The Arctic Ocean in CMIP6 Models: Biases and Projected Changes in Temperature and Salinity

We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that t...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 10; no. 2
Main Authors Khosravi, Narges, Wang, Qiang, Koldunov, Nikolay, Hinrichs, Claudia, Semmler, Tido, Danilov, Sergey, Jung, Thomas
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.02.2022
Wiley
Subjects
Online AccessGet full text
ISSN2328-4277
2328-4277
DOI10.1029/2021EF002282

Cover

Abstract We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. Plain Language Summary Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area. Key Points A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6 The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty
AbstractList We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area. A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6 The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty
Abstract We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi-model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub-Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models. Plain Language Summary Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area. Key Points A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6 The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty
Author Koldunov, Nikolay
Hinrichs, Claudia
Danilov, Sergey
Khosravi, Narges
Semmler, Tido
Wang, Qiang
Jung, Thomas
Author_xml – sequence: 1
  givenname: Narges
  orcidid: 0000-0001-7886-0236
  surname: Khosravi
  fullname: Khosravi, Narges
  email: narges.khosravi@awi.de
  organization: Helmholtz Centre for Polar and Marine Research (AWI)
– sequence: 2
  givenname: Qiang
  orcidid: 0000-0002-2704-5394
  surname: Wang
  fullname: Wang, Qiang
  email: Qiang.Wang@awi.de
  organization: Pilot National Laboratory for Marine Science and Technology
– sequence: 3
  givenname: Nikolay
  orcidid: 0000-0002-3365-8146
  surname: Koldunov
  fullname: Koldunov, Nikolay
  organization: Center for Marine Environmental Sciences
– sequence: 4
  givenname: Claudia
  orcidid: 0000-0001-5668-9167
  surname: Hinrichs
  fullname: Hinrichs, Claudia
  organization: Helmholtz Centre for Polar and Marine Research (AWI)
– sequence: 5
  givenname: Tido
  orcidid: 0000-0002-2254-4901
  surname: Semmler
  fullname: Semmler, Tido
  organization: Helmholtz Centre for Polar and Marine Research (AWI)
– sequence: 6
  givenname: Sergey
  orcidid: 0000-0001-8098-182X
  surname: Danilov
  fullname: Danilov, Sergey
  organization: Russian Academy of Science
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-2651-1293
  surname: Jung
  fullname: Jung, Thomas
  organization: University of Bremen
BookMark eNp9kcFu1DAQhiNUJErpjQeIxJW09jiJbW5ltUtXatVKLBcu1sQZt16l9uJkVe3b4zaAEAJ8sTX65hvN79fFUYiBiuItZ2ecgT4HBny5YgxAwYviGASoqgYpj357vypOx3HL8tGSiUYeF18391ReJDt5W95YwlD6UC6u17dteR17GsYP5UePI40lhr68TXFLdqK-XNxjuMvVTG_oYUcJp32iZ-gzDj746fCmeOlwGOn0x31SfFktN4vL6urm03pxcVXZmmlVIeckeO8IRUuKO9dxyZtay87ZxsnWStdpDpqJXoFoW0mKOdlxhyBs39XipFjP3j7i1uySf8B0MBG9eS7EdGcw5f0GMpr1vG4ZtTXra9exLg9V2GgJjXJUu-yqZtc-7PDwiMPwS8iZecrZPOVMbs458-9mfpfitz2Nk9nGfQp5XQOtAOCy4TJT72fKpjiOidxfpT8_L-PwB279hJOPYUroh3818bnp0Q90-O8As1xtQDdKfAd2eaeT
CitedBy_id crossref_primary_10_5194_gmd_17_347_2024
crossref_primary_10_1029_2023GL104782
crossref_primary_10_1038_s41558_024_02233_6
crossref_primary_10_1098_rsta_2022_0185
crossref_primary_10_1002_aff2_107
crossref_primary_10_1007_s00376_022_1381_2
crossref_primary_10_1038_s41467_024_52760_1
crossref_primary_10_1029_2024JC021178
crossref_primary_10_1139_facets_2023_0024
crossref_primary_10_3389_fmars_2022_863204
crossref_primary_10_1088_1748_9326_acd568
crossref_primary_10_1007_s00382_023_06986_2
crossref_primary_10_3389_fenvs_2024_1481420
crossref_primary_10_3389_fmars_2023_1211562
crossref_primary_10_3389_fmars_2025_1484609
crossref_primary_10_1029_2023JC020852
crossref_primary_10_1126_sciadv_adq7580
crossref_primary_10_1029_2022GL102077
crossref_primary_10_1038_s43247_025_02028_3
crossref_primary_10_1029_2023EF004393
crossref_primary_10_1007_s00382_024_07142_0
crossref_primary_10_1029_2023GL106499
crossref_primary_10_1038_s43017_022_00345_1
crossref_primary_10_1126_sciadv_abn9755
crossref_primary_10_1016_j_ocemod_2024_102395
crossref_primary_10_1029_2023GL107944
crossref_primary_10_1038_s41467_022_34785_6
crossref_primary_10_5194_gmd_16_2539_2023
crossref_primary_10_1525_elementa_2024_00046
crossref_primary_10_1088_1748_9326_ad0c8a
crossref_primary_10_1029_2024JC020970
crossref_primary_10_1126_sciadv_abn2422
crossref_primary_10_1038_s43017_023_00515_9
crossref_primary_10_1029_2023JC019900
crossref_primary_10_1029_2021GB007187
crossref_primary_10_34133_olar_0013
crossref_primary_10_1007_s00382_024_07105_5
crossref_primary_10_1007_s10584_024_03808_0
Cites_doi 10.1029/2020gl090951
10.1038/ngeo1379
10.1029/2006jc004017
10.1126/science.aag2345
10.1029/2018JC014036
10.1002/2017jc012974
10.1029/2019gl086682
10.5194/gmd-9-3461-2016
10.5194/gmd-11-1229-2018
10.1002/2016gl068323
10.1029/2019ms001954
10.1029/2007jc004158
10.5194/gmd-12-3241-2019
10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
10.1029/2021JC017565
10.1029/2019JC015281
10.1029/2020JC016930
10.1038/s41467-018-07954-9
10.1016/j.ocemod.2015.12.009
10.1126/sciadv.aat6773
10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
10.1126/science.aai8204
10.1038/s41467-021-23321-7
10.1029/2020GL088036
10.1029/94rg01872
10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2
10.1007/s00382-019-04870-6
10.1175/2010JPO4339.1
10.1175/JCLI-D-18-0237.1
10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
10.1007/978-94-011-4132-1_21
10.1029/1999JC900068
10.1002/rog.20017
10.1016/j.ocemod.2016.02.004
10.1029/2019GL086075
10.3389/fmars.2020.00491
10.1029/jc095ic09p16179
10.1175/JPO-D-15-0144.1
10.1007/978-1-4020-6774-7_4
10.1175/BAMS-D-13-00177.1
10.1029/2005GL023740
10.5194/os-10-719-2014
10.1029/2018JC014303
10.5194/os-13-609-2017
10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
10.1016/j.ocemod.2018.10.004
10.1029/2006jc003642
10.3402/tellusa.v56i4.14418
10.5194/os-9-499-2013
10.1007/s00382-019-04840-y
10.1007/s10584-005-9017-y
10.1098/rsta.2014.0159
10.1002/2016JC011898
10.1016/j.ocemod.2015.12.008
10.1029/2006jc003732
10.1029/2020JC016886
10.1357/002224003322005087
ContentType Journal Article
Copyright 2022 The Authors.
2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.1029/2021EF002282
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Journals (Open Access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f
10.1029/2021ef002282
10_1029_2021EF002282
EFT2958
Genre article
GeographicLocations Arctic Ocean
Barents Sea
Arctic region
Fram Strait
GeographicLocations_xml – name: Fram Strait
– name: Barents Sea
– name: Arctic Ocean
– name: Arctic region
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: 274762653
– fundername: European union's Horizon 2020 research and innovation programme
  funderid: 727862 APPLICATE
– fundername: German Helmholtz climate initiative REKLIM
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IAO
PHGZM
PHGZT
PUEGO
7ST
7TG
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c4098-a11e31dfea36e81ffb1715497bfc5f76c7fb912903d823667e80f7b1fa23cdb43
IEDL.DBID DOA
ISSN 2328-4277
IngestDate Wed Aug 27 01:30:43 EDT 2025
Sun Sep 07 11:11:53 EDT 2025
Fri Jul 25 07:19:59 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Oct 01 03:29:16 EDT 2025
Wed Jan 22 16:27:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4098-a11e31dfea36e81ffb1715497bfc5f76c7fb912903d823667e80f7b1fa23cdb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2254-4901
0000-0002-2651-1293
0000-0002-3365-8146
0000-0001-8098-182X
0000-0002-2704-5394
0000-0001-5668-9167
0000-0001-7886-0236
OpenAccessLink https://doaj.org/article/90d1460e640d4fb0bea38a597258fe4f
PQID 2632217517
PQPubID 2034575
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f
unpaywall_primary_10_1029_2021ef002282
proquest_journals_2632217517
crossref_primary_10_1029_2021EF002282
crossref_citationtrail_10_1029_2021EF002282
wiley_primary_10_1029_2021EF002282_EFT2958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1990; 95
2019; 53
2021; 126
2006; 76
2019; 10
2019; 12
2018; 123
2016; 100
2019; 124
2020; 12
2017; 356
2020; 7
2018; 132
2018; 4
2000
2013; 51
2015; 373
2016; 43
2016; 354
2020; 47
2005; 32
2008; 113
2017; 122
2001; 14
2016a; 99
2016; 46
2014; 10
1994; 32
2021; 48
2016b; 99
2019; 32
2015; 96
2002; 32
2008
2016; 121
1999; 104
2010; 40
2007; 112
2021; 12
2017; 13
2004; 56
2019
2018
2000; 81
2013
2003; 61
2018; 11
2012; 5
2016; 9
2001; 31
1981; 11
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Eyring V. (e_1_2_8_10_1) 2016
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Locarnini M. M. (e_1_2_8_24_1) 2018
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Schulzweida U. (e_1_2_8_41_1) 2019
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 32
  start-page: 240
  issue: 1
  year: 2002
  end-page: 264
  article-title: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars
  publication-title: Journal of Physical Oceanography
– volume: 32
  issue: 17
  year: 2005
  article-title: One more step toward a warmer arctic
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 9658
  issue: 12
  year: 2019
  end-page: 9689
  article-title: Analysis of the beaufort gyre freshwater content in 2003–2018
  publication-title: Journal of Geophysical Research: Oceans
– volume: 9
  start-page: 3461
  issue: 9
  year: 2016
  end-page: 3482
  article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6
  publication-title: Geoscientific Model Development
– volume: 14
  start-page: 2079
  issue: 9
  year: 2001
  end-page: 2087
  article-title: Phc: A global ocean hydrography with a high‐quality Arctic Ocean
  publication-title: Journal of Climate
– volume: 40
  start-page: 2743
  issue: 12
  year: 2010
  end-page: 2756
  article-title: Arctic Ocean warming contributes to reduced polar ice cap
  publication-title: Journal of Physical Oceanography
– start-page: 52
  year: 2018
  publication-title: World Ocean Atlas 2018, Volume 1: Temperature
– volume: 13
  start-page: 609
  issue: 4
  year: 2017
  end-page: 622
  article-title: North Atlantic deep water formation and amoc in cmip5 models
  publication-title: Ocean Science
– volume: 99
  start-page: 86
  year: 2016a
  end-page: 109
  article-title: An assessment of the Arctic Ocean in a suite of interannual CORE‐II simulations. Part II: Liquid freshwater
  publication-title: Ocean Modelling
– volume: 112
  issue: C4
  year: 2007
  article-title: Water properties and circulation in Arctic Ocean models
  publication-title: Journal of Geophysical Research
– volume: 113
  issue: C5
  year: 2008
  article-title: Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic water warm anomaly along the Eurasian Basin margins
  publication-title: Journal of Geophysical Research: Oceans
– volume: 112
  issue: C4
  year: 2007
  article-title: Effect of vertical mixing on the Atlantic water layer circulation in the Arctic Ocean
  publication-title: Journal of Geophysical Research: Oceans
– volume: 95
  start-page: 16179
  issue: C9
  year: 1990
  end-page: 16193
  article-title: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station papa and long‐term upper ocean study site
  publication-title: Journal of Geophysical Research
– volume: 126
  issue: 4
  year: 2021
  article-title: Arctic Ocean freshwater in cmip6 ensembles: Declining sea ice, increasing ocean storage and export
  publication-title: Journal of Geophysical Research: Oceans
– volume: 76
  start-page: 241
  issue: 3
  year: 2006
  end-page: 264
  article-title: The Arctic amplification debate
  publication-title: Climatic Change
– volume: 31
  start-page: 1413
  issue: 6
  year: 2001
  end-page: 1426
  article-title: Ocean turbulence. Part I: One‐point closure model—Momentum and heat vertical diffusivities
  publication-title: Journal of Physical Oceanography
– volume: 12
  issue: 10
  year: 2020
  article-title: A primer on the vertical Lagrangian‐remap method in ocean models based on finite volume generalized vertical coordinates
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 11
  start-page: 1229
  issue: 4
  year: 2018
  end-page: 1255
  article-title: A 4.5 km resolution Arctic Ocean simulation with the global multi‐resolution model FESOM 1. 4
  publication-title: Geoscientific Model Development
– volume: 123
  start-page: 9232
  issue: 12
  year: 2018
  end-page: 9244
  article-title: Projected freshening of the Arctic Ocean in the 21st century
  publication-title: Journal of Geophysical Research: Oceans
– volume: 12
  start-page: 3241
  issue: 7
  year: 2019
  end-page: 3281
  article-title: Max Planck institute earth system model (MPI‐ESM1.2) for the high‐resolution model intercomparison project (HighResMIP)
  publication-title: Geoscientific Model Development
– volume: 10
  start-page: 719
  issue: 4
  year: 2014
  end-page: 730
  article-title: Heat loss from the Atlantic water layer in the northern kara sea: Causes and consequences
  publication-title: Ocean Science
– volume: 47
  issue: 12
  year: 2020
  article-title: Cmip6 models predict significant 21st century decline of the atlantic meridional overturning circulation
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 13
  article-title: Arctic amplification is caused by sea‐ice loss under increasing co 2
  publication-title: Nature Communications
– volume: 32
  start-page: 363
  issue: 4
  year: 1994
  end-page: 403
  article-title: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization
  publication-title: Reviews of Geophysics
– volume: 126
  issue: 3
  year: 2021
  article-title: Stronger variability in the Arctic Ocean induced by sea ice decline in a warming climate: Freshwater storage, dynamic sea level and surface circulation
  publication-title: Journal of Geophysical Research: Oceans
– volume: 43
  start-page: 3406
  issue: 7
  year: 2016
  end-page: 3414
  article-title: Eddy‐driven recirculation of Atlantic water in Fram strait
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 5279
  issue: 9–10
  year: 2019
  end-page: 5291
  article-title: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models
  publication-title: Climate Dynamics
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
– volume: 121
  start-page: 3803
  issue: 6
  year: 2016
  end-page: 3819
  article-title: Forum for arctic modeling and observational synthesis (famos): Past, current, and future activities
  publication-title: Journal of Geophysical Research: Oceans
– volume: 104
  start-page: 15621
  issue: C7
  year: 1999
  end-page: 15634
  article-title: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process
  publication-title: Journal of Geophysical Research: Oceans
– volume: 356
  start-page: 285
  issue: 6335
  year: 2017
  end-page: 291
  article-title: Greater role for Atlantic inflows on sea‐ice loss in the Eurasian basin of the Arctic Ocean
  publication-title: Science
– start-page: 65
  year: 2008
  end-page: 85
– volume: 56
  start-page: 328
  issue: 4
  year: 2004
  end-page: 341
  article-title: Arctic climate change: Observed and modelled temperature and sea‐ice variability
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 112
  issue: C4
  year: 2007
  article-title: Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) studies and results
  publication-title: Journal of Geophysical Research: Oceans
– year: 2019
– volume: 122
  start-page: 8385
  issue: 11
  year: 2017
  end-page: 8405
  article-title: Eddy‐resolving simulation of the Atlantic water circulation in the Fram strait with focus on the seasonal cycle
  publication-title: Journal of Geophysical Research: Oceans
– volume: 51
  start-page: 415
  issue: 3
  year: 2013
  end-page: 449
  article-title: The role of the Barents Sea in the arctic climate system
  publication-title: Reviews of Geophysics
– volume: 61
  start-page: 235
  issue: 2
  year: 2003
  end-page: 265
  article-title: A generic length‐scale equation for geophysical turbulence models
  publication-title: Journal of Marine Research
– volume: 100
  start-page: 141
  year: 2016
  end-page: 161
  article-title: An assessment of the Arctic Ocean in a suite of interannual core‐ii simulations. Part iii: Hydrography and fluxes
  publication-title: Ocean Modelling
– volume: 5
  start-page: 194
  issue: 3
  year: 2012
  end-page: 197
  article-title: Western Arctic Ocean freshwater storage increased by wind‐driven spin‐up of the Beaufort gyre
  publication-title: Nature Geoscience
– volume: 132
  start-page: 112
  year: 2018
  end-page: 129
  article-title: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations
  publication-title: Ocean Modelling
– volume: 7
  year: 2020
  article-title: Borealization of the Arctic Ocean in response to anomalous advection from Sub‐arctic seas
  publication-title: Frontiers in Marine Science
– year: 2013
  article-title: Recirculation in the Fram strait and transports of water in and north of the Fram strait derived from CTD data
  publication-title: Ocean Science
– volume: 81
  start-page: 313
  issue: 2
  year: 2000
  end-page: 318
  article-title: The coupled model intercomparison project (cmip)
  publication-title: Bulletin of the American Meteorological Society
– start-page: 503
  year: 2000
  end-page: 532
– volume: 47
  issue: 15
  year: 2020
  article-title: Mechanisms underlying recent arctic Atlantification
  publication-title: Geophysical Research Letters
– volume: 96
  start-page: 2079
  issue: 12
  year: 2015
  end-page: 2105
  article-title: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic
  publication-title: Bulletin of the American Meteorological Society
– volume: 354
  start-page: 747
  issue: 6313
  year: 2016
  end-page: 750
  article-title: Observed arctic sea‐ice loss directly follows anthropogenic CO emission
  publication-title: Science
– volume: 46
  start-page: 1437
  issue: 5
  year: 2016
  end-page: 1456
  article-title: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback
  publication-title: Journal of Physical Oceanography
– volume: 373
  issue: 2045
  year: 2015
  article-title: Arctic sea ice trends, variability and implications for seasonal ice forecasting
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
– volume: 53
  start-page: 4989
  issue: 7–8
  year: 2019
  end-page: 5017
  article-title: Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport
  publication-title: Climate Dynamics
– volume: 4
  issue: 8
  year: 2018
  article-title: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins
  publication-title: Science Advances
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 9
  article-title: The poleward enhanced Arctic Ocean cooling machine in a warming climate
  publication-title: Nature Communications
– volume: 47
  issue: 3
  year: 2020
  article-title: Intensification of the Atlantic water supply to the Arctic Ocean through Fram strait induced by arctic sea ice decline
  publication-title: Geophysical Research Letters
– volume: 99
  start-page: 110
  year: 2016b
  end-page: 132
  article-title: An assessment of the Arctic Ocean in a suite of interannual CORE‐II simulations. Part I: Sea ice and solid freshwater
  publication-title: Ocean Modelling
– volume: 11
  start-page: 1443
  issue: 11
  year: 1981
  end-page: 1451
  article-title: Parameterization of vertical mixing in numerical models of tropical oceans
  publication-title: Journal of Physical Oceanography
– volume: 126
  issue: 10
  year: 2021
  article-title: Atmospheric wind biases: A challenge for simulating the Arctic Ocean in coupled models?
  publication-title: Journal of Geophysical Research: Oceans
– volume: 123
  start-page: 9266
  issue: 12
  year: 2018
  end-page: 9282
  article-title: On the effects of increased vertical mixing on the Arctic Ocean and sea ice
  publication-title: Journal of Geophysical Research: Oceans
– volume: 32
  start-page: 15
  issue: 1
  year: 2019
  end-page: 32
  article-title: Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean
  publication-title: Journal of Climate
– volume: 48
  issue: 10
  year: 2021
  article-title: Nonmonotonic change of the Arctic Ocean freshwater storage capability in a warming climate
  publication-title: Geophysical Research Letters
– ident: e_1_2_8_57_1
  doi: 10.1029/2020gl090951
– ident: e_1_2_8_12_1
  doi: 10.1038/ngeo1379
– ident: e_1_2_8_35_1
  doi: 10.1029/2006jc004017
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aag2345
– ident: e_1_2_8_44_1
  doi: 10.1029/2018JC014036
– ident: e_1_2_8_59_1
  doi: 10.1002/2017jc012974
– start-page: 1937
  volume-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  year: 2016
  ident: e_1_2_8_10_1
– ident: e_1_2_8_56_1
  doi: 10.1029/2019gl086682
– ident: e_1_2_8_29_1
  doi: 10.5194/gmd-9-3461-2016
– ident: e_1_2_8_55_1
  doi: 10.5194/gmd-11-1229-2018
– ident: e_1_2_8_15_1
  doi: 10.1002/2016gl068323
– ident: e_1_2_8_13_1
  doi: 10.1029/2019ms001954
– ident: e_1_2_8_8_1
  doi: 10.1029/2007jc004158
– ident: e_1_2_8_14_1
  doi: 10.5194/gmd-12-3241-2019
– ident: e_1_2_8_48_1
  doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
– ident: e_1_2_8_17_1
  doi: 10.1029/2021JC017565
– ident: e_1_2_8_36_1
  doi: 10.1029/2019JC015281
– ident: e_1_2_8_60_1
  doi: 10.1029/2020JC016930
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-018-07954-9
– ident: e_1_2_8_52_1
  doi: 10.1016/j.ocemod.2015.12.009
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.aat6773
– ident: e_1_2_8_3_1
  doi: 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
– ident: e_1_2_8_33_1
  doi: 10.1126/science.aai8204
– ident: e_1_2_8_45_1
  doi: 10.1038/s41467-021-23321-7
– ident: e_1_2_8_2_1
  doi: 10.1029/2020GL088036
– ident: e_1_2_8_22_1
  doi: 10.1029/94rg01872
– ident: e_1_2_8_4_1
  doi: 10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2
– ident: e_1_2_8_46_1
  doi: 10.1007/s00382-019-04870-6
– ident: e_1_2_8_34_1
  doi: 10.1175/2010JPO4339.1
– ident: e_1_2_8_54_1
  doi: 10.1175/JCLI-D-18-0237.1
– ident: e_1_2_8_30_1
  doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
– ident: e_1_2_8_39_1
  doi: 10.1007/978-94-011-4132-1_21
– ident: e_1_2_8_27_1
  doi: 10.1029/1999JC900068
– volume-title: Cdo user guide
  year: 2019
  ident: e_1_2_8_41_1
– ident: e_1_2_8_47_1
  doi: 10.1002/rog.20017
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ocemod.2016.02.004
– ident: e_1_2_8_58_1
  doi: 10.1029/2019GL086075
– ident: e_1_2_8_31_1
  doi: 10.3389/fmars.2020.00491
– ident: e_1_2_8_11_1
  doi: 10.1029/jc095ic09p16179
– ident: e_1_2_8_20_1
  doi: 10.1175/JPO-D-15-0144.1
– ident: e_1_2_8_40_1
  doi: 10.1007/978-1-4020-6774-7_4
– ident: e_1_2_8_5_1
  doi: 10.1175/BAMS-D-13-00177.1
– ident: e_1_2_8_32_1
  doi: 10.1029/2005GL023740
– ident: e_1_2_8_7_1
  doi: 10.5194/os-10-719-2014
– ident: e_1_2_8_23_1
  doi: 10.1029/2018JC014303
– ident: e_1_2_8_16_1
  doi: 10.5194/os-13-609-2017
– ident: e_1_2_8_26_1
  doi: 10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ocemod.2018.10.004
– ident: e_1_2_8_18_1
  doi: 10.1029/2006jc003642
– ident: e_1_2_8_21_1
  doi: 10.3402/tellusa.v56i4.14418
– ident: e_1_2_8_25_1
  doi: 10.5194/os-9-499-2013
– ident: e_1_2_8_9_1
  doi: 10.1007/s00382-019-04840-y
– ident: e_1_2_8_42_1
  doi: 10.1007/s10584-005-9017-y
– ident: e_1_2_8_43_1
  doi: 10.1098/rsta.2014.0159
– ident: e_1_2_8_37_1
  doi: 10.1002/2016JC011898
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ocemod.2015.12.008
– ident: e_1_2_8_61_1
  doi: 10.1029/2006jc003732
– start-page: 52
  year: 2018
  ident: e_1_2_8_24_1
  publication-title: World Ocean Atlas 2018, Volume 1: Temperature
– ident: e_1_2_8_51_1
  doi: 10.1029/2020JC016886
– ident: e_1_2_8_50_1
  doi: 10.1357/002224003322005087
SSID ssj0000970357
Score 2.4145162
Snippet We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the...
Abstract We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Arctic amplification
Arctic climates
Arctic hydrography
Atlantic water layer
Atlantification
Atmosphere
Bias
Climate change
Climate models
Climatology
CMIP6
Experiments
Heat
Hydrography
Modelling
Ocean circulation
Ocean models
Oceans
Polar environments
Salinity
Salinity effects
Simulation
Temperature
Temperature rise
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_q9UFfxK_iaZV9UB-U4H5ks4kg4pUcVeh56BWKL2E_S-HInc0V6X_vzmZz9UD7mGQgm53ZmV9md36D0CujSuU9KzLqhc7yEDCyUoVLzQ0xwWnyKpK4nsyK49P865k420OzoRYGjlUOPjE6arsykCN_D7ziAT4LKj-tf2XQNQp2V4cWGiq1VrAfI8XYHbTPoKvyCO1P6tn8-zbrQqpg4UKmE_CEVfDzT-tppIFhO7EpUvjv4M67V-1aXf9Wy-Uuko2haPoA3U8YEn_ulf4Q7bn2ETqob0rWwsO0ZrvH6GewhCALtVD4m3GqxRctPjr5Mi8wNEJbdh_w5CLEsg6r1uJ5n5lxFvd1Bx1IL1wA1z35chT6oaCecnP9BJ1O68XRcZY6KmQmB-JQRanj1HqneOFK6r2mEjjapPZGeFkY6XUFmSluoRF6IV1JvNTUK8aN1Tk_QKN21bqnCBc6IBcXAIUXeS6lrqSjQruAFji3nrAxejfMZWMS3Th0vVg2cdubVc3fMz9Gr7fS655m4z9yE1DLVgbIseON1eV5k9ZaUxEb_D9xRU5s7jXR4XNLFf6cmCi9y_0YHQ5KbdKK7Zob-xqjN1tF_3Mwzg-DeRut4NYRN_V0wSpRPrv9pc_RPQaFFfE8-CEabS6v3IsAdzb6ZbLhP9E0-Do
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9sCJd0VQi3wADqBUcezYCbe22lVBalmJXalwifyaqmKVrppdofbX41eWLgKExDHJJLLj8cznsecbhF5pWUuAkucEKpUz5zDyWrpLRXWhndGkTSBxPT3jJ3P28bw6v5MLE_khNgE3PzOCvfYTfGkg2vlEOdD4lTsZTwKHizPDO9xvMo3QzvxsevglVJXzoaNSiHTifXjFQnxlyxcFyv4tnHl_3S3lzXe5WGwj1-B6Jg-RHhodT5x8O1iv1IG-_YXP8f969Qg9SMgUH0ZVeozu2e4J2h3_TIRzD5Ml6J-ir06_nKzPsMKftJUdvuzw8emHKce-vNqif4-PLp2H7LHsDJ7GeI81OGYz9F56Zh1kj5TOQeiz9Fmaq5tnaD4Zz45P8lSnIdfM05FKQiwlBqyk3NYEQBHhmd-EAl2B4FqAany8ixpfXp0LWxcgFAFZUm0Uo7to1F119jnCXDk8ZB1MgYoxIVQjLKmUdRiEUgNFmaF3w4i1OpGY-1oaizZsppdNe_fnZej1RnoZyTv-IHfkB38j4ym3w42r64s2zeC2KYzzKoXlrDAMVKFcd2vp1mNlVYNlkKG9QXXaZAf61rPhu0VfRUSG3mzU6beNGZQyQ2-Dgvy1xe14Miubqn7xr1_dQ6PV9druOwS1Ui_TFPkByNgUPQ
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFA6iD9vL0G2yu6nkYdvDpKxp0qb1TeVe3EB3wSvIXkqS5ohwqWKviP-956S51QvbYI9tDyXN-fXlNOcLY5-dKQ1AViQCcpsoTBhJafDSSpc6DJqyCiSup2fFyYX6eZlfxoIb9cL0_BBDwY08I8RrcnBju0g2QByZuGoX40ngb8EQvCEo8ROzs5oONZa0QnsOZJ-IG8pEZVrHve_4iu8vX7CSlQJ5_wrifHXf3prHBzOfr2LYkIQmm-xNRI_8sFf3Flvz7Vu2PX5uVsOH0Vu7d-w32gDKUhcU_-W8afl1y49Pf0wLTkegzbsDfnSNWazjpm34tK_J-Ib3HQcdSc88wuqedjkInRvqpFw8vmcXk_Hs-CSJZykkThFlqBHCS9GAN7LwpQCwQhM7m7bgctCF02ArqknJho5AL7QvU9BWgMmka6yS22y9vWn9B8YLi5jFI5SAXCmtbaW9yK1HnCBlA2k2YvvLuaxdJBqn8y7mdfjhnVX1y5kfsS-D9G1PsPEXuSNSyyBDtNjhxs3dVR29rK7SBiN_6guVNgpsavFzS4NrpiwvwSsYsZ2lUuvoq11NjPW4MMuFHrGvg6L_OBgPy8F8C1bwzxHX48ksq_Ly4_8If2KvM2qwCPvCd9j64u7e7yLsWdi9YNtP2mTzcw
  priority: 102
  providerName: Wiley-Blackwell
Title The Arctic Ocean in CMIP6 Models: Biases and Projected Changes in Temperature and Salinity
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002282
https://www.proquest.com/docview/2632217517
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021EF002282
https://doaj.org/article/90d1460e640d4fb0bea38a597258fe4f
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: BENPR
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: AVUZU
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Journals (Open Access)
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCyqNioV35ABxAEfErTnrrVlkVpC4R7EqFS2Q7HqnSKq3IVqj_nrGT3e5KPC4c7cxhNDP2fHY83xDy2pncAPAsYaBsIjFhJLnBoRUudbhpiiKSuJ7PsrOF_HShLrZafYU3YT09cG-4D0Xa4GJOfSbTRoJNrTciNwiDucrBSwi7L6axrcNU3IMLjGSlh5fuKS_CIZ-V00j3wndyUKTq38GXD2_aa3P70yyXu4g1ppzpPnk8YEV60uv4hNzz7VNyUN6VpuHHYW12z8h39DjKhpon-tl509LLlp6ef6wyGhqeLbtjOrnEnNVR0za06m9gfEP7-oIuSM89guieZDkKfTWhbnJ1-5wspuX89CwZOickTgaCUMOYF6wBtFXmcwZgmQ5cbNqCU6Azp8EW4QZKNKHheaZ9noK2DAwXrrFSHJC99qr1LwjNLCIUj8ABlJRa20J7pqxHVCBEAykfkfdrW9ZuoBUP3S2Wdfy9zYt62_Ij8mYjfd3TafxBbhLcspEJJNhxAkOjHkKj_ldojMjh2qn1sDK7OvDT4zFMMT0ibzeO_q0yHtbKvItR8FeN63I654XKX_4PzV-RRzyUWcTX4Ydkb_Xjxh8h-FnZMbnPZTUmDyblrPoyjlGPo8WsOvn2C-YZ_m8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEF8ThQF-YDyAImI7iROkCdHRqmVrqaCTJl6CP9GkKi1Lp6n_HH8bZ8fpqAR722OSU-LY57ufz77fIfRKiVxYS7OI2FRGCTiMKBdwKZmKFRhNVngS19E4G5wmn8_Ssy30u82FcccqW5voDbWeKxcjf-d4xQE-p4R_WPyKXNUot7valtAQobSCPvQUYyGx49isrmAJVx8OP8F4H1Da702PBlGoMhCpxJFpCkIMI9oawTKTE2sl4Y63jEurUsszxa0sXLSGaVccPOMmjy2XxArKlJYJg_feQTsAOxjMqp1ubzz5uo7yxAXMqJSHE_cxLVywgfT6nnaGbvhCXzJgA-fuXlYLsboSs9kmcvaur38f3QuYFX9slOwB2jLVQ7TXu06Rg4fBRtSP0HfQPJB1uVf4izKiwucVPhoNJxl2hddm9XvcPQffWWNRaTxpIkFG4ybPoXbSUwNgviF79kLfhMvfXK4eo9Nb6ds9tF3NK_ME4UwCUjIAYGyaJJzLghuSSgPohDFtY9pBb9u-LFWgN3dVNmal32anRfl3z3fQwVp60dB6_Eeu64ZlLePIuP2N-cXPMsztsog1-JvYZEmsEytjCb-bC1ip0TS3JrEdtN8OahksRF1e63MHvV4P9D8bY2zbmDdeC25scdnrT2mR5k9v_uhLtDuYjk7Kk-H4-Bm6S11Shz-Lvo-2lxeX5jlAraV8EfQZox-3PYX-AI9qNUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviK-JwgA_MB5A0WLnwwnShOiWaGWsVNBJ016CP9GkKi1Lp6n_In8VZ8fpqAR722OSU-LY57ufz77fIfRG8owbQ9OAmEQEMTiMIONwKSIZSjCaUe5IXI9H6eFJ_Pk0Od1Av7tcGHussrOJzlCrmbQx8l3LKw7wOSFs1_hjEeOD8uP8V2ArSNmd1q6cBvdlFtSeoxvzSR5HenkFy7lmb3gAY79DaVlM9g8DX3EgkLEl1uSE6Igoo3mU6owYIwizHGZMGJkYlkpmRG4jN5GyhcJTprPQMEEMp5FUIo7gvXfQJrP5oj20OShG42-riE-Yw-xKmD99H9LcBh5IUToKGrrmF135gDXMe--ynvPlFZ9O11G0c4PlQ_TA41f8qVW4R2hD14_RVnGdLgcPvb1onqAz0EKQtXlY-KvUvMbnNd4_Ho5TbIuwTZsPeHAOfrTBvFZ43EaFtMJtzkNjpScagH1L_OyEvnOby7lYPkUnt9K3W6hXz2r9DOFUAGrSAGZMEseMiZxpkggNSCWKlAlpH73v-rKSnurcVtyYVm7LnebV3z3fRzsr6XlL8fEfuYEdlpWMJeZ2N2YXPys_z6s8VOB7Qp3GoYqNCAX8bsZh1UaTzOjY9NF2N6iVtxZNda3bffR2NdD_bIw2XWPeOS24scVVUU5onmTPb_7oa3QXplL1ZTg6eoHuU5vf4Y6lb6Pe4uJSvwTUtRCvvDpj9OO2Z9AfRSk5hg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9sCJd0VQi3wADqBUcezYCbe22lVBalmJXalwifyaqmKVrppdofbX41eWLgKExDHJJLLj8cznsecbhF5pWUuAkucEKpUz5zDyWrpLRXWhndGkTSBxPT3jJ3P28bw6v5MLE_khNgE3PzOCvfYTfGkg2vlEOdD4lTsZTwKHizPDO9xvMo3QzvxsevglVJXzoaNSiHTifXjFQnxlyxcFyv4tnHl_3S3lzXe5WGwj1-B6Jg-RHhodT5x8O1iv1IG-_YXP8f969Qg9SMgUH0ZVeozu2e4J2h3_TIRzD5Ml6J-ir06_nKzPsMKftJUdvuzw8emHKce-vNqif4-PLp2H7LHsDJ7GeI81OGYz9F56Zh1kj5TOQeiz9Fmaq5tnaD4Zz45P8lSnIdfM05FKQiwlBqyk3NYEQBHhmd-EAl2B4FqAany8ixpfXp0LWxcgFAFZUm0Uo7to1F119jnCXDk8ZB1MgYoxIVQjLKmUdRiEUgNFmaF3w4i1OpGY-1oaizZsppdNe_fnZej1RnoZyTv-IHfkB38j4ym3w42r64s2zeC2KYzzKoXlrDAMVKFcd2vp1mNlVYNlkKG9QXXaZAf61rPhu0VfRUSG3mzU6beNGZQyQ2-Dgvy1xe14Miubqn7xr1_dQ6PV9druOwS1Ui_TFPkByNgUPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arctic+Ocean+in+CMIP6+Models%3A+Biases+and+Projected+Changes+in+Temperature+and+Salinity&rft.jtitle=Earth%27s+future&rft.au=Narges+Khosravi&rft.au=Qiang+Wang&rft.au=Nikolay+Koldunov&rft.au=Claudia+Hinrichs&rft.date=2022-02-01&rft.pub=Wiley&rft.eissn=2328-4277&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002282&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90d1460e640d4fb0bea38a597258fe4f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon