref42
  doi: 10.1002/j.1538-7305.1981.tb00272.x
– ident: ref36
  doi: 10.1016/j.microrel.2017.03.021
– ident: ref29
  doi: 10.1016/j.ymssp.2009.11.005
– ident: ref26
  doi: 10.1016/j.ymssp.2012.07.018
– ident: ref33
  doi: 10.1109/AERO.2004.1368175
– ident: ref14
  doi: 10.1017/S0890060401154089
– ident: ref5
  doi: 10.36001/ijphm.2019.v10i2.2727
– ident: ref17
  doi: 10.1109/TII.2018.2868687
– ident: ref7
  doi: 10.1016/j.ress.2010.08.009
– ident: ref37
  doi: 10.2514/6.2019-2210
– ident: ref20
  doi: 10.1155/2018/3813029
– ident: ref25
  doi: 10.1155/2020/9601389
– ident: ref6
  doi: 10.1109/TR.2014.2299152
– ident: ref30
  doi: 10.1016/j.ymssp.2015.03.004
– ident: ref22
  doi: 10.1016/j.neucom.2017.05.063
SSID ssj0000816957
Score 2.294479
Snippet Prognosis is a challenging technology that aims to accurately predict and estimate the remaining useful life of a component or system in order to enhance its...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28724
SubjectTerms Actuators
Algorithms
Component reliability
Data models
Degradation
door systems
electro-mechanical actuators
EMAs
Estimation
Failure
Fault detection
linear actuator
PHM
Prediction models
Predictive maintenance
Predictive models
Prognosis
Prognostics and health management
Rail transportation
railway
remaining useful life
signal processing
Structural health monitoring
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxGhBfnAEadxHnZyLAurCokKragop8hPUXWVVK2jqvz6ziTeZRcE4pZETmxrPJlv7JlvCHnreC6lLjhTGdes1EIwbUDxrCgk4o3cSUwU_nwijk_LT2fVWUxWH3NhnHNj8JlL8XI8y7e9GXCr7BBP9AEvyx2yI2sxJWutN1SwgkRTycgsxLPm8Gg2g0mkWCA8LQDm5znfsj4jSX-sqrIFMO8P3aW6vVHL5YatmT8mJ6tRTiEmF-kQdGp-_kbg-N_TeEIeRdRJj6Zl8pTcc90z8nCDi_A5-b4AyMgwI4R-ueox_A4JnKnqLJ1SleivSBn67Tz86IdAF0PHQs_m6hyj2-kHFRTtO7qA-xt1S_FEOVzvkdP5x6-zYxbrLjAD3l5guVTwCxQu901pmtLXmguvhPSq1gAAVCMc2r4KbXtlRJZ7aS0AB11xwCteFy_Ibtd37iWh1hY68wJrmfmykk2dwRd8pkwmrRN1k5B8JY_WRFJyrI2xbEfnJGvaSYgtCrGNQkzIu_VLlxMnx7-bv0dBr5siofb4AITSRv1sy8yUAAYro5BQUGvA0UJzmGGlDDjJNiF7KMiN_iYZJuRgtW7aqP3XLZIy8gIc7SIhbL2W_hirGktibo311V-62ScPsNm093NAdsPV4F4DGgr6zagFdwoqAf0
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC4isCAfOOI0T7s5lkK1QmK1qqjYPVl-iooqqXYTLcuvZyZxSwsSEtySyElszTjzTWbmG0LeuDQTQucpU0mqWaE5Z9rAxrM8F4g3MiewUPjTGT9dFh8vyovww62vhXHO9clnLsbDPpa_cuvvYswzJE-rxhxMPDgJYwzvA3gW8cb6u-SIl4DFR-RoeXY-vcSOcimvWN7HJl8GYs2x6nsQxtgxPM4B92dZemCOetb-0GblAHHe6-qNur1R6_We8Zk_JHI77SHn5FvctTo2P35jdPz_dT0iDwIupdNBkR6TO65-Qu7vsRU-JZcLAJUMa0bo-VWDCXpI8UxVbelQzER_5dLQL6v2a9O1dNHVrG3YXK0w_52-V62iTU0XcH6jbinGnNvrY7Kcf_g8O2WhMwMz4A-2LBMKPpLcZb4qTFX4iU65V1x4NdEAEVTFHVrHEq1_aXiSeWEtQAtdpoBovM6fkVHd1O45odbmOvEcu535ohTVJIEn-ESZRFjHJ1VEsq2ApAm05dg9Yy179yWp5HQ2A12VKFUZpBqRt7ubNgNrx9-Hv0PJ74Yi5XZ_AaQkww6WRWIKgIulUUg5qDUgba5TWGGpDLjRNiLHKNm99w1yjMjJVpFk-D5cS6RtTHNwxfOIsJ1y_THXQWEP5vriH8efkFF71blXAJ1a_Trsj5-Tyg-m
  priority: 102
  providerName: Unpaywall
Title Real-Time Prognostics and Health Management Without Run-to-Failure Data on Railway Assets
URI https://ieeexplore.ieee.org/document/10076427
https://www.proquest.com/docview/2792134463
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10076427.pdf
https://doaj.org/article/40c45055ca0940bb8006b12665ac721d
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqemg5oFKoCNCVDxxrsPNhx8dl2xVCAqFVV4WTZTuxirRKEGSF-PfMJGGbFVK5cEyUOM7M2PMmmXlDyFEpYqVcIpjlwrHUScmch4VXyEQh3ohLhYXCF5fybJ6eX2fXg1ZfmBPW0QN3gjtJuU_BS2feItObcwBwpBPgVjLrIXopcPfluR4EU-0enAupM9XTDAmuT8aTCbzRMXYLP04A88exWHNFLWN_32JlDW1-WlZ39unRLhYDxzP9QrZ6xEjH3Uy3yYey-ko2BzyCO-RmBnCPYTUHvbqvMXUOyZeprQralRnRf1ku9M9t87deNnS2rFhTs6m9xcx0-tM2ltYVncHxo32i-De4edgl8-mv35Mz1vdMYB4itYbFysL2Jcs46NTrNOROyGClCjZ34LytliX6rQz9cuYlj4MqCnD6LhOANYJLvpGNqq7KPUKLInE8SOxDFtJM6ZzDCIFbz1VRylxHJH4Rn_E9oTj2tViYNrDg2nQyNyhz08s8Ij9WN911fBr_v_wU9bK6FMmw2xNgIqY3EfOWiURkF7U6eB5XEHapiBy-qNn0K_fBIKGiSCBITiLCVqp_NVfbtrNcm-v-e8z1gHzGMbuPPIdko7lflt8B9jRu1Fr4qK1QHJGP88ur8c0z2lH5Yw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQO5dWKlAI-cMRpnPixOZaF1QLtCq1aUU6W7TiiYpVUbaKq_Ho8SXbZBYG4JZGd2BpP5ht75huA156lStmMUZMwS7mVkloXFK-QmUK8kXqFicInMzk94x_PxfmQrN7lwnjvu-AzH-Nld5Zf1K7FrbJDPNEPeFndhXuCcy76dK3VlgrWkMiFGriFWJIfHo3HYRoxlgiPswD005Rt2J-Opn-oq7IBMbfb6tLc3pjFYs3aTB7CbDnOPsjke9w2NnY_fqNw_O-JPIKdAXeSo36hPIY7vnoCD9bYCJ_C13kAjRRzQsjnqxoD8JDCmZiqIH2yEvkVK0O-XDTf6rYh87aiTU0n5gLj28k70xhSV2Qe7m_MLcEz5eZ6F84m70_HUzpUXqAu-HsNTZUJP0Hp0zLnLuflyDJZGqlKM7IBAphcerR-Aq27cDJJS1UUATpYwQJiKW22B1tVXflnQIois0kpsZpZyYXKR0l4Q5kYl6jCy1EeQbqUh3YDLTlWx1jozj1Jct0LUaMQ9SDECN6sOl32rBz_bv4WBb1qipTa3YMgFD1oqOaJ4wEOCmeQUtDagKSlZWGGwrjgJhcR7KIg177XyzCCg-W60YP-X2ukZWRZcLWzCOhqLf0xVtMVxdwY6_5fPvMKtqenJ8f6-MPs03O4j136naAD2GquWv8iYKPGvuw04ieu0AVK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC4isCAfOOI0T7s5lkK1QmK1qqjYPVl-iooqqXYTLcuvZyZxSwsSEtySyElszTjzTWbmG0LeuDQTQucpU0mqWaE5Z9rAxrM8F4g3MiewUPjTGT9dFh8vyovww62vhXHO9clnLsbDPpa_cuvvYswzJE-rxhxMPDgJYwzvA3gW8cb6u-SIl4DFR-RoeXY-vcSOcimvWN7HJl8GYs2x6nsQxtgxPM4B92dZemCOetb-0GblAHHe6-qNur1R6_We8Zk_JHI77SHn5FvctTo2P35jdPz_dT0iDwIupdNBkR6TO65-Qu7vsRU-JZcLAJUMa0bo-VWDCXpI8UxVbelQzER_5dLQL6v2a9O1dNHVrG3YXK0w_52-V62iTU0XcH6jbinGnNvrY7Kcf_g8O2WhMwMz4A-2LBMKPpLcZb4qTFX4iU65V1x4NdEAEVTFHVrHEq1_aXiSeWEtQAtdpoBovM6fkVHd1O45odbmOvEcu535ohTVJIEn-ESZRFjHJ1VEsq2ApAm05dg9Yy179yWp5HQ2A12VKFUZpBqRt7ubNgNrx9-Hv0PJ74Yi5XZ_AaQkww6WRWIKgIulUUg5qDUgba5TWGGpDLjRNiLHKNm99w1yjMjJVpFk-D5cS6RtTHNwxfOIsJ1y_THXQWEP5vriH8efkFF71blXAJ1a_Trsj5-Tyg-m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Prognostics+and+Health+Management+Without+Run-to-Failure+Data+on+Railway+Assets&rft.jtitle=IEEE+access&rft.au=Shimizu%2C+Minoru&rft.au=Perinpanayagam%2C+Suresh&rft.au=Namoano%2C+Bernadin&rft.au=Starr%2C+Andrew&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=28724&rft.epage=28734&rft_id=info:doi/10.1109%2FACCESS.2023.3259221&rft.externalDocID=10076427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon