The Arctic Ocean in CMIP6 Models: Biases and Projected Changes in Temperature and Salinity
We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that t...
Saved in:
Published in | Earth's future Vol. 10; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.02.2022
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2328-4277 2328-4277 |
DOI | 10.1029/2021EF002282 |
Cover
Abstract | We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
Plain Language Summary
Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area.
Key Points
A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6
The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century
The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty |
---|---|
AbstractList | We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area.
A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6
The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century
The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty Abstract We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi-model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub-Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. Plain Language Summary Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area. Key Points A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6 The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty |
Author | Koldunov, Nikolay Hinrichs, Claudia Danilov, Sergey Khosravi, Narges Semmler, Tido Wang, Qiang Jung, Thomas |
Author_xml | – sequence: 1 givenname: Narges orcidid: 0000-0001-7886-0236 surname: Khosravi fullname: Khosravi, Narges email: narges.khosravi@awi.de organization: Helmholtz Centre for Polar and Marine Research (AWI) – sequence: 2 givenname: Qiang orcidid: 0000-0002-2704-5394 surname: Wang fullname: Wang, Qiang email: Qiang.Wang@awi.de organization: Pilot National Laboratory for Marine Science and Technology – sequence: 3 givenname: Nikolay orcidid: 0000-0002-3365-8146 surname: Koldunov fullname: Koldunov, Nikolay organization: Center for Marine Environmental Sciences – sequence: 4 givenname: Claudia orcidid: 0000-0001-5668-9167 surname: Hinrichs fullname: Hinrichs, Claudia organization: Helmholtz Centre for Polar and Marine Research (AWI) – sequence: 5 givenname: Tido orcidid: 0000-0002-2254-4901 surname: Semmler fullname: Semmler, Tido organization: Helmholtz Centre for Polar and Marine Research (AWI) – sequence: 6 givenname: Sergey orcidid: 0000-0001-8098-182X surname: Danilov fullname: Danilov, Sergey organization: Russian Academy of Science – sequence: 7 givenname: Thomas orcidid: 0000-0002-2651-1293 surname: Jung fullname: Jung, Thomas organization: University of Bremen |
BookMark | eNp9kcFu1DAQhiNUJErpjQeIxJW09jiJbW5ltUtXatVKLBcu1sQZt16l9uJkVe3b4zaAEAJ8sTX65hvN79fFUYiBiuItZ2ecgT4HBny5YgxAwYviGASoqgYpj357vypOx3HL8tGSiUYeF18391ReJDt5W95YwlD6UC6u17dteR17GsYP5UePI40lhr68TXFLdqK-XNxjuMvVTG_oYUcJp32iZ-gzDj746fCmeOlwGOn0x31SfFktN4vL6urm03pxcVXZmmlVIeckeO8IRUuKO9dxyZtay87ZxsnWStdpDpqJXoFoW0mKOdlxhyBs39XipFjP3j7i1uySf8B0MBG9eS7EdGcw5f0GMpr1vG4ZtTXra9exLg9V2GgJjXJUu-yqZtc-7PDwiMPwS8iZecrZPOVMbs458-9mfpfitz2Nk9nGfQp5XQOtAOCy4TJT72fKpjiOidxfpT8_L-PwB279hJOPYUroh3818bnp0Q90-O8As1xtQDdKfAd2eaeT |
CitedBy_id | crossref_primary_10_5194_gmd_17_347_2024 crossref_primary_10_1029_2023GL104782 crossref_primary_10_1038_s41558_024_02233_6 crossref_primary_10_1098_rsta_2022_0185 crossref_primary_10_1002_aff2_107 crossref_primary_10_1007_s00376_022_1381_2 crossref_primary_10_1038_s41467_024_52760_1 crossref_primary_10_1029_2024JC021178 crossref_primary_10_1139_facets_2023_0024 crossref_primary_10_3389_fmars_2022_863204 crossref_primary_10_1088_1748_9326_acd568 crossref_primary_10_1007_s00382_023_06986_2 crossref_primary_10_3389_fenvs_2024_1481420 crossref_primary_10_3389_fmars_2023_1211562 crossref_primary_10_3389_fmars_2025_1484609 crossref_primary_10_1029_2023JC020852 crossref_primary_10_1126_sciadv_adq7580 crossref_primary_10_1029_2022GL102077 crossref_primary_10_1038_s43247_025_02028_3 crossref_primary_10_1029_2023EF004393 crossref_primary_10_1007_s00382_024_07142_0 crossref_primary_10_1029_2023GL106499 crossref_primary_10_1038_s43017_022_00345_1 crossref_primary_10_1126_sciadv_abn9755 crossref_primary_10_1016_j_ocemod_2024_102395 crossref_primary_10_1029_2023GL107944 crossref_primary_10_1038_s41467_022_34785_6 crossref_primary_10_5194_gmd_16_2539_2023 crossref_primary_10_1525_elementa_2024_00046 crossref_primary_10_1088_1748_9326_ad0c8a crossref_primary_10_1029_2024JC020970 crossref_primary_10_1126_sciadv_abn2422 crossref_primary_10_1038_s43017_023_00515_9 crossref_primary_10_1029_2023JC019900 crossref_primary_10_1029_2021GB007187 crossref_primary_10_34133_olar_0013 crossref_primary_10_1007_s00382_024_07105_5 crossref_primary_10_1007_s10584_024_03808_0 |
Cites_doi | 10.1029/2020gl090951 10.1038/ngeo1379 10.1029/2006jc004017 10.1126/science.aag2345 10.1029/2018JC014036 10.1002/2017jc012974 10.1029/2019gl086682 10.5194/gmd-9-3461-2016 10.5194/gmd-11-1229-2018 10.1002/2016gl068323 10.1029/2019ms001954 10.1029/2007jc004158 10.5194/gmd-12-3241-2019 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 10.1029/2021JC017565 10.1029/2019JC015281 10.1029/2020JC016930 10.1038/s41467-018-07954-9 10.1016/j.ocemod.2015.12.009 10.1126/sciadv.aat6773 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2 10.1126/science.aai8204 10.1038/s41467-021-23321-7 10.1029/2020GL088036 10.1029/94rg01872 10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2 10.1007/s00382-019-04870-6 10.1175/2010JPO4339.1 10.1175/JCLI-D-18-0237.1 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2 10.1007/978-94-011-4132-1_21 10.1029/1999JC900068 10.1002/rog.20017 10.1016/j.ocemod.2016.02.004 10.1029/2019GL086075 10.3389/fmars.2020.00491 10.1029/jc095ic09p16179 10.1175/JPO-D-15-0144.1 10.1007/978-1-4020-6774-7_4 10.1175/BAMS-D-13-00177.1 10.1029/2005GL023740 10.5194/os-10-719-2014 10.1029/2018JC014303 10.5194/os-13-609-2017 10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2 10.1016/j.ocemod.2018.10.004 10.1029/2006jc003642 10.3402/tellusa.v56i4.14418 10.5194/os-9-499-2013 10.1007/s00382-019-04840-y 10.1007/s10584-005-9017-y 10.1098/rsta.2014.0159 10.1002/2016JC011898 10.1016/j.ocemod.2015.12.008 10.1029/2006jc003732 10.1029/2020JC016886 10.1357/002224003322005087 |
ContentType | Journal Article |
Copyright | 2022 The Authors. 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI ADTOC UNPAY DOA |
DOI | 10.1029/2021EF002282 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Journals (Open Access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2328-4277 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f 10.1029/2021ef002282 10_1029_2021EF002282 EFT2958 |
Genre | article |
GeographicLocations | Arctic Ocean Barents Sea Arctic region Fram Strait |
GeographicLocations_xml | – name: Fram Strait – name: Barents Sea – name: Arctic Ocean – name: Arctic region |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) funderid: 274762653 – fundername: European union's Horizon 2020 research and innovation programme funderid: 727862 APPLICATE – fundername: German Helmholtz climate initiative REKLIM |
GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN ITC LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IAO PHGZM PHGZT PUEGO 7ST 7TG ABUWG AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC UNPAY |
ID | FETCH-LOGICAL-c4098-a11e31dfea36e81ffb1715497bfc5f76c7fb912903d823667e80f7b1fa23cdb43 |
IEDL.DBID | DOA |
ISSN | 2328-4277 |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Sun Sep 07 11:11:53 EDT 2025 Fri Jul 25 07:19:59 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Wed Oct 01 03:29:16 EDT 2025 Wed Jan 22 16:27:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial cc-by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4098-a11e31dfea36e81ffb1715497bfc5f76c7fb912903d823667e80f7b1fa23cdb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2254-4901 0000-0002-2651-1293 0000-0002-3365-8146 0000-0001-8098-182X 0000-0002-2704-5394 0000-0001-5668-9167 0000-0001-7886-0236 |
OpenAccessLink | https://doaj.org/article/90d1460e640d4fb0bea38a597258fe4f |
PQID | 2632217517 |
PQPubID | 2034575 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f unpaywall_primary_10_1029_2021ef002282 proquest_journals_2632217517 crossref_primary_10_1029_2021EF002282 crossref_citationtrail_10_1029_2021EF002282 wiley_primary_10_1029_2021EF002282_EFT2958 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earth's future |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1990; 95 2019; 53 2021; 126 2006; 76 2019; 10 2019; 12 2018; 123 2016; 100 2019; 124 2020; 12 2017; 356 2020; 7 2018; 132 2018; 4 2000 2013; 51 2015; 373 2016; 43 2016; 354 2020; 47 2005; 32 2008; 113 2017; 122 2001; 14 2016a; 99 2016; 46 2014; 10 1994; 32 2021; 48 2016b; 99 2019; 32 2015; 96 2002; 32 2008 2016; 121 1999; 104 2010; 40 2007; 112 2021; 12 2017; 13 2004; 56 2019 2018 2000; 81 2013 2003; 61 2018; 11 2012; 5 2016; 9 2001; 31 1981; 11 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 Eyring V. (e_1_2_8_10_1) 2016 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Locarnini M. M. (e_1_2_8_24_1) 2018 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Schulzweida U. (e_1_2_8_41_1) 2019 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 32 start-page: 240 issue: 1 year: 2002 end-page: 264 article-title: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars publication-title: Journal of Physical Oceanography – volume: 32 issue: 17 year: 2005 article-title: One more step toward a warmer arctic publication-title: Geophysical Research Letters – volume: 124 start-page: 9658 issue: 12 year: 2019 end-page: 9689 article-title: Analysis of the beaufort gyre freshwater content in 2003–2018 publication-title: Journal of Geophysical Research: Oceans – volume: 9 start-page: 3461 issue: 9 year: 2016 end-page: 3482 article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6 publication-title: Geoscientific Model Development – volume: 14 start-page: 2079 issue: 9 year: 2001 end-page: 2087 article-title: Phc: A global ocean hydrography with a high‐quality Arctic Ocean publication-title: Journal of Climate – volume: 40 start-page: 2743 issue: 12 year: 2010 end-page: 2756 article-title: Arctic Ocean warming contributes to reduced polar ice cap publication-title: Journal of Physical Oceanography – start-page: 52 year: 2018 publication-title: World Ocean Atlas 2018, Volume 1: Temperature – volume: 13 start-page: 609 issue: 4 year: 2017 end-page: 622 article-title: North Atlantic deep water formation and amoc in cmip5 models publication-title: Ocean Science – volume: 99 start-page: 86 year: 2016a end-page: 109 article-title: An assessment of the Arctic Ocean in a suite of interannual CORE‐II simulations. Part II: Liquid freshwater publication-title: Ocean Modelling – volume: 112 issue: C4 year: 2007 article-title: Water properties and circulation in Arctic Ocean models publication-title: Journal of Geophysical Research – volume: 113 issue: C5 year: 2008 article-title: Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic water warm anomaly along the Eurasian Basin margins publication-title: Journal of Geophysical Research: Oceans – volume: 112 issue: C4 year: 2007 article-title: Effect of vertical mixing on the Atlantic water layer circulation in the Arctic Ocean publication-title: Journal of Geophysical Research: Oceans – volume: 95 start-page: 16179 issue: C9 year: 1990 end-page: 16193 article-title: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station papa and long‐term upper ocean study site publication-title: Journal of Geophysical Research – volume: 126 issue: 4 year: 2021 article-title: Arctic Ocean freshwater in cmip6 ensembles: Declining sea ice, increasing ocean storage and export publication-title: Journal of Geophysical Research: Oceans – volume: 76 start-page: 241 issue: 3 year: 2006 end-page: 264 article-title: The Arctic amplification debate publication-title: Climatic Change – volume: 31 start-page: 1413 issue: 6 year: 2001 end-page: 1426 article-title: Ocean turbulence. Part I: One‐point closure model—Momentum and heat vertical diffusivities publication-title: Journal of Physical Oceanography – volume: 12 issue: 10 year: 2020 article-title: A primer on the vertical Lagrangian‐remap method in ocean models based on finite volume generalized vertical coordinates publication-title: Journal of Advances in Modeling Earth Systems – volume: 11 start-page: 1229 issue: 4 year: 2018 end-page: 1255 article-title: A 4.5 km resolution Arctic Ocean simulation with the global multi‐resolution model FESOM 1. 4 publication-title: Geoscientific Model Development – volume: 123 start-page: 9232 issue: 12 year: 2018 end-page: 9244 article-title: Projected freshening of the Arctic Ocean in the 21st century publication-title: Journal of Geophysical Research: Oceans – volume: 12 start-page: 3241 issue: 7 year: 2019 end-page: 3281 article-title: Max Planck institute earth system model (MPI‐ESM1.2) for the high‐resolution model intercomparison project (HighResMIP) publication-title: Geoscientific Model Development – volume: 10 start-page: 719 issue: 4 year: 2014 end-page: 730 article-title: Heat loss from the Atlantic water layer in the northern kara sea: Causes and consequences publication-title: Ocean Science – volume: 47 issue: 12 year: 2020 article-title: Cmip6 models predict significant 21st century decline of the atlantic meridional overturning circulation publication-title: Geophysical Research Letters – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 13 article-title: Arctic amplification is caused by sea‐ice loss under increasing co 2 publication-title: Nature Communications – volume: 32 start-page: 363 issue: 4 year: 1994 end-page: 403 article-title: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization publication-title: Reviews of Geophysics – volume: 126 issue: 3 year: 2021 article-title: Stronger variability in the Arctic Ocean induced by sea ice decline in a warming climate: Freshwater storage, dynamic sea level and surface circulation publication-title: Journal of Geophysical Research: Oceans – volume: 43 start-page: 3406 issue: 7 year: 2016 end-page: 3414 article-title: Eddy‐driven recirculation of Atlantic water in Fram strait publication-title: Geophysical Research Letters – volume: 53 start-page: 5279 issue: 9–10 year: 2019 end-page: 5291 article-title: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models publication-title: Climate Dynamics – volume: 9 start-page: 1937 issue: 5 year: 2016 end-page: 1958 – volume: 121 start-page: 3803 issue: 6 year: 2016 end-page: 3819 article-title: Forum for arctic modeling and observational synthesis (famos): Past, current, and future activities publication-title: Journal of Geophysical Research: Oceans – volume: 104 start-page: 15621 issue: C7 year: 1999 end-page: 15634 article-title: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process publication-title: Journal of Geophysical Research: Oceans – volume: 356 start-page: 285 issue: 6335 year: 2017 end-page: 291 article-title: Greater role for Atlantic inflows on sea‐ice loss in the Eurasian basin of the Arctic Ocean publication-title: Science – start-page: 65 year: 2008 end-page: 85 – volume: 56 start-page: 328 issue: 4 year: 2004 end-page: 341 article-title: Arctic climate change: Observed and modelled temperature and sea‐ice variability publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 112 issue: C4 year: 2007 article-title: Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) studies and results publication-title: Journal of Geophysical Research: Oceans – year: 2019 – volume: 122 start-page: 8385 issue: 11 year: 2017 end-page: 8405 article-title: Eddy‐resolving simulation of the Atlantic water circulation in the Fram strait with focus on the seasonal cycle publication-title: Journal of Geophysical Research: Oceans – volume: 51 start-page: 415 issue: 3 year: 2013 end-page: 449 article-title: The role of the Barents Sea in the arctic climate system publication-title: Reviews of Geophysics – volume: 61 start-page: 235 issue: 2 year: 2003 end-page: 265 article-title: A generic length‐scale equation for geophysical turbulence models publication-title: Journal of Marine Research – volume: 100 start-page: 141 year: 2016 end-page: 161 article-title: An assessment of the Arctic Ocean in a suite of interannual core‐ii simulations. Part iii: Hydrography and fluxes publication-title: Ocean Modelling – volume: 5 start-page: 194 issue: 3 year: 2012 end-page: 197 article-title: Western Arctic Ocean freshwater storage increased by wind‐driven spin‐up of the Beaufort gyre publication-title: Nature Geoscience – volume: 132 start-page: 112 year: 2018 end-page: 129 article-title: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations publication-title: Ocean Modelling – volume: 7 year: 2020 article-title: Borealization of the Arctic Ocean in response to anomalous advection from Sub‐arctic seas publication-title: Frontiers in Marine Science – year: 2013 article-title: Recirculation in the Fram strait and transports of water in and north of the Fram strait derived from CTD data publication-title: Ocean Science – volume: 81 start-page: 313 issue: 2 year: 2000 end-page: 318 article-title: The coupled model intercomparison project (cmip) publication-title: Bulletin of the American Meteorological Society – start-page: 503 year: 2000 end-page: 532 – volume: 47 issue: 15 year: 2020 article-title: Mechanisms underlying recent arctic Atlantification publication-title: Geophysical Research Letters – volume: 96 start-page: 2079 issue: 12 year: 2015 end-page: 2105 article-title: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic publication-title: Bulletin of the American Meteorological Society – volume: 354 start-page: 747 issue: 6313 year: 2016 end-page: 750 article-title: Observed arctic sea‐ice loss directly follows anthropogenic CO emission publication-title: Science – volume: 46 start-page: 1437 issue: 5 year: 2016 end-page: 1456 article-title: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback publication-title: Journal of Physical Oceanography – volume: 373 issue: 2045 year: 2015 article-title: Arctic sea ice trends, variability and implications for seasonal ice forecasting publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences – volume: 53 start-page: 4989 issue: 7–8 year: 2019 end-page: 5017 article-title: Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport publication-title: Climate Dynamics – volume: 4 issue: 8 year: 2018 article-title: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins publication-title: Science Advances – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 9 article-title: The poleward enhanced Arctic Ocean cooling machine in a warming climate publication-title: Nature Communications – volume: 47 issue: 3 year: 2020 article-title: Intensification of the Atlantic water supply to the Arctic Ocean through Fram strait induced by arctic sea ice decline publication-title: Geophysical Research Letters – volume: 99 start-page: 110 year: 2016b end-page: 132 article-title: An assessment of the Arctic Ocean in a suite of interannual CORE‐II simulations. Part I: Sea ice and solid freshwater publication-title: Ocean Modelling – volume: 11 start-page: 1443 issue: 11 year: 1981 end-page: 1451 article-title: Parameterization of vertical mixing in numerical models of tropical oceans publication-title: Journal of Physical Oceanography – volume: 126 issue: 10 year: 2021 article-title: Atmospheric wind biases: A challenge for simulating the Arctic Ocean in coupled models? publication-title: Journal of Geophysical Research: Oceans – volume: 123 start-page: 9266 issue: 12 year: 2018 end-page: 9282 article-title: On the effects of increased vertical mixing on the Arctic Ocean and sea ice publication-title: Journal of Geophysical Research: Oceans – volume: 32 start-page: 15 issue: 1 year: 2019 end-page: 32 article-title: Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean publication-title: Journal of Climate – volume: 48 issue: 10 year: 2021 article-title: Nonmonotonic change of the Arctic Ocean freshwater storage capability in a warming climate publication-title: Geophysical Research Letters – ident: e_1_2_8_57_1 doi: 10.1029/2020gl090951 – ident: e_1_2_8_12_1 doi: 10.1038/ngeo1379 – ident: e_1_2_8_35_1 doi: 10.1029/2006jc004017 – ident: e_1_2_8_28_1 doi: 10.1126/science.aag2345 – ident: e_1_2_8_44_1 doi: 10.1029/2018JC014036 – ident: e_1_2_8_59_1 doi: 10.1002/2017jc012974 – start-page: 1937 volume-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization year: 2016 ident: e_1_2_8_10_1 – ident: e_1_2_8_56_1 doi: 10.1029/2019gl086682 – ident: e_1_2_8_29_1 doi: 10.5194/gmd-9-3461-2016 – ident: e_1_2_8_55_1 doi: 10.5194/gmd-11-1229-2018 – ident: e_1_2_8_15_1 doi: 10.1002/2016gl068323 – ident: e_1_2_8_13_1 doi: 10.1029/2019ms001954 – ident: e_1_2_8_8_1 doi: 10.1029/2007jc004158 – ident: e_1_2_8_14_1 doi: 10.5194/gmd-12-3241-2019 – ident: e_1_2_8_48_1 doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 – ident: e_1_2_8_17_1 doi: 10.1029/2021JC017565 – ident: e_1_2_8_36_1 doi: 10.1029/2019JC015281 – ident: e_1_2_8_60_1 doi: 10.1029/2020JC016930 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-018-07954-9 – ident: e_1_2_8_52_1 doi: 10.1016/j.ocemod.2015.12.009 – ident: e_1_2_8_49_1 doi: 10.1126/sciadv.aat6773 – ident: e_1_2_8_3_1 doi: 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2 – ident: e_1_2_8_33_1 doi: 10.1126/science.aai8204 – ident: e_1_2_8_45_1 doi: 10.1038/s41467-021-23321-7 – ident: e_1_2_8_2_1 doi: 10.1029/2020GL088036 – ident: e_1_2_8_22_1 doi: 10.1029/94rg01872 – ident: e_1_2_8_4_1 doi: 10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2 – ident: e_1_2_8_46_1 doi: 10.1007/s00382-019-04870-6 – ident: e_1_2_8_34_1 doi: 10.1175/2010JPO4339.1 – ident: e_1_2_8_54_1 doi: 10.1175/JCLI-D-18-0237.1 – ident: e_1_2_8_30_1 doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2 – ident: e_1_2_8_39_1 doi: 10.1007/978-94-011-4132-1_21 – ident: e_1_2_8_27_1 doi: 10.1029/1999JC900068 – volume-title: Cdo user guide year: 2019 ident: e_1_2_8_41_1 – ident: e_1_2_8_47_1 doi: 10.1002/rog.20017 – ident: e_1_2_8_19_1 doi: 10.1016/j.ocemod.2016.02.004 – ident: e_1_2_8_58_1 doi: 10.1029/2019GL086075 – ident: e_1_2_8_31_1 doi: 10.3389/fmars.2020.00491 – ident: e_1_2_8_11_1 doi: 10.1029/jc095ic09p16179 – ident: e_1_2_8_20_1 doi: 10.1175/JPO-D-15-0144.1 – ident: e_1_2_8_40_1 doi: 10.1007/978-1-4020-6774-7_4 – ident: e_1_2_8_5_1 doi: 10.1175/BAMS-D-13-00177.1 – ident: e_1_2_8_32_1 doi: 10.1029/2005GL023740 – ident: e_1_2_8_7_1 doi: 10.5194/os-10-719-2014 – ident: e_1_2_8_23_1 doi: 10.1029/2018JC014303 – ident: e_1_2_8_16_1 doi: 10.5194/os-13-609-2017 – ident: e_1_2_8_26_1 doi: 10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2 – ident: e_1_2_8_38_1 doi: 10.1016/j.ocemod.2018.10.004 – ident: e_1_2_8_18_1 doi: 10.1029/2006jc003642 – ident: e_1_2_8_21_1 doi: 10.3402/tellusa.v56i4.14418 – ident: e_1_2_8_25_1 doi: 10.5194/os-9-499-2013 – ident: e_1_2_8_9_1 doi: 10.1007/s00382-019-04840-y – ident: e_1_2_8_42_1 doi: 10.1007/s10584-005-9017-y – ident: e_1_2_8_43_1 doi: 10.1098/rsta.2014.0159 – ident: e_1_2_8_37_1 doi: 10.1002/2016JC011898 – ident: e_1_2_8_53_1 doi: 10.1016/j.ocemod.2015.12.008 – ident: e_1_2_8_61_1 doi: 10.1029/2006jc003732 – start-page: 52 year: 2018 ident: e_1_2_8_24_1 publication-title: World Ocean Atlas 2018, Volume 1: Temperature – ident: e_1_2_8_51_1 doi: 10.1029/2020JC016886 – ident: e_1_2_8_50_1 doi: 10.1357/002224003322005087 |
SSID | ssj0000970357 |
Score | 2.4145162 |
Snippet | We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the... Abstract We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating... |
SourceID | doaj unpaywall proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Arctic amplification Arctic climates Arctic hydrography Atlantic water layer Atlantification Atmosphere Bias Climate change Climate models Climatology CMIP6 Experiments Heat Hydrography Modelling Ocean circulation Ocean models Oceans Polar environments Salinity Salinity effects Simulation Temperature Temperature rise |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_q9UFfxK_iaZV9UB-U4H5ks4kg4pUcVeh56BWKL2E_S-HInc0V6X_vzmZz9UD7mGQgm53ZmV9md36D0CujSuU9KzLqhc7yEDCyUoVLzQ0xwWnyKpK4nsyK49P865k420OzoRYGjlUOPjE6arsykCN_D7ziAT4LKj-tf2XQNQp2V4cWGiq1VrAfI8XYHbTPoKvyCO1P6tn8-zbrQqpg4UKmE_CEVfDzT-tppIFhO7EpUvjv4M67V-1aXf9Wy-Uuko2haPoA3U8YEn_ulf4Q7bn2ETqob0rWwsO0ZrvH6GewhCALtVD4m3GqxRctPjr5Mi8wNEJbdh_w5CLEsg6r1uJ5n5lxFvd1Bx1IL1wA1z35chT6oaCecnP9BJ1O68XRcZY6KmQmB-JQRanj1HqneOFK6r2mEjjapPZGeFkY6XUFmSluoRF6IV1JvNTUK8aN1Tk_QKN21bqnCBc6IBcXAIUXeS6lrqSjQruAFji3nrAxejfMZWMS3Th0vVg2cdubVc3fMz9Gr7fS655m4z9yE1DLVgbIseON1eV5k9ZaUxEb_D9xRU5s7jXR4XNLFf6cmCi9y_0YHQ5KbdKK7Zob-xqjN1tF_3Mwzg-DeRut4NYRN_V0wSpRPrv9pc_RPQaFFfE8-CEabS6v3IsAdzb6ZbLhP9E0-Do priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9sCJd0VQi3wADqBUcezYCbe22lVBalmJXalwifyaqmKVrppdofbX41eWLgKExDHJJLLj8cznsecbhF5pWUuAkucEKpUz5zDyWrpLRXWhndGkTSBxPT3jJ3P28bw6v5MLE_khNgE3PzOCvfYTfGkg2vlEOdD4lTsZTwKHizPDO9xvMo3QzvxsevglVJXzoaNSiHTifXjFQnxlyxcFyv4tnHl_3S3lzXe5WGwj1-B6Jg-RHhodT5x8O1iv1IG-_YXP8f969Qg9SMgUH0ZVeozu2e4J2h3_TIRzD5Ml6J-ir06_nKzPsMKftJUdvuzw8emHKce-vNqif4-PLp2H7LHsDJ7GeI81OGYz9F56Zh1kj5TOQeiz9Fmaq5tnaD4Zz45P8lSnIdfM05FKQiwlBqyk3NYEQBHhmd-EAl2B4FqAany8ixpfXp0LWxcgFAFZUm0Uo7to1F119jnCXDk8ZB1MgYoxIVQjLKmUdRiEUgNFmaF3w4i1OpGY-1oaizZsppdNe_fnZej1RnoZyTv-IHfkB38j4ym3w42r64s2zeC2KYzzKoXlrDAMVKFcd2vp1mNlVYNlkKG9QXXaZAf61rPhu0VfRUSG3mzU6beNGZQyQ2-Dgvy1xe14Miubqn7xr1_dQ6PV9druOwS1Ui_TFPkByNgUPQ priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFA6iD9vL0G2yu6nkYdvDpKxp0qb1TeVe3EB3wSvIXkqS5ohwqWKviP-956S51QvbYI9tDyXN-fXlNOcLY5-dKQ1AViQCcpsoTBhJafDSSpc6DJqyCiSup2fFyYX6eZlfxoIb9cL0_BBDwY08I8RrcnBju0g2QByZuGoX40ngb8EQvCEo8ROzs5oONZa0QnsOZJ-IG8pEZVrHve_4iu8vX7CSlQJ5_wrifHXf3prHBzOfr2LYkIQmm-xNRI_8sFf3Flvz7Vu2PX5uVsOH0Vu7d-w32gDKUhcU_-W8afl1y49Pf0wLTkegzbsDfnSNWazjpm34tK_J-Ib3HQcdSc88wuqedjkInRvqpFw8vmcXk_Hs-CSJZykkThFlqBHCS9GAN7LwpQCwQhM7m7bgctCF02ArqknJho5AL7QvU9BWgMmka6yS22y9vWn9B8YLi5jFI5SAXCmtbaW9yK1HnCBlA2k2YvvLuaxdJBqn8y7mdfjhnVX1y5kfsS-D9G1PsPEXuSNSyyBDtNjhxs3dVR29rK7SBiN_6guVNgpsavFzS4NrpiwvwSsYsZ2lUuvoq11NjPW4MMuFHrGvg6L_OBgPy8F8C1bwzxHX48ksq_Ly4_8If2KvM2qwCPvCd9j64u7e7yLsWdi9YNtP2mTzcw priority: 102 providerName: Wiley-Blackwell |
Title | The Arctic Ocean in CMIP6 Models: Biases and Projected Changes in Temperature and Salinity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002282 https://www.proquest.com/docview/2632217517 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021EF002282 https://doaj.org/article/90d1460e640d4fb0bea38a597258fe4f |
UnpaywallVersion | publishedVersion |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2328-4277 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: BENPR dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: AVUZU dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Journals (Open Access) customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCyqNioV35ABxAEfErTnrrVlkVpC4R7EqFS2Q7HqnSKq3IVqj_nrGT3e5KPC4c7cxhNDP2fHY83xDy2pncAPAsYaBsIjFhJLnBoRUudbhpiiKSuJ7PsrOF_HShLrZafYU3YT09cG-4D0Xa4GJOfSbTRoJNrTciNwiDucrBSwi7L6axrcNU3IMLjGSlh5fuKS_CIZ-V00j3wndyUKTq38GXD2_aa3P70yyXu4g1ppzpPnk8YEV60uv4hNzz7VNyUN6VpuHHYW12z8h39DjKhpon-tl509LLlp6ef6wyGhqeLbtjOrnEnNVR0za06m9gfEP7-oIuSM89guieZDkKfTWhbnJ1-5wspuX89CwZOickTgaCUMOYF6wBtFXmcwZgmQ5cbNqCU6Azp8EW4QZKNKHheaZ9noK2DAwXrrFSHJC99qr1LwjNLCIUj8ABlJRa20J7pqxHVCBEAykfkfdrW9ZuoBUP3S2Wdfy9zYt62_Ij8mYjfd3TafxBbhLcspEJJNhxAkOjHkKj_ldojMjh2qn1sDK7OvDT4zFMMT0ibzeO_q0yHtbKvItR8FeN63I654XKX_4PzV-RRzyUWcTX4Ydkb_Xjxh8h-FnZMbnPZTUmDyblrPoyjlGPo8WsOvn2C-YZ_m8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEF8ThQF-YDyAImI7iROkCdHRqmVrqaCTJl6CP9GkKi1Lp6n_HH8bZ8fpqAR722OSU-LY57ufz77fIfRKiVxYS7OI2FRGCTiMKBdwKZmKFRhNVngS19E4G5wmn8_Ssy30u82FcccqW5voDbWeKxcjf-d4xQE-p4R_WPyKXNUot7valtAQobSCPvQUYyGx49isrmAJVx8OP8F4H1Da702PBlGoMhCpxJFpCkIMI9oawTKTE2sl4Y63jEurUsszxa0sXLSGaVccPOMmjy2XxArKlJYJg_feQTsAOxjMqp1ubzz5uo7yxAXMqJSHE_cxLVywgfT6nnaGbvhCXzJgA-fuXlYLsboSs9kmcvaur38f3QuYFX9slOwB2jLVQ7TXu06Rg4fBRtSP0HfQPJB1uVf4izKiwucVPhoNJxl2hddm9XvcPQffWWNRaTxpIkFG4ybPoXbSUwNgviF79kLfhMvfXK4eo9Nb6ds9tF3NK_ME4UwCUjIAYGyaJJzLghuSSgPohDFtY9pBb9u-LFWgN3dVNmal32anRfl3z3fQwVp60dB6_Eeu64ZlLePIuP2N-cXPMsztsog1-JvYZEmsEytjCb-bC1ip0TS3JrEdtN8OahksRF1e63MHvV4P9D8bY2zbmDdeC25scdnrT2mR5k9v_uhLtDuYjk7Kk-H4-Bm6S11Shz-Lvo-2lxeX5jlAraV8EfQZox-3PYX-AI9qNUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviK-JwgA_MB5A0WLnwwnShOiWaGWsVNBJ016CP9GkKi1Lp6n_In8VZ8fpqAR722OSU-LY57ufz77fIfRG8owbQ9OAmEQEMTiMIONwKSIZSjCaUe5IXI9H6eFJ_Pk0Od1Av7tcGHussrOJzlCrmbQx8l3LKw7wOSFs1_hjEeOD8uP8V2ArSNmd1q6cBvdlFtSeoxvzSR5HenkFy7lmb3gAY79DaVlM9g8DX3EgkLEl1uSE6Igoo3mU6owYIwizHGZMGJkYlkpmRG4jN5GyhcJTprPQMEEMp5FUIo7gvXfQJrP5oj20OShG42-riE-Yw-xKmD99H9LcBh5IUToKGrrmF135gDXMe--ynvPlFZ9O11G0c4PlQ_TA41f8qVW4R2hD14_RVnGdLgcPvb1onqAz0EKQtXlY-KvUvMbnNd4_Ho5TbIuwTZsPeHAOfrTBvFZ43EaFtMJtzkNjpScagH1L_OyEvnOby7lYPkUnt9K3W6hXz2r9DOFUAGrSAGZMEseMiZxpkggNSCWKlAlpH73v-rKSnurcVtyYVm7LnebV3z3fRzsr6XlL8fEfuYEdlpWMJeZ2N2YXPys_z6s8VOB7Qp3GoYqNCAX8bsZh1UaTzOjY9NF2N6iVtxZNda3bffR2NdD_bIw2XWPeOS24scVVUU5onmTPb_7oa3QXplL1ZTg6eoHuU5vf4Y6lb6Pe4uJSvwTUtRCvvDpj9OO2Z9AfRSk5hg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9sCJd0VQi3wADqBUcezYCbe22lVBalmJXalwifyaqmKVrppdofbX41eWLgKExDHJJLLj8cznsecbhF5pWUuAkucEKpUz5zDyWrpLRXWhndGkTSBxPT3jJ3P28bw6v5MLE_khNgE3PzOCvfYTfGkg2vlEOdD4lTsZTwKHizPDO9xvMo3QzvxsevglVJXzoaNSiHTifXjFQnxlyxcFyv4tnHl_3S3lzXe5WGwj1-B6Jg-RHhodT5x8O1iv1IG-_YXP8f969Qg9SMgUH0ZVeozu2e4J2h3_TIRzD5Ml6J-ir06_nKzPsMKftJUdvuzw8emHKce-vNqif4-PLp2H7LHsDJ7GeI81OGYz9F56Zh1kj5TOQeiz9Fmaq5tnaD4Zz45P8lSnIdfM05FKQiwlBqyk3NYEQBHhmd-EAl2B4FqAany8ixpfXp0LWxcgFAFZUm0Uo7to1F119jnCXDk8ZB1MgYoxIVQjLKmUdRiEUgNFmaF3w4i1OpGY-1oaizZsppdNe_fnZej1RnoZyTv-IHfkB38j4ym3w42r64s2zeC2KYzzKoXlrDAMVKFcd2vp1mNlVYNlkKG9QXXaZAf61rPhu0VfRUSG3mzU6beNGZQyQ2-Dgvy1xe14Miubqn7xr1_dQ6PV9druOwS1Ui_TFPkByNgUPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arctic+Ocean+in+CMIP6+Models%3A+Biases+and+Projected+Changes+in+Temperature+and+Salinity&rft.jtitle=Earth%27s+future&rft.au=Narges+Khosravi&rft.au=Qiang+Wang&rft.au=Nikolay+Koldunov&rft.au=Claudia+Hinrichs&rft.date=2022-02-01&rft.pub=Wiley&rft.eissn=2328-4277&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002282&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |