Calcium Entry, Calcium Redistribution, and Exocytosis

: At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ chann...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 971; no. 1; pp. 108 - 116
Main Authors CUCHILLO-IBÁÑEZ, INMACULADA, ALBILLOS, ALMUDENA, ALDEA, MARCOS, ARROYO, GLORIA, FUENTEALBA, JORGE, GARCÍA, ANTONIO G.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2002
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
DOI10.1111/j.1749-6632.2002.tb04444.x

Cover

Abstract : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Targeted aequorin and confocal microscopy show that Ca2+ entry through Ca2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca2+ that modulates the release of catecholamine. Targeted aequorins with different Ca2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+ transients ([Ca2+]M) upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]c microdomains at these functional complexes in which the local subplasmalemmal [Ca2+]c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca2+ release.
AbstractList At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.
: At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Targeted aequorin and confocal microscopy show that Ca2+ entry through Ca2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca2+ that modulates the release of catecholamine. Targeted aequorins with different Ca2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+ transients ([Ca2+]M) upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]c microdomains at these functional complexes in which the local subplasmalemmal [Ca2+]c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca2+ release.
A bstract : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration, [Ca 2+ ] c , depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca 2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca 2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Targeted aequorin and confocal microscopy show that Ca 2+ entry through Ca 2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca 2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates the release of catecholamine. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients ([Ca 2+ ] M ) upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains at these functional complexes in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca 2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca 2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca 2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca 2+ release.
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.
Author CUCHILLO-IBÁÑEZ, INMACULADA
ARROYO, GLORIA
ALBILLOS, ALMUDENA
FUENTEALBA, JORGE
GARCÍA, ANTONIO G.
ALDEA, MARCOS
Author_xml – sequence: 1
  givenname: INMACULADA
  surname: CUCHILLO-IBÁÑEZ
  fullname: CUCHILLO-IBÁÑEZ, INMACULADA
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 2
  givenname: ALMUDENA
  surname: ALBILLOS
  fullname: ALBILLOS, ALMUDENA
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 3
  givenname: MARCOS
  surname: ALDEA
  fullname: ALDEA, MARCOS
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 4
  givenname: GLORIA
  surname: ARROYO
  fullname: ARROYO, GLORIA
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 5
  givenname: JORGE
  surname: FUENTEALBA
  fullname: FUENTEALBA, JORGE
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 6
  givenname: ANTONIO G.
  surname: GARCÍA
  fullname: GARCÍA, ANTONIO G.
  email: agg@uam.es
  organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12438100$$D View this record in MEDLINE/PubMed
BookMark eNqVkU1P4zAQhi0EgsLuX1hVe-BEwvgjscMFUCkfEgKJZYU4jRzHkdxNk2Inov33JGrpYU8wl5E17_vY8_qQ7NZNbQn5TSGmfZ3OYipFFqUpZzEDYHGbg-grXu6Q0Xa0S0YAUkYqY_yAHIYwA6BMCblPDigTXFGAEUkmujKum4-ndetXJ-PP45MtXGi9y7vWNfXJWNfFeLpszKptggs_yF6pq2B_bvoR-Xs9fZ7cRvePN3eTy_vICMhU_wxITFGCtUZoCUwYAE5ZYdJcJgWoHBgvM2syATIVoszS1PCSKiWtSnIr-BE5XnMXvnnrbGhx7oKxVaVr23QBJUtVwjPaC39thF0-twUuvJtrv8LPRXvBxVpgfBOCtyUa1-pht9ZrVyEFHLLFGQ4B4hAgDtniJltc9oiz_xDbW75iPl-b311lV99w4sPr5R8KqidEa0L_L3a5JWj_D1PJZYIvDzcontTV80Ci_AP3o6BZ
CitedBy_id crossref_primary_10_1152_ajpcell_00562_2008
crossref_primary_10_1007_s11373_007_9217_8
crossref_primary_10_1016_j_abb_2004_01_012
crossref_primary_10_1016_j_ejphar_2013_02_046
crossref_primary_10_1016_j_lfs_2014_02_041
crossref_primary_10_1016_j_ceca_2006_08_007
crossref_primary_10_1016_j_pneurobio_2021_102157
crossref_primary_10_1111_j_1440_1681_2009_05199_x
crossref_primary_10_1016_j_neuropharm_2006_02_009
crossref_primary_10_1113_jphysiol_2003_058271
crossref_primary_10_1016_j_neuroscience_2008_12_057
crossref_primary_10_1080_07391102_2013_812520
crossref_primary_10_1113_JP273339
crossref_primary_10_1016_j_phrs_2023_106975
Cites_doi 10.1007/s004240050691
10.1016/S0896-6273(00)80510-3
10.1007/s004240050541
10.1152/physrev.1999.79.4.1127
10.1113/jphysiol.1996.sp021524
10.1111/j.1469-7793.1999.001aa.x
10.1038/355827a0
10.1113/jphysiol.1994.sp020184
10.1016/0896-6273(94)90221-6
10.1016/S0896-6273(00)80983-6
10.1006/bbrc.1993.1874
10.1152/physrev.1994.74.3.595
10.1016/S0143-4160(96)90102-5
10.1007/BF00586670
10.1007/s004240050944
10.1016/S0968-0004(97)01143-2
10.1083/jcb.144.2.241
10.1038/35000001
10.1113/jphysiol.1961.sp006791
10.1083/jcb.126.5.1183
10.1126/science.280.5370.1763
10.1152/ajpcell.1997.272.4.C1211
10.1007/s004240050606
10.1126/science.8235595
10.1007/s004240050381
10.1016/0896-6273(94)90050-7
10.1016/0014-5793(93)80815-C
10.1016/0014-5793(94)00696-2
10.1007/BF00373839
10.1083/jcb.136.4.833
10.1126/science.8235626
10.1152/ajpcell.1997.272.2.C476
10.1146/annurev.bi.63.070194.004135
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1749-6632.2002.tb04444.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 116
ExternalDocumentID 12438100
10_1111_j_1749_6632_2002_tb04444_x
NYAS108
ark_67375_WNG_4R8DT749_1
Genre article
Journal Article
Review
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFSWV
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHDLI
AHEFC
AHMBA
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAMDK
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4098-6605cdf0eec4a7024c00312dc6b75d08b023f9ec9407644f966c3f1887e85be43
IEDL.DBID DR2
ISSN 0077-8923
IngestDate Fri Sep 05 13:40:58 EDT 2025
Wed Feb 19 02:34:44 EST 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 03:48:39 EDT 2025
Wed Jan 22 16:50:11 EST 2025
Sun Sep 21 06:18:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4098-6605cdf0eec4a7024c00312dc6b75d08b023f9ec9407644f966c3f1887e85be43
Notes istex:15A044A38DD1C8B7989A4476A3E38D1C0AB83886
ArticleID:NYAS108
ark:/67375/WNG-4R8DT749-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 12438100
PQID 72685391
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_72685391
pubmed_primary_12438100
crossref_citationtrail_10_1111_j_1749_6632_2002_tb04444_x
crossref_primary_10_1111_j_1749_6632_2002_tb04444_x
wiley_primary_10_1111_j_1749_6632_2002_tb04444_x_NYAS108
istex_primary_ark_67375_WNG_4R8DT749_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2002
PublicationDateYYYYMMDD 2002-10-01
PublicationDate_xml – month: 10
  year: 2002
  text: October 2002
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2002
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Albillos, A., A.R. Artalejo, M.G. López, et al. 1994. Ca2+ channel subtypes in cat chromaffin cells. J. Physiol. 477: 197-213.
Rizzuto, R., M. Brini, M. Murgia & T. Pozzan. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744-747.
Hoorigan, F.T. & R.J. Bookman. 1994. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13: 1119-1129.
Ulate, G., J. Scott, J.A. Gonzalez, et al. 2000. Extracellular ATP regulates exocytosis in inhibiting multiple Ca(2+) channel types in bovine chromaffin cells. Pflüg. Arch. 439: 304-314.
Von Ruden, L. & E. Neher. 1993. A Ca2+-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262: 1061-1065.
Mintz, I.M., V.J. Venema, K. Swiderek, et al. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355: 827-829.
Albillos, A., A.G. García & L. Gandía. 1993. ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett. 336: 259-262.
Alonso, M.T., M.J. Barrero, P. Michelena, et al. 1999. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144: 241-254.
Berridge, M. 1998. Neuronal calcium signalling. Neuron 21: 13-26.
Lomax, R.B., P. Michelena, L. Nunez, et al. 1997. Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am. J. Physiol. 272: C476-C484.
Gandía, L., R. Borges, A. Albillos & A.G. García. 1995. Multiple types of calcium channels are present in rat chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 430: 55-63.
Gandía, L., I. Mayorgas, P. Michelena, et al. 1998. Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflüg. Arch. Eur. J. Physiol. 436: 696-704.
Babcock, D.F., J. Herrington, Y.B. Park & B. Hille. 1997. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 136: 833-843.
Pozzan, T., R. Rizzuto, P. Volpe & J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 595-636.
Douglas, W.W. & R.P. Rubin. 1961. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159: 40-57.
Hernández-Guijo, J.M., R. de Pascual, A.G. García & L. Gandía. 1998. Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low- and high-barium solutions. Pflüg. Arch. Eur. J. Physiol. 436: 75-82.
Rizzuto, R., P. Pinton, W. Carrington, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763-1766.
Duchen, M.R. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516: 1-17.
Kitamura, N., T. Ohta, S. Ito & Y. Nakazato. 1997. Calcium channel subtypes in porcine adrenal chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 434: 179-187.
Lara, B., L. Gandía, R. Martínez-Sierra, et al. 1998. Q-type Ca2+ channels are located closer to the secretory sites than L-type channels: functional evidence in chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 435: 472-478.
Neher, E. 1998. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389-399.
Montero, M., M.T. Alonso, E. Carnicero, et al. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2: 57-61.
López, M.G., M. Villarroya, B. Lara, et al. 1994. Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett. 349: 331-337.
Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79: 1127-1155.
Marchetti, C., E. Carbone & H.D. Lux. 1986. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflüg. Arch. 406: 104-111.
Albillos, A., L. Gandía, P. Michelena, et al. 1996. The mechanism of calcium channel facilitation in bovine chromaffin cells. J. Physiol. 494: 687-695.
Olivera, B.M., G. Miljanich, J. Ramachandran & M.E. Adams. 1994. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63: 823-867.
Meldolesi, J. & T. Pozzan. 1998. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23: 10-14.
Llano, I., R. DiPolo & A. Marty. 1994. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12: 663-673.
Cheng, H., M.R. Lederer, R.P. Xiao, et al. 1996. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20: 129-140.
Lara, B., M.G. Lopez, M. Villarroya, et al. 1997. A caffeine-sensitive Ca2+ store modulates K+-evoked secretion in chromaffin cells. Am. J. Physiol. 272: C1211-C1221.
Gandía, L., A. Albillos & A.G. García. 1993. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem. Biophys. Res. Commun. 194: 671-676.
Rizzuto, R., C. Bastianutto, M. Brini, et al. 1994. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126: 1183-1194.
1997; 136
1997; 434
1998; 280
1994; 477
1997; 272
2000; 439
1993; 262
2000; 2
1961; 159
1998; 436
1999; 144
1995; 430
1998; 435
1998; 21
1998; 20
1994; 63
1998; 23
1986; 406
1994; 126
1992; 355
1993; 194
1994; 12
1999; 79
1994; 13
1996; 494
1993; 336
1994; 349
1994; 74
1996; 20
1999; 516
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
References_xml – reference: Neher, E. 1998. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389-399.
– reference: Rizzuto, R., M. Brini, M. Murgia & T. Pozzan. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744-747.
– reference: Hernández-Guijo, J.M., R. de Pascual, A.G. García & L. Gandía. 1998. Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low- and high-barium solutions. Pflüg. Arch. Eur. J. Physiol. 436: 75-82.
– reference: Duchen, M.R. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516: 1-17.
– reference: Rizzuto, R., P. Pinton, W. Carrington, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763-1766.
– reference: Marchetti, C., E. Carbone & H.D. Lux. 1986. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflüg. Arch. 406: 104-111.
– reference: López, M.G., M. Villarroya, B. Lara, et al. 1994. Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett. 349: 331-337.
– reference: Lara, B., L. Gandía, R. Martínez-Sierra, et al. 1998. Q-type Ca2+ channels are located closer to the secretory sites than L-type channels: functional evidence in chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 435: 472-478.
– reference: Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79: 1127-1155.
– reference: Babcock, D.F., J. Herrington, Y.B. Park & B. Hille. 1997. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 136: 833-843.
– reference: Berridge, M. 1998. Neuronal calcium signalling. Neuron 21: 13-26.
– reference: Ulate, G., J. Scott, J.A. Gonzalez, et al. 2000. Extracellular ATP regulates exocytosis in inhibiting multiple Ca(2+) channel types in bovine chromaffin cells. Pflüg. Arch. 439: 304-314.
– reference: Mintz, I.M., V.J. Venema, K. Swiderek, et al. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355: 827-829.
– reference: Cheng, H., M.R. Lederer, R.P. Xiao, et al. 1996. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20: 129-140.
– reference: Gandía, L., I. Mayorgas, P. Michelena, et al. 1998. Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflüg. Arch. Eur. J. Physiol. 436: 696-704.
– reference: Lara, B., M.G. Lopez, M. Villarroya, et al. 1997. A caffeine-sensitive Ca2+ store modulates K+-evoked secretion in chromaffin cells. Am. J. Physiol. 272: C1211-C1221.
– reference: Olivera, B.M., G. Miljanich, J. Ramachandran & M.E. Adams. 1994. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63: 823-867.
– reference: Alonso, M.T., M.J. Barrero, P. Michelena, et al. 1999. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144: 241-254.
– reference: Meldolesi, J. & T. Pozzan. 1998. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23: 10-14.
– reference: Hoorigan, F.T. & R.J. Bookman. 1994. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13: 1119-1129.
– reference: Gandía, L., R. Borges, A. Albillos & A.G. García. 1995. Multiple types of calcium channels are present in rat chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 430: 55-63.
– reference: Pozzan, T., R. Rizzuto, P. Volpe & J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 595-636.
– reference: Albillos, A., L. Gandía, P. Michelena, et al. 1996. The mechanism of calcium channel facilitation in bovine chromaffin cells. J. Physiol. 494: 687-695.
– reference: Douglas, W.W. & R.P. Rubin. 1961. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159: 40-57.
– reference: Gandía, L., A. Albillos & A.G. García. 1993. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem. Biophys. Res. Commun. 194: 671-676.
– reference: Albillos, A., A.R. Artalejo, M.G. López, et al. 1994. Ca2+ channel subtypes in cat chromaffin cells. J. Physiol. 477: 197-213.
– reference: Lomax, R.B., P. Michelena, L. Nunez, et al. 1997. Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am. J. Physiol. 272: C476-C484.
– reference: Rizzuto, R., C. Bastianutto, M. Brini, et al. 1994. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126: 1183-1194.
– reference: Llano, I., R. DiPolo & A. Marty. 1994. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12: 663-673.
– reference: Von Ruden, L. & E. Neher. 1993. A Ca2+-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262: 1061-1065.
– reference: Albillos, A., A.G. García & L. Gandía. 1993. ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett. 336: 259-262.
– reference: Kitamura, N., T. Ohta, S. Ito & Y. Nakazato. 1997. Calcium channel subtypes in porcine adrenal chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 434: 179-187.
– reference: Montero, M., M.T. Alonso, E. Carnicero, et al. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2: 57-61.
– volume: 280
  start-page: 1763
  year: 1998
  end-page: 1766
  article-title: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca responses
  publication-title: Science
– volume: 2
  start-page: 57
  year: 2000
  end-page: 61
  article-title: Chromaffin‐cell stimulation triggers fast millimolar mitochondrial Ca transients that modulate secretion
  publication-title: Nat. Cell Biol.
– volume: 435
  start-page: 472
  year: 1998
  end-page: 478
  article-title: Q‐type Ca channels are located closer to the secretory sites than L‐type channels: functional evidence in chromaffin cells
  publication-title: Pflüg. Arch. Eur. J. Physiol.
– volume: 262
  start-page: 744
  year: 1993
  end-page: 747
  article-title: Microdomains with high Ca close to IP ‐sensitive channels that are sensed by neighboring mitochondria
  publication-title: Science
– volume: 262
  start-page: 1061
  year: 1993
  end-page: 1065
  article-title: A Ca ‐dependent early step in the release of catecholamines from adrenal chromaffin cells
  publication-title: Science
– volume: 20
  start-page: 389
  year: 1998
  end-page: 399
  article-title: Vesicle pools and Ca microdomains: new tools for understanding their roles in neurotransmitter release
  publication-title: Neuron
– volume: 430
  start-page: 55
  year: 1995
  end-page: 63
  article-title: Multiple types of calcium channels are present in rat chromaffin cells
  publication-title: Pflüg. Arch. Eur. J. Physiol.
– volume: 436
  start-page: 696
  year: 1998
  end-page: 704
  article-title: Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells
  publication-title: Pflüg. Arch. Eur. J. Physiol.
– volume: 144
  start-page: 241
  year: 1999
  end-page: 254
  article-title: Ca ‐induced Ca release in chromaffin cells seen from inside the ER with targeted aequorin
  publication-title: J. Cell Biol.
– volume: 136
  start-page: 833
  year: 1997
  end-page: 843
  article-title: Mitochondrial Ca homeostasis in intact cells
  publication-title: J. Cell Biol.
– volume: 406
  start-page: 104
  year: 1986
  end-page: 111
  article-title: Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick
  publication-title: Pflüg. Arch.
– volume: 436
  start-page: 75
  year: 1998
  end-page: 82
  article-title: Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low‐ and high‐barium solutions
  publication-title: Pflüg. Arch. Eur. J. Physiol.
– volume: 21
  start-page: 13
  year: 1998
  end-page: 26
  article-title: Neuronal calcium signalling
  publication-title: Neuron
– volume: 13
  start-page: 1119
  year: 1994
  end-page: 1129
  article-title: Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells
  publication-title: Neuron
– volume: 349
  start-page: 331
  year: 1994
  end-page: 337
  article-title: Q‐ and L‐type Ca channels dominate the control of secretion in bovine chromaffin cells
  publication-title: FEBS Lett.
– volume: 79
  start-page: 1127
  year: 1999
  end-page: 1155
  article-title: Mitochondrial transport of cations: channels, exchangers, and permeability transition
  publication-title: Physiol. Rev.
– volume: 63
  start-page: 823
  year: 1994
  end-page: 867
  article-title: Calcium channel diversity and neurotransmitter release: the ω‐conotoxins and ω‐agatoxins
  publication-title: Annu. Rev. Biochem.
– volume: 336
  start-page: 259
  year: 1993
  end-page: 262
  article-title: ω‐Agatoxin‐IVA‐sensitive calcium channels in bovine chromaffin cells
  publication-title: FEBS Lett.
– volume: 12
  start-page: 663
  year: 1994
  end-page: 673
  article-title: Calcium‐induced calcium release in cerebellar Purkinje cells
  publication-title: Neuron
– volume: 194
  start-page: 671
  year: 1993
  end-page: 676
  article-title: Bovine chromaffin cells possess FTX‐sensitive calcium channels
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 159
  start-page: 40
  year: 1961
  end-page: 57
  article-title: The role of calcium in the secretory response of the adrenal medulla to acetylcholine
  publication-title: J. Physiol.
– volume: 272
  start-page: C1211
  year: 1997
  end-page: C1221
  article-title: A caffeine‐sensitive Ca store modulates K ‐evoked secretion in chromaffin cells
  publication-title: Am. J. Physiol.
– volume: 272
  start-page: C476
  year: 1997
  end-page: C484
  article-title: Different contributions of L‐ and Q‐type Ca channels to Ca signals and secretion in chromaffin cell subtypes
  publication-title: Am. J. Physiol.
– volume: 126
  start-page: 1183
  year: 1994
  end-page: 1194
  article-title: Mitochondrial Ca homeostasis in intact cells
  publication-title: J. Cell Biol.
– volume: 516
  start-page: 1
  year: 1999
  end-page: 17
  article-title: Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death
  publication-title: J. Physiol. (Lond.)
– volume: 477
  start-page: 197
  year: 1994
  end-page: 213
  article-title: Ca channel subtypes in cat chromaffin cells
  publication-title: J. Physiol.
– volume: 74
  start-page: 595
  year: 1994
  end-page: 636
  article-title: Molecular and cellular physiology of intracellular calcium stores
  publication-title: Physiol. Rev.
– volume: 434
  start-page: 179
  year: 1997
  end-page: 187
  article-title: Calcium channel subtypes in porcine adrenal chromaffin cells
  publication-title: Pflüg. Arch. Eur. J. Physiol.
– volume: 355
  start-page: 827
  year: 1992
  end-page: 829
  article-title: P‐type calcium channels blocked by the spider toxin ω‐Aga‐IVA
  publication-title: Nature
– volume: 23
  start-page: 10
  year: 1998
  end-page: 14
  article-title: The endoplasmic reticulum Ca store: a view from the lumen
  publication-title: Trends Biochem. Sci.
– volume: 494
  start-page: 687
  year: 1996
  end-page: 695
  article-title: The mechanism of calcium channel facilitation in bovine chromaffin cells
  publication-title: J. Physiol.
– volume: 20
  start-page: 129
  year: 1996
  end-page: 140
  article-title: Excitation‐contraction coupling in heart: new insights from Ca sparks
  publication-title: Cell Calcium
– volume: 439
  start-page: 304
  year: 2000
  end-page: 314
  article-title: Extracellular ATP regulates exocytosis in inhibiting multiple Ca( ) channel types in bovine chromaffin cells
  publication-title: Pflüg. Arch.
– ident: e_1_2_7_12_2
  doi: 10.1007/s004240050691
– ident: e_1_2_7_24_2
  doi: 10.1016/S0896-6273(00)80510-3
– ident: e_1_2_7_27_2
  doi: 10.1007/s004240050541
– ident: e_1_2_7_34_2
  doi: 10.1152/physrev.1999.79.4.1127
– ident: e_1_2_7_15_2
  doi: 10.1113/jphysiol.1996.sp021524
– ident: e_1_2_7_28_2
  doi: 10.1111/j.1469-7793.1999.001aa.x
– ident: e_1_2_7_14_2
  doi: 10.1038/355827a0
– ident: e_1_2_7_6_2
  doi: 10.1113/jphysiol.1994.sp020184
– ident: e_1_2_7_19_2
  doi: 10.1016/0896-6273(94)90221-6
– ident: e_1_2_7_2_2
  doi: 10.1016/S0896-6273(00)80983-6
– ident: e_1_2_7_10_2
  doi: 10.1006/bbrc.1993.1874
– ident: e_1_2_7_21_2
  doi: 10.1152/physrev.1994.74.3.595
– ident: e_1_2_7_23_2
  doi: 10.1016/S0143-4160(96)90102-5
– ident: e_1_2_7_17_2
  doi: 10.1007/BF00586670
– ident: e_1_2_7_18_2
  doi: 10.1007/s004240050944
– ident: e_1_2_7_22_2
  doi: 10.1016/S0968-0004(97)01143-2
– ident: e_1_2_7_20_2
  doi: 10.1083/jcb.144.2.241
– ident: e_1_2_7_33_2
  doi: 10.1038/35000001
– ident: e_1_2_7_3_2
  doi: 10.1113/jphysiol.1961.sp006791
– ident: e_1_2_7_30_2
  doi: 10.1083/jcb.126.5.1183
– ident: e_1_2_7_32_2
  doi: 10.1126/science.280.5370.1763
– ident: e_1_2_7_25_2
  doi: 10.1152/ajpcell.1997.272.4.C1211
– ident: e_1_2_7_8_2
  doi: 10.1007/s004240050606
– ident: e_1_2_7_29_2
  doi: 10.1126/science.8235595
– ident: e_1_2_7_9_2
  doi: 10.1007/s004240050381
– ident: e_1_2_7_16_2
  doi: 10.1016/0896-6273(94)90050-7
– ident: e_1_2_7_11_2
  doi: 10.1016/0014-5793(93)80815-C
– ident: e_1_2_7_13_2
  doi: 10.1016/0014-5793(94)00696-2
– ident: e_1_2_7_7_2
  doi: 10.1007/BF00373839
– ident: e_1_2_7_31_2
  doi: 10.1083/jcb.136.4.833
– ident: e_1_2_7_4_2
  doi: 10.1126/science.8235626
– ident: e_1_2_7_26_2
  doi: 10.1152/ajpcell.1997.272.2.C476
– ident: e_1_2_7_5_2
  doi: 10.1146/annurev.bi.63.070194.004135
SSID ssj0012847
Score 1.7763199
SecondaryResourceType review_article
Snippet : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory...
A bstract : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration, [Ca 2+ ] c , depend on at least three...
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Animals
Binding Sites
Caffeine - pharmacology
Calcium - metabolism
calcium signal
Catecholamines - metabolism
Cattle
chromaffin cell
Chromaffin Cells - metabolism
Cytoskeleton
Endoplasmic Reticulum - metabolism
Exocytosis
Humans
Kinetics
Models, Biological
Potassium - metabolism
Potassium - pharmacology
Protein Structure, Tertiary
Title Calcium Entry, Calcium Redistribution, and Exocytosis
URI https://api.istex.fr/ark:/67375/WNG-4R8DT749-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2002.tb04444.x
https://www.ncbi.nlm.nih.gov/pubmed/12438100
https://www.proquest.com/docview/72685391
Volume 971
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0077-8923
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1749-6632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012847
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VoEpcKI8C4dH6gKoi4Sixd73eY0STIiRySIOA08q73khRglPhREr49cysHUMqDqVqbpYyfuzOfPONvfsNwKkdMCO41b7BhOAzbqwvtbB-bMIoklhjmJQ2OF93o8sbdnXH78rt0bQXptCHqF64UWQ4vKYAT3S-GuSCSR8zZqEnSe84Gf7qxCibIXffbHuVlpTDYQfLAmEZaU2pQFot63nzVCvZap0Gfv4WFV1lti41dT7Bw_KhihUpo_psquvm6Q-9x__11FuwWXJYr1U43TZ8sNkOfCy6Wi52YLvEi9z7Xopan-0Cv0jGZjh78NrUyeTcWx72aF9w1XXr3Euy1GvPJ2YxneTD_DPcdNr9i0u_bNngG0bKpBFWRzi7DWsNSwTmf0OoEaQm0oKnjVijRwykNRLrSGRiAyy2TDhoItLZmGvLwj1YyyaZPQCPy5jUyBB_WcpsqpMIwcVwaXWQIC8UNZDLqVGm1DOnthpj9aquwbFSNFbUbTNQ5VipeQ3CyvZ3oerxV1bfnAdUJsnjiNbFCa5uuz8V68U_-mTarMHXpYsojFb6BJNkdjLLlQgi5EcS_7FfeM7L5QMnttaoQezm_x33pbr3rV_NRnz476ZHsFG0uaFVisewNn2c2RNkW1P9xUXRMwQlF4A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hEGIvvJbdLc8c0AokUrWpHcfHqhS6C-2hFAEnK3ZcCQEpoq1U-PXM5AVFHACRW6RMEjszn79x7G8Adm2fGcGtdg0OCC7jxrpSC-sGpub7EnMME9EG53bHb52z_5f8cgba-V6YVB-imHCjyEjwmgKcJqSno1ww6eKQmQpK0iQnw6OMlHKOfthRnB52CzWpBIkTYBYIzEhsMg3SYmHPu_eaGq_mqOsn75HRaW6bDE5HSxDnzUrXpNyUxyNdNk9vFB-_rd3LsJjRWKee-t0KzNh4FebTwpaPq7CSQcbQ2ct0rfd_Am-Et-Z6fOc0qZjJgZOfdmlrcFF468AJ48hpTgbmcTQYXg_X4Pyo2Wu03Kxqg2sYiZP6mCDhB65Ya1gokAIYAg4vMr4WPKoEGp2iL62RmEoiGetjvmVq_SqCnQ24tqz2C2bjQWz_gMNlQIJkCMEsYjbSoY_4Yri02guRGooSyPzbKJNJmlNljVv1KrXBvlLUV1Rw01NZX6lJCWqF7X0q7PEhq7-JCxQm4cMNLY0TXF10jhXrBoc9Mq2WYCf3EYUBS39hwtgOxkMlPB8pksQrfqeu8_J4L9Fbq5QgSBzgE--lOlf1s2olWP-66Q4stHrtU3X6r3OyAT_Sqje0aHETZkcPY7uF5Gukt5OQegaTDBuc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hEIjLQnnsdnnlsEIgkapN7Tg-oj5gF7ZCBQR7smLHkSogRbSVyv76nUnSQFEPsCK3SJk87JnP3zj2NwA_bMyM4Fa7BgcEl3FjXamFdQNT932JOYaJaIPz745_es1-3fLbfHs07YXJ9CGKCTeKjBSvKcAfo3g6yAWTLo6YmZ4kzXEyPCrIKBeYj-kWUaRuISaVAnGKywJxGXlNLkFarOuZea-p4WqBWn48i4tOU9t0bGqvwMPkq7IlKXeV0VBXzN83go-f9dmr8CUnsc5x5nUlmLPJGixmZS2f16CUA8bAOchVrQ_XgTfCe9MbPTgtKmVy5ExOu7QxuCi7deSESeS0xn3zPOwPeoMNuG63rhqnbl6zwTWMpEl9TI-we6vWGhYKJACGYMOLjK8Fj6qBRpeIpTUSE0mkYjFmW6Ye1xDqbMC1ZfVNmE_6if0GDpcByZEhALOI2UiHPqKL4dJqL0RiKMogJ12jTC5oTnU17tWrxAbbSlFbUblNT-VtpcZlqBe2j5msx7us9lMPKEzCpztaGCe4uumcKNYNmldkWivD3sRFFIYr_YMJE9sfDZTwfCRIEq_4mnnOy-O9VG2tWoYg7f8PvJfq_Dm-rFWD7_9vugdLF822Ov_ZOduC5azkDa1Y3Ib54dPI7iDzGurdNKD-AQ9LGks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+Entry%2C+Calcium+Redistribution%2C+and+Exocytosis&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=CUCHILLO%E2%80%90IB%C3%81%C3%91EZ%2C+INMACULADA&rft.au=ALBILLOS%2C+ALMUDENA&rft.au=ALDEA%2C+MARCOS&rft.au=ARROYO%2C+GLORIA&rft.date=2002-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=971&rft.issue=1&rft.spage=108&rft.epage=116&rft_id=info:doi/10.1111%2Fj.1749-6632.2002.tb04444.x&rft.externalDBID=10.1111%252Fj.1749-6632.2002.tb04444.x&rft.externalDocID=NYAS108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon