MOBCSA: Multi-Objective Binary Cuckoo Search Algorithm for Features Selection in Bioinformatics
In bioinformatics, medical diagnosis models might be significantly impacted by high-dimensional data generated by high-throughput technologies. This data includes redundant or irrelevant genes, making it challenging to identify the relevant genes from such high-dimensional data. Therefore, an effect...
Saved in:
| Published in | IEEE access Vol. 12; pp. 21840 - 21867 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3362228 |
Cover
| Abstract | In bioinformatics, medical diagnosis models might be significantly impacted by high-dimensional data generated by high-throughput technologies. This data includes redundant or irrelevant genes, making it challenging to identify the relevant genes from such high-dimensional data. Therefore, an effective feature selection (FS) technique is crucial to mitigate dimensionality, thereby enhancing the performance and accuracy of medical diagnosis. The Cuckoo Search Algorithm (CSA) has proven effective in gene selection, demonstrating prowess in exploitation, exploration, and convergence. However, most of the current CSA-based FS techniques deal with gene selection problems as a single objective rather than adopting a multi-objective mechanism. This article proposes the Multi-Objective Binary Cuckoo Search Algorithm (MOBCSA) for gene selection. MOBCSA extends the standard CSA by incorporating multiple objectives, including accuracy of classification and number of selected genes. MOBCSA utilizes an S-shaped transfer function for transforming the algorithm's search space from a continuous to a binary search space. MOBCSA integrates two components: an external archive to save the pareto optimal solutions attained during the search process, and an adaptive crowding distance updating mechanism integrated into the archive to maintain diversity and increase the coverage of optimal solutions. To assess MOBCSA's performance, evaluation experiments were conducted on six benchmark biomedical datasets using three different classifiers. Then, the obtained experimental results were compared against four multi-objective-based state-of-the art FS methods. The findings prove that MOBCSA surpasses the other methods in both accuracy of classification and number of selected genes, where it has obtained an average accuracy ranging from 92.79% to 98.42% and an average number of selected genes ranging from 15.67 to 27.88 for different classifiers and datasets. |
|---|---|
| AbstractList | In bioinformatics, medical diagnosis models might be significantly impacted by high-dimensional data generated by high-throughput technologies. This data includes redundant or irrelevant genes, making it challenging to identify the relevant genes from such high-dimensional data. Therefore, an effective feature selection (FS) technique is crucial to mitigate dimensionality, thereby enhancing the performance and accuracy of medical diagnosis. The Cuckoo Search Algorithm (CSA) has proven effective in gene selection, demonstrating prowess in exploitation, exploration, and convergence. However, most of the current CSA-based FS techniques deal with gene selection problems as a single objective rather than adopting a multi-objective mechanism. This article proposes the Multi-Objective Binary Cuckoo Search Algorithm (MOBCSA) for gene selection. MOBCSA extends the standard CSA by incorporating multiple objectives, including accuracy of classification and number of selected genes. MOBCSA utilizes an S-shaped transfer function for transforming the algorithm's search space from a continuous to a binary search space. MOBCSA integrates two components: an external archive to save the pareto optimal solutions attained during the search process, and an adaptive crowding distance updating mechanism integrated into the archive to maintain diversity and increase the coverage of optimal solutions. To assess MOBCSA's performance, evaluation experiments were conducted on six benchmark biomedical datasets using three different classifiers. Then, the obtained experimental results were compared against four multi-objective-based state-of-the art FS methods. The findings prove that MOBCSA surpasses the other methods in both accuracy of classification and number of selected genes, where it has obtained an average accuracy ranging from 92.79% to 98.42% and an average number of selected genes ranging from 15.67 to 27.88 for different classifiers and datasets. |
| Author | Ajitha, S. Abdulwahab, Hudhaifa Mohammed Murshed, Belal Abdullah Hezam Saif, Mufeed Ahmed Naji Ghanem, Fahd A. |
| Author_xml | – sequence: 1 givenname: Hudhaifa Mohammed orcidid: 0000-0001-6631-051X surname: Abdulwahab fullname: Abdulwahab, Hudhaifa Mohammed email: hudhaifa.alhemyari@gmail.com organization: Department of Computer Science and IT, University of Science and Technology, Taizz, Yemen – sequence: 2 givenname: S. orcidid: 0000-0002-1458-1411 surname: Ajitha fullname: Ajitha, S. organization: Department of Computer Application, Ramaiah Institute of Technology (affiliated to VTU), Bengaluru, Karnataka, India – sequence: 3 givenname: Mufeed Ahmed Naji orcidid: 0000-0002-0399-6339 surname: Saif fullname: Saif, Mufeed Ahmed Naji organization: Department of Computer Applications, Sri Jayachamarajendra College of Engineering (affiliated to VTU), JSS TI Campus, Mysore, Karnataka, India – sequence: 4 givenname: Belal Abdullah Hezam orcidid: 0000-0003-2187-5044 surname: Murshed fullname: Murshed, Belal Abdullah Hezam organization: Department of Computer Science, College of Engineering and IT, Amran University, Amran, Yemen – sequence: 5 givenname: Fahd A. orcidid: 0000-0002-5055-0137 surname: Ghanem fullname: Ghanem, Fahd A. organization: Department of Computer Science and Engineering, PES College of Engineering, Mysore University, Mandya, India |
| BookMark | eNptkU1P3DAQhqOKSqXAL6CHSD1n66_YcW9LBC0SaA9bzpZjT8DbbLy1HRD_Hm-DEFrhi62Zed6Zef21OBr9CEVxjtECYyR_LNv2cr1eEETYglJOCGk-FccEc1nRmvKjd-8vxVmMG5RPk0O1OC7U7eqiXS9_lrfTkFy16jZgknuE8sKNOjyX7WT-el-uQQfzUC6Hex9cetiWvQ_lFeg0BYg5O-wpP5ZuzKB3Y05vdXImnhafez1EOHu9T4q7q8s_7e_qZvXrul3eVIYhmSqMsUE9ErYWGBpODIiu59oaI7glHPPOdl2HZI8wt6BlR6npu15YK3ADgtGT4nrWtV5v1C64bZ5eee3U_4AP90qHPNAAitRGiBpbIhlmwspGa804baywxNYUshabtaZxp5-f9DC8CWKk9p4rbQzEqPaeq1fPM_Z9xnbB_5sgJrXxUxjz1opIwonAqCa5Ss5VJvgYA_TKuKT35qWg3fDWYf7Vww70gD2c62Pq20w5AHhHMCwpE_QFGs6uXQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113168 crossref_primary_10_1007_s10462_024_10954_5 crossref_primary_10_1051_itmconf_20246902004 crossref_primary_10_1016_j_knosys_2024_112343 |
| Cites_doi | 10.1007/s12652-019-01330-1 10.1016/j.patcog.2020.107470 10.1016/j.eswa.2018.10.021 10.1007/978-981-10-8863-6_9 10.1007/s00521-020-04779-w 10.1038/89044 10.1109/ISCAS.2013.6571881 10.1109/ICKEA.2017.8169893 10.1007/s00357-018-9261-2 10.1007/s00500-020-05349-x 10.1089/cmb.2021.0410 10.1016/S1535-6108(02)00030-2 10.32604/csse.2020.35.495 10.1073/pnas.191502998 10.1007/s10489-021-03118-3 10.1016/j.asoc.2021.107146 10.1007/s12652-019-01193-6 10.1007/s12652-021-03441-0 10.1073/pnas.96.12.6745 10.1016/j.eswa.2018.08.051 10.1016/j.eswa.2020.113971 10.1109/ACCESS.2020.3033757 10.1155/2021/7796696 10.1016/j.swevo.2021.100847 10.4018/978-1-6684-6303-1.ch062 10.1109/access.2018.2873634 10.1016/j.jtbi.2018.12.010 10.1016/j.knosys.2021.107804 10.1016/j.compbiomed.2022.105766 10.3389/fgene.2020.603808 10.1007/978-3-030-67716-9_7 10.1109/access.2022.3153675 10.1016/j.imu.2021.100572 10.1016/j.eswa.2021.114737 10.1504/IJDMB.2015.072092 10.1016/j.ygeno.2020.07.027 10.1007/s00521-020-05210-0 10.1038/nm0102-68 10.1007/978-3-030-44289-7_16 10.1007/s00500-022-07794-2 10.1016/j.asoc.2017.11.006 10.1016/j.eswa.2018.06.057 10.1016/j.asoc.2018.02.051 10.1016/j.advengsoft.2013.12.007 10.1007/s11042-023-15372-3 10.1007/978-1-4939-9442-7 10.4236/cs.2016.74028 10.1016/j.asoc.2018.11.047 10.1007/s11227-016-1806-8 10.1016/j.patcog.2009.06.009 10.1016/j.chemolab.2020.104196 10.1016/j.ins.2017.09.028 10.1007/s10586-018-2094-2 10.1109/ACCESS.2021.3107901 10.1109/ACCESS.2020.2985986 10.1016/j.jbi.2017.01.016 10.1016/j.ygeno.2017.07.010 10.1016/j.eswa.2019.112824 10.1016/j.eswa.2018.07.013 10.3390/app13095322 10.1016/j.knosys.2017.12.037 10.1016/j.jksuci.2019.11.007 10.1109/4235.996017 10.1016/j.matpr.2020.11.064 10.1016/j.ijar.2020.08.010 10.1016/j.engappai.2020.104079 10.1016/j.neucom.2015.06.083 10.1007/s10462-022-10254-w 10.1007/s11042-022-13437-3 10.1109/ICSMC.1997.637339 10.1126/science.286.5439.531 10.1007/978-3-030-03338-5_30 10.1016/j.eswa.2022.116621 10.1016/j.eswa.2020.114485 10.1016/j.asoc.2019.105957 10.1109/ICACI.2017.7974502 10.1016/j.eswa.2022.118946 10.1016/j.eswa.2018.09.015 10.1016/j.eswa.2020.113873 10.1016/j.knosys.2020.105746 10.1007/s00521-016-2473-7 10.1007/s13042-019-00996-5 10.1016/j.asoc.2020.106092 10.1016/j.asoc.2018.10.036 10.1109/ACCESS.2022.3211396 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3362228 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 21867 |
| ExternalDocumentID | oai_doaj_org_article_25c7751d294147d98aaa4638d7d2d53e 10.1109/access.2024.3362228 10_1109_ACCESS_2024_3362228 10419347 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-111c0f07d571e862ce7bf6adcc76d2616bdbbb09f016dea9b33cfbf7dd718e743 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 15:07:28 EDT 2025 Wed Oct 01 16:34:14 EDT 2025 Mon Jun 30 05:39:18 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Wed Oct 01 04:52:18 EDT 2025 Wed Aug 27 03:05:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-111c0f07d571e862ce7bf6adcc76d2616bdbbb09f016dea9b33cfbf7dd718e743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0399-6339 0000-0001-6631-051X 0000-0002-5055-0137 0000-0002-1458-1411 0000-0003-2187-5044 |
| OpenAccessLink | https://doaj.org/article/25c7751d294147d98aaa4638d7d2d53e |
| PQID | 2926271052 |
| PQPubID | 4845423 |
| PageCount | 28 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2024_3362228 ieee_primary_10419347 doaj_primary_oai_doaj_org_article_25c7751d294147d98aaa4638d7d2d53e crossref_citationtrail_10_1109_ACCESS_2024_3362228 crossref_primary_10_1109_ACCESS_2024_3362228 proquest_journals_2926271052 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Kennedy (ref79) 1997 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref43 ref87 ref49 ref8 ref7 Yang (ref29) 2009 ref9 ref4 ref3 ref6 ref5 ref82 ref40 ref84 ref83 ref80 ref35 (ref81) 2024 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 Kumar (ref67) 2022 ref27 ref60 ref62 ref61 |
| References_xml | – ident: ref70 doi: 10.1007/s12652-019-01330-1 – ident: ref25 doi: 10.1016/j.patcog.2020.107470 – ident: ref32 doi: 10.1016/j.eswa.2018.10.021 – ident: ref46 doi: 10.1007/978-981-10-8863-6_9 – ident: ref60 doi: 10.1007/s00521-020-04779-w – ident: ref82 doi: 10.1038/89044 – ident: ref63 doi: 10.1109/ISCAS.2013.6571881 – ident: ref69 doi: 10.1109/ICKEA.2017.8169893 – ident: ref47 doi: 10.1007/s00357-018-9261-2 – ident: ref73 doi: 10.1007/s00500-020-05349-x – ident: ref75 doi: 10.1089/cmb.2021.0410 – ident: ref83 doi: 10.1016/S1535-6108(02)00030-2 – ident: ref53 doi: 10.32604/csse.2020.35.495 – ident: ref84 doi: 10.1073/pnas.191502998 – ident: ref6 doi: 10.1007/s10489-021-03118-3 – ident: ref38 doi: 10.1016/j.asoc.2021.107146 – ident: ref78 doi: 10.1007/s12652-019-01193-6 – ident: ref27 doi: 10.1007/s12652-021-03441-0 – ident: ref86 doi: 10.1073/pnas.96.12.6745 – ident: ref21 doi: 10.1016/j.eswa.2018.08.051 – ident: ref8 doi: 10.1016/j.eswa.2020.113971 – ident: ref37 doi: 10.1109/ACCESS.2020.3033757 – ident: ref72 doi: 10.1155/2021/7796696 – ident: ref59 doi: 10.1016/j.swevo.2021.100847 – volume-title: Sentiment Analysis Using Cuckoo Search for Optimized Feature Selection on Kaggle Tweets year: 2022 ident: ref67 doi: 10.4018/978-1-6684-6303-1.ch062 – ident: ref7 doi: 10.1109/access.2018.2873634 – ident: ref15 doi: 10.1016/j.jtbi.2018.12.010 – ident: ref28 doi: 10.1016/j.knosys.2021.107804 – ident: ref2 doi: 10.1016/j.compbiomed.2022.105766 – ident: ref3 doi: 10.3389/fgene.2020.603808 – ident: ref52 doi: 10.1007/978-3-030-67716-9_7 – ident: ref51 doi: 10.1109/access.2022.3153675 – ident: ref71 doi: 10.1016/j.imu.2021.100572 – ident: ref26 doi: 10.1016/j.eswa.2021.114737 – ident: ref64 doi: 10.1504/IJDMB.2015.072092 – ident: ref56 doi: 10.1016/j.ygeno.2020.07.027 – ident: ref19 doi: 10.1007/s00521-020-05210-0 – ident: ref87 doi: 10.1038/nm0102-68 – ident: ref36 doi: 10.1007/978-3-030-44289-7_16 – ident: ref62 doi: 10.1007/s00500-022-07794-2 – ident: ref23 doi: 10.1016/j.asoc.2017.11.006 – ident: ref13 doi: 10.1016/j.eswa.2018.06.057 – ident: ref17 doi: 10.1016/j.asoc.2018.02.051 – ident: ref41 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref54 doi: 10.1007/s11042-023-15372-3 – ident: ref4 doi: 10.1007/978-1-4939-9442-7 – ident: ref68 doi: 10.4236/cs.2016.74028 – ident: ref43 doi: 10.1016/j.asoc.2018.11.047 – ident: ref61 doi: 10.1007/s11227-016-1806-8 – ident: ref5 doi: 10.1016/j.patcog.2009.06.009 – ident: ref33 doi: 10.1016/j.chemolab.2020.104196 – ident: ref57 doi: 10.1016/j.ins.2017.09.028 – ident: ref12 doi: 10.1007/s10586-018-2094-2 – ident: ref66 doi: 10.1109/ACCESS.2021.3107901 – ident: ref35 doi: 10.1109/ACCESS.2020.2985986 – ident: ref77 doi: 10.1016/j.jbi.2017.01.016 – ident: ref55 doi: 10.1016/j.ygeno.2017.07.010 – ident: ref44 doi: 10.1016/j.eswa.2019.112824 – ident: ref58 doi: 10.1016/j.eswa.2018.07.013 – ident: ref76 doi: 10.3390/app13095322 – ident: ref30 doi: 10.1016/j.knosys.2017.12.037 – ident: ref31 doi: 10.1016/j.jksuci.2019.11.007 – ident: ref80 doi: 10.1109/4235.996017 – ident: ref11 doi: 10.1016/j.matpr.2020.11.064 – ident: ref34 doi: 10.1016/j.ijar.2020.08.010 – ident: ref39 doi: 10.1016/j.engappai.2020.104079 – volume-title: Bioinformatics Laboratory year: 2024 ident: ref81 – ident: ref42 doi: 10.1016/j.neucom.2015.06.083 – ident: ref49 doi: 10.1007/s10462-022-10254-w – ident: ref74 doi: 10.1007/s11042-022-13437-3 – volume-title: A Discrete Binary Version of the Particle Swarm Algorithm year: 1997 ident: ref79 doi: 10.1109/ICSMC.1997.637339 – ident: ref85 doi: 10.1126/science.286.5439.531 – ident: ref16 doi: 10.1007/978-3-030-03338-5_30 – ident: ref40 doi: 10.1016/j.eswa.2022.116621 – ident: ref9 doi: 10.1016/j.eswa.2020.114485 – ident: ref10 doi: 10.1016/j.asoc.2019.105957 – ident: ref45 doi: 10.1109/ICACI.2017.7974502 – ident: ref1 doi: 10.1016/j.eswa.2022.118946 – ident: ref20 doi: 10.1016/j.eswa.2018.09.015 – ident: ref18 doi: 10.1016/j.eswa.2020.113873 – ident: ref22 doi: 10.1016/j.knosys.2020.105746 – ident: ref65 doi: 10.1007/s00521-016-2473-7 – ident: ref14 doi: 10.1007/s13042-019-00996-5 – volume-title: Cuckoo Search via Lévy Flights year: 2009 ident: ref29 – ident: ref48 doi: 10.1016/j.asoc.2020.106092 – ident: ref24 doi: 10.1016/j.asoc.2018.10.036 – ident: ref50 doi: 10.1109/ACCESS.2022.3211396 |
| SSID | ssj0000816957 |
| Score | 2.3528125 |
| Snippet | In bioinformatics, medical diagnosis models might be significantly impacted by high-dimensional data generated by high-throughput technologies. This data... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21840 |
| SubjectTerms | Accuracy Algorithms Archives & records Bioinformatics Cancer Classification Classification algorithms Classifiers cuckoo search algorithm Data mining Datasets Diagnosis Feature extraction Features selection Filtering algorithms Genes Heuristic algorithms Machine learning Medical diagnosis Metaheuristics multi-objective optimization Multiple objective analysis Performance evaluation Search algorithms Search methods Search process Transfer functions |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZxELBfnAES9J_Fpz242oKqS2B6jUm-VXoDQkVZuogl_P2PGutiAQtyixFVvjmfnG9nyD0BvDBAVH7YkUlhPQREqs5Z4ERa0qlZHMxRPdo2NxeMo-nvGznKyecmFCCOnyWZjHx3SW73s3xq0y0HAGeIPJHbQjF2JK1tpsqMQKEorLzCxUFurdsq5hEhADVmxOwVBXseT6lvdJJP25qsotgHl37C7NjxvTtlu-5uAhOl6PcrpicjEfBzt3P38jcPzvaTxCDzLqxMtpmTxGd0L3BN3f4iJ8ivTRyar-tHyPU0ouObHfJlOIVyljF9eju-h7PF1Pxsv2S391Pnz9jgH04ogjR4jb4WubrnZ1-LyDjn2mZY1U0Hvo9ODD5_qQ5OoLxEHMNxAwgq5oCum5LAPEPS5I2wjjnZPCQ9wlrLfWFqoB0OiDUZZS19hGeg_uLgAweYZ2u74LzxGmRvmGGgamtGTcKlsZRSkXC1E6QHhhhqq1VLTL1OSxQkarU4hSKD2JUkdR6izKGXq76XQ5MXP8u_kqinvTNNJqpxcgGp21VFfcSclLXylWMunVwpi4mBde-spzCgPdi-Lc-t8kyRnaX68enW3Ata4iFSMAOF7NENmsqD_GalJhzFtjffGX37xE92KzaQdoH-0OV2N4BZhosK-TLvwCSBsGpA priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLagc0AcWAdRGFAOHEnaxFvNLY0YjZBmBgkqDSfLW6BMSKohEcuv59lxqw5ISHCLElt50du-F9vfQ-iFIgxDorYpZ5qm4Ik41Zra1AmsRS4UJ8av6J6esZMVeXNBL-IPt3AWxjkXNp-5zF-Gtfy1a77zGSs8eZqYMUjxUCSAuxMAH4RnG1vfRAeMAhafoIPV2dvyg-8olzOR4rA2-TQSa85U6EEIRWFBMgyRu_A92PfSUWDtj21WriHOW0O7UT--qabZSz7Hd5Hcij3uObnMhl5n5udvjI7__1330J2IS5NyNKT76IZrH6Dbe2yFD5E8PV9W78pXSTi0m57rz2OwTJbhTG9SDeay65JxA3NSNh-7q3X_6UsCsDjxSHOAyh6eNmHzV5usW5jYReJWTxZ9iFbHr99XJ2nsz5AaqAr7FMKkmddzbinPHVRGxnFdM2WN4cxCZca01VrPRQ2w0jolNMam1jW3FhKiA-jyCE3arnWPUYKVsDVWBIJtTqgWulACY8oWLDeAAd0UFVs1SRPJy30PjUaGImYuZFlVYLHS61ZG3U7Ry92kzcjd8ffhS6__3VBPvB1ugK5k9GNZUMM5zW0hSE64FQulvLkvLLeFpRgEPfT63XvfqM0pOtqak4xR4qssPFkjQDxaTFG6M7E_ZB3N9pqsT_5x_BGa9FeDewYAqtfPo5f8AjpsFE0 priority: 102 providerName: Unpaywall |
| Title | MOBCSA: Multi-Objective Binary Cuckoo Search Algorithm for Features Selection in Bioinformatics |
| URI | https://ieeexplore.ieee.org/document/10419347 https://www.proquest.com/docview/2926271052 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10419347.pdf https://doaj.org/article/25c7751d294147d98aaa4638d7d2d53e |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOiEcRgXblA0dCEz_iuLdsRFUhtUWClcrJ8itQCElVdoX67xk77ioVEly4JrYzGY9nvknsbxB6rVlFIVC7XFSG57ASaW4Md7mX1MhSasFs-KN7eladrNj7C34xK_UV9oRN9MCT4g4Jt0Lw0hHJSiacrLUO49dOOOI49cH7FrWcJVPRB9dlJblINENlIQ-btoU3goSQsLcUvDYJ9ddnoSgy9qcSK3fQ5v3NcKVvfum-nwWe48foUUKMuJkkfYLu-eEpejjjEXyG1On5sv3YHOF4nDY_N98mN4aX8bQtbjf2-zjiaWsxbvov4_Xl-usPDIAVBwy4gZwb7vZxW9aALwfoOCZK1UDjvIdWx-8-tSd5qpyQW8jX1jk4MFt0hXBclB5yFuuF6SrtrBWVg5ypMs4YU8gOAJ_zWhpKbWc64RyEKg-g4jnaGcbBv0CYauk6qhm4wZJxIw3RklJe1VVpAZ35DJFbJSqbaMVDdYtexfSikGrSvAqaV0nzGXqz7XQ1sWr8vfkyzM62aaDEjhfAUFQyFPUvQ8nQXpjb2fMYgFcmMrR_O9kqrd-figQaRQBfnGQo3xrAH7LqWNTyjqwv_4esr9CDMOb0qWcf7ayvN_4AwM_aLKKdL-I5xQXaXZ19aD7_BpTX_rI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAqHlkcRSwv4wJEsSWzHa267EdUC3e2BVurN8iulNCRVSVTBr2fseFdbEIhblNiKrfHMfGN7vkHotaIFAUdtE15oloAmkkRrZhMniBaZUJwaf6K7WBbzU_rxjJ3FZPWQC-OcC5fP3Ng_hrN825reb5WBhlPAG5TfRfcYpZQN6VrrLRVfQ0IwHrmFslS8nZYlTAOiwJyOCZjq3Bdd3_A_gaY_1lW5BTG3--ZK_bhRdb3hbQ530XI1zuGSyeW47_TY_PyNwvG_J_IQ7UTciafDQnmE7rjmMXqwwUb4BMnF8az8PH2HQ1Jucqy_DsYQz0LOLi57c9m2eLigjKf1eXt90X35hgH2Yo8ke4jc4WsdLnc1-KKBjm0kZvVk0Hvo9PD9STlPYv2FxEDU1yVgBk1apdwynjmIfIzjuiqUNYYXFiKvQlutdSoqgI3WKaEJMZWuuLXg8BxAk6doq2kb9wxhooStiKJgTDPKtNC5EoSwYlJkBjCeG6F8JRVpIjm5r5FRyxCkpEIOopRelDKKcoTerDtdDdwc_24-8-JeN_XE2uEFiEZGPZU5M5yzzOaCZpRbMVHKL-eJ5Ta3jMBA97w4N_43SHKEDlarR0Yr8F3mnowRIBzLRyhZr6g_xqpCacxbY33-l9-8Qtvzk8WRPPqw_LSP7vsuw37QAdrqrnv3AhBSp18GvfgFJxAJ8Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLagc0AcWAdRGFAOHEnaxFvNLY0YjZBmBgkqDSfLW6BMSKohEcuv59lxqw5ISHCLElt50du-F9vfQ-iFIgxDorYpZ5qm4Ik41Zra1AmsRS4UJ8av6J6esZMVeXNBL-IPt3AWxjkXNp-5zF-Gtfy1a77zGSs8eZqYMUjxUCSAuxMAH4RnG1vfRAeMAhafoIPV2dvyg-8olzOR4rA2-TQSa85U6EEIRWFBMgyRu_A92PfSUWDtj21WriHOW0O7UT--qabZSz7Hd5Hcij3uObnMhl5n5udvjI7__1330J2IS5NyNKT76IZrH6Dbe2yFD5E8PV9W78pXSTi0m57rz2OwTJbhTG9SDeay65JxA3NSNh-7q3X_6UsCsDjxSHOAyh6eNmHzV5usW5jYReJWTxZ9iFbHr99XJ2nsz5AaqAr7FMKkmddzbinPHVRGxnFdM2WN4cxCZca01VrPRQ2w0jolNMam1jW3FhKiA-jyCE3arnWPUYKVsDVWBIJtTqgWulACY8oWLDeAAd0UFVs1SRPJy30PjUaGImYuZFlVYLHS61ZG3U7Ry92kzcjd8ffhS6__3VBPvB1ugK5k9GNZUMM5zW0hSE64FQulvLkvLLeFpRgEPfT63XvfqM0pOtqak4xR4qssPFkjQDxaTFG6M7E_ZB3N9pqsT_5x_BGa9FeDewYAqtfPo5f8AjpsFE0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOBCSA%3A+Multi-Objective+Binary+Cuckoo+Search+Algorithm+for+Features+Selection+in+Bioinformatics&rft.jtitle=IEEE+access&rft.au=Abdulwahab%2C+Hudhaifa+Mohammed&rft.au=Ajitha%2C+S.&rft.au=Saif%2C+Mufeed+Ahmed+Naji&rft.au=Murshed%2C+Belal+Abdullah+Hezam&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=21840&rft.epage=21867&rft_id=info:doi/10.1109%2FACCESS.2024.3362228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3362228 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |