Calcium Entry, Calcium Redistribution, and Exocytosis
: At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ chann...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 971; no. 1; pp. 108 - 116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2002
|
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 |
DOI | 10.1111/j.1749-6632.2002.tb04444.x |
Cover
Abstract | : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Targeted aequorin and confocal microscopy show that Ca2+ entry through Ca2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca2+ that modulates the release of catecholamine. Targeted aequorins with different Ca2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+ transients ([Ca2+]M) upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]c microdomains at these functional complexes in which the local subplasmalemmal [Ca2+]c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca2+ release. |
---|---|
AbstractList | At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release. : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Targeted aequorin and confocal microscopy show that Ca2+ entry through Ca2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca2+ that modulates the release of catecholamine. Targeted aequorins with different Ca2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+ transients ([Ca2+]M) upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]c microdomains at these functional complexes in which the local subplasmalemmal [Ca2+]c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca2+ release. A bstract : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration, [Ca 2+ ] c , depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca 2+ channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High‐voltage activated Ca 2+ channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Targeted aequorin and confocal microscopy show that Ca 2+ entry through Ca 2+ channels can refill the ER to near millimolar concentrations and causes the release of ER Ca 2+ (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates the release of catecholamine. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients ([Ca 2+ ] M ) upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains at these functional complexes in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 μM to about 50 μM. This triggers CICR, mitochondrial Ca 2+ uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca 2+ uptake and drastically increase catecholamine release by 3‐ to 5‐fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready‐release vesicle pool; such transport might be controlled by Ca 2+ redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca 2+ release. At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release. |
Author | CUCHILLO-IBÁÑEZ, INMACULADA ARROYO, GLORIA ALBILLOS, ALMUDENA FUENTEALBA, JORGE GARCÍA, ANTONIO G. ALDEA, MARCOS |
Author_xml | – sequence: 1 givenname: INMACULADA surname: CUCHILLO-IBÁÑEZ fullname: CUCHILLO-IBÁÑEZ, INMACULADA organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain – sequence: 2 givenname: ALMUDENA surname: ALBILLOS fullname: ALBILLOS, ALMUDENA organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain – sequence: 3 givenname: MARCOS surname: ALDEA fullname: ALDEA, MARCOS organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain – sequence: 4 givenname: GLORIA surname: ARROYO fullname: ARROYO, GLORIA organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain – sequence: 5 givenname: JORGE surname: FUENTEALBA fullname: FUENTEALBA, JORGE organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain – sequence: 6 givenname: ANTONIO G. surname: GARCÍA fullname: GARCÍA, ANTONIO G. email: agg@uam.es organization: Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12438100$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkU1P4zAQhi0EgsLuX1hVe-BEwvgjscMFUCkfEgKJZYU4jRzHkdxNk2Inov33JGrpYU8wl5E17_vY8_qQ7NZNbQn5TSGmfZ3OYipFFqUpZzEDYHGbg-grXu6Q0Xa0S0YAUkYqY_yAHIYwA6BMCblPDigTXFGAEUkmujKum4-ndetXJ-PP45MtXGi9y7vWNfXJWNfFeLpszKptggs_yF6pq2B_bvoR-Xs9fZ7cRvePN3eTy_vICMhU_wxITFGCtUZoCUwYAE5ZYdJcJgWoHBgvM2syATIVoszS1PCSKiWtSnIr-BE5XnMXvnnrbGhx7oKxVaVr23QBJUtVwjPaC39thF0-twUuvJtrv8LPRXvBxVpgfBOCtyUa1-pht9ZrVyEFHLLFGQ4B4hAgDtniJltc9oiz_xDbW75iPl-b311lV99w4sPr5R8KqidEa0L_L3a5JWj_D1PJZYIvDzcontTV80Ci_AP3o6BZ |
CitedBy_id | crossref_primary_10_1152_ajpcell_00562_2008 crossref_primary_10_1007_s11373_007_9217_8 crossref_primary_10_1016_j_abb_2004_01_012 crossref_primary_10_1016_j_ejphar_2013_02_046 crossref_primary_10_1016_j_lfs_2014_02_041 crossref_primary_10_1016_j_ceca_2006_08_007 crossref_primary_10_1016_j_pneurobio_2021_102157 crossref_primary_10_1111_j_1440_1681_2009_05199_x crossref_primary_10_1016_j_neuropharm_2006_02_009 crossref_primary_10_1113_jphysiol_2003_058271 crossref_primary_10_1016_j_neuroscience_2008_12_057 crossref_primary_10_1080_07391102_2013_812520 crossref_primary_10_1113_JP273339 crossref_primary_10_1016_j_phrs_2023_106975 |
Cites_doi | 10.1007/s004240050691 10.1016/S0896-6273(00)80510-3 10.1007/s004240050541 10.1152/physrev.1999.79.4.1127 10.1113/jphysiol.1996.sp021524 10.1111/j.1469-7793.1999.001aa.x 10.1038/355827a0 10.1113/jphysiol.1994.sp020184 10.1016/0896-6273(94)90221-6 10.1016/S0896-6273(00)80983-6 10.1006/bbrc.1993.1874 10.1152/physrev.1994.74.3.595 10.1016/S0143-4160(96)90102-5 10.1007/BF00586670 10.1007/s004240050944 10.1016/S0968-0004(97)01143-2 10.1083/jcb.144.2.241 10.1038/35000001 10.1113/jphysiol.1961.sp006791 10.1083/jcb.126.5.1183 10.1126/science.280.5370.1763 10.1152/ajpcell.1997.272.4.C1211 10.1007/s004240050606 10.1126/science.8235595 10.1007/s004240050381 10.1016/0896-6273(94)90050-7 10.1016/0014-5793(93)80815-C 10.1016/0014-5793(94)00696-2 10.1007/BF00373839 10.1083/jcb.136.4.833 10.1126/science.8235626 10.1152/ajpcell.1997.272.2.C476 10.1146/annurev.bi.63.070194.004135 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.1749-6632.2002.tb04444.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 116 |
ExternalDocumentID | 12438100 10_1111_j_1749_6632_2002_tb04444_x NYAS108 ark_67375_WNG_4R8DT749_1 |
Genre | article Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AELAQ AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFSWV AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHDLI AHEFC AHMBA AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHHS AAMDK ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4098-6605cdf0eec4a7024c00312dc6b75d08b023f9ec9407644f966c3f1887e85be43 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 |
IngestDate | Fri Sep 05 13:40:58 EDT 2025 Wed Feb 19 02:34:44 EST 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 03:48:39 EDT 2025 Wed Jan 22 16:50:11 EST 2025 Sun Sep 21 06:18:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4098-6605cdf0eec4a7024c00312dc6b75d08b023f9ec9407644f966c3f1887e85be43 |
Notes | istex:15A044A38DD1C8B7989A4476A3E38D1C0AB83886 ArticleID:NYAS108 ark:/67375/WNG-4R8DT749-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 12438100 |
PQID | 72685391 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_72685391 pubmed_primary_12438100 crossref_citationtrail_10_1111_j_1749_6632_2002_tb04444_x crossref_primary_10_1111_j_1749_6632_2002_tb04444_x wiley_primary_10_1111_j_1749_6632_2002_tb04444_x_NYAS108 istex_primary_ark_67375_WNG_4R8DT749_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2002 |
PublicationDateYYYYMMDD | 2002-10-01 |
PublicationDate_xml | – month: 10 year: 2002 text: October 2002 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2002 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Albillos, A., A.R. Artalejo, M.G. López, et al. 1994. Ca2+ channel subtypes in cat chromaffin cells. J. Physiol. 477: 197-213. Rizzuto, R., M. Brini, M. Murgia & T. Pozzan. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744-747. Hoorigan, F.T. & R.J. Bookman. 1994. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13: 1119-1129. Ulate, G., J. Scott, J.A. Gonzalez, et al. 2000. Extracellular ATP regulates exocytosis in inhibiting multiple Ca(2+) channel types in bovine chromaffin cells. Pflüg. Arch. 439: 304-314. Von Ruden, L. & E. Neher. 1993. A Ca2+-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262: 1061-1065. Mintz, I.M., V.J. Venema, K. Swiderek, et al. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355: 827-829. Albillos, A., A.G. García & L. Gandía. 1993. ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett. 336: 259-262. Alonso, M.T., M.J. Barrero, P. Michelena, et al. 1999. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144: 241-254. Berridge, M. 1998. Neuronal calcium signalling. Neuron 21: 13-26. Lomax, R.B., P. Michelena, L. Nunez, et al. 1997. Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am. J. Physiol. 272: C476-C484. Gandía, L., R. Borges, A. Albillos & A.G. García. 1995. Multiple types of calcium channels are present in rat chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 430: 55-63. Gandía, L., I. Mayorgas, P. Michelena, et al. 1998. Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflüg. Arch. Eur. J. Physiol. 436: 696-704. Babcock, D.F., J. Herrington, Y.B. Park & B. Hille. 1997. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 136: 833-843. Pozzan, T., R. Rizzuto, P. Volpe & J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 595-636. Douglas, W.W. & R.P. Rubin. 1961. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159: 40-57. Hernández-Guijo, J.M., R. de Pascual, A.G. García & L. Gandía. 1998. Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low- and high-barium solutions. Pflüg. Arch. Eur. J. Physiol. 436: 75-82. Rizzuto, R., P. Pinton, W. Carrington, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763-1766. Duchen, M.R. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516: 1-17. Kitamura, N., T. Ohta, S. Ito & Y. Nakazato. 1997. Calcium channel subtypes in porcine adrenal chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 434: 179-187. Lara, B., L. Gandía, R. Martínez-Sierra, et al. 1998. Q-type Ca2+ channels are located closer to the secretory sites than L-type channels: functional evidence in chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 435: 472-478. Neher, E. 1998. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389-399. Montero, M., M.T. Alonso, E. Carnicero, et al. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2: 57-61. López, M.G., M. Villarroya, B. Lara, et al. 1994. Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett. 349: 331-337. Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79: 1127-1155. Marchetti, C., E. Carbone & H.D. Lux. 1986. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflüg. Arch. 406: 104-111. Albillos, A., L. Gandía, P. Michelena, et al. 1996. The mechanism of calcium channel facilitation in bovine chromaffin cells. J. Physiol. 494: 687-695. Olivera, B.M., G. Miljanich, J. Ramachandran & M.E. Adams. 1994. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63: 823-867. Meldolesi, J. & T. Pozzan. 1998. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23: 10-14. Llano, I., R. DiPolo & A. Marty. 1994. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12: 663-673. Cheng, H., M.R. Lederer, R.P. Xiao, et al. 1996. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20: 129-140. Lara, B., M.G. Lopez, M. Villarroya, et al. 1997. A caffeine-sensitive Ca2+ store modulates K+-evoked secretion in chromaffin cells. Am. J. Physiol. 272: C1211-C1221. Gandía, L., A. Albillos & A.G. García. 1993. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem. Biophys. Res. Commun. 194: 671-676. Rizzuto, R., C. Bastianutto, M. Brini, et al. 1994. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126: 1183-1194. 1997; 136 1997; 434 1998; 280 1994; 477 1997; 272 2000; 439 1993; 262 2000; 2 1961; 159 1998; 436 1999; 144 1995; 430 1998; 435 1998; 21 1998; 20 1994; 63 1998; 23 1986; 406 1994; 126 1992; 355 1993; 194 1994; 12 1999; 79 1994; 13 1996; 494 1993; 336 1994; 349 1994; 74 1996; 20 1999; 516 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 |
References_xml | – reference: Neher, E. 1998. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389-399. – reference: Rizzuto, R., M. Brini, M. Murgia & T. Pozzan. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744-747. – reference: Hernández-Guijo, J.M., R. de Pascual, A.G. García & L. Gandía. 1998. Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low- and high-barium solutions. Pflüg. Arch. Eur. J. Physiol. 436: 75-82. – reference: Duchen, M.R. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516: 1-17. – reference: Rizzuto, R., P. Pinton, W. Carrington, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763-1766. – reference: Marchetti, C., E. Carbone & H.D. Lux. 1986. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflüg. Arch. 406: 104-111. – reference: López, M.G., M. Villarroya, B. Lara, et al. 1994. Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett. 349: 331-337. – reference: Lara, B., L. Gandía, R. Martínez-Sierra, et al. 1998. Q-type Ca2+ channels are located closer to the secretory sites than L-type channels: functional evidence in chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 435: 472-478. – reference: Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79: 1127-1155. – reference: Babcock, D.F., J. Herrington, Y.B. Park & B. Hille. 1997. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 136: 833-843. – reference: Berridge, M. 1998. Neuronal calcium signalling. Neuron 21: 13-26. – reference: Ulate, G., J. Scott, J.A. Gonzalez, et al. 2000. Extracellular ATP regulates exocytosis in inhibiting multiple Ca(2+) channel types in bovine chromaffin cells. Pflüg. Arch. 439: 304-314. – reference: Mintz, I.M., V.J. Venema, K. Swiderek, et al. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355: 827-829. – reference: Cheng, H., M.R. Lederer, R.P. Xiao, et al. 1996. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20: 129-140. – reference: Gandía, L., I. Mayorgas, P. Michelena, et al. 1998. Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflüg. Arch. Eur. J. Physiol. 436: 696-704. – reference: Lara, B., M.G. Lopez, M. Villarroya, et al. 1997. A caffeine-sensitive Ca2+ store modulates K+-evoked secretion in chromaffin cells. Am. J. Physiol. 272: C1211-C1221. – reference: Olivera, B.M., G. Miljanich, J. Ramachandran & M.E. Adams. 1994. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63: 823-867. – reference: Alonso, M.T., M.J. Barrero, P. Michelena, et al. 1999. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144: 241-254. – reference: Meldolesi, J. & T. Pozzan. 1998. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23: 10-14. – reference: Hoorigan, F.T. & R.J. Bookman. 1994. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13: 1119-1129. – reference: Gandía, L., R. Borges, A. Albillos & A.G. García. 1995. Multiple types of calcium channels are present in rat chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 430: 55-63. – reference: Pozzan, T., R. Rizzuto, P. Volpe & J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 595-636. – reference: Albillos, A., L. Gandía, P. Michelena, et al. 1996. The mechanism of calcium channel facilitation in bovine chromaffin cells. J. Physiol. 494: 687-695. – reference: Douglas, W.W. & R.P. Rubin. 1961. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159: 40-57. – reference: Gandía, L., A. Albillos & A.G. García. 1993. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem. Biophys. Res. Commun. 194: 671-676. – reference: Albillos, A., A.R. Artalejo, M.G. López, et al. 1994. Ca2+ channel subtypes in cat chromaffin cells. J. Physiol. 477: 197-213. – reference: Lomax, R.B., P. Michelena, L. Nunez, et al. 1997. Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am. J. Physiol. 272: C476-C484. – reference: Rizzuto, R., C. Bastianutto, M. Brini, et al. 1994. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126: 1183-1194. – reference: Llano, I., R. DiPolo & A. Marty. 1994. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12: 663-673. – reference: Von Ruden, L. & E. Neher. 1993. A Ca2+-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262: 1061-1065. – reference: Albillos, A., A.G. García & L. Gandía. 1993. ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett. 336: 259-262. – reference: Kitamura, N., T. Ohta, S. Ito & Y. Nakazato. 1997. Calcium channel subtypes in porcine adrenal chromaffin cells. Pflüg. Arch. Eur. J. Physiol. 434: 179-187. – reference: Montero, M., M.T. Alonso, E. Carnicero, et al. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2: 57-61. – volume: 280 start-page: 1763 year: 1998 end-page: 1766 article-title: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca responses publication-title: Science – volume: 2 start-page: 57 year: 2000 end-page: 61 article-title: Chromaffin‐cell stimulation triggers fast millimolar mitochondrial Ca transients that modulate secretion publication-title: Nat. Cell Biol. – volume: 435 start-page: 472 year: 1998 end-page: 478 article-title: Q‐type Ca channels are located closer to the secretory sites than L‐type channels: functional evidence in chromaffin cells publication-title: Pflüg. Arch. Eur. J. Physiol. – volume: 262 start-page: 744 year: 1993 end-page: 747 article-title: Microdomains with high Ca close to IP ‐sensitive channels that are sensed by neighboring mitochondria publication-title: Science – volume: 262 start-page: 1061 year: 1993 end-page: 1065 article-title: A Ca ‐dependent early step in the release of catecholamines from adrenal chromaffin cells publication-title: Science – volume: 20 start-page: 389 year: 1998 end-page: 399 article-title: Vesicle pools and Ca microdomains: new tools for understanding their roles in neurotransmitter release publication-title: Neuron – volume: 430 start-page: 55 year: 1995 end-page: 63 article-title: Multiple types of calcium channels are present in rat chromaffin cells publication-title: Pflüg. Arch. Eur. J. Physiol. – volume: 436 start-page: 696 year: 1998 end-page: 704 article-title: Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells publication-title: Pflüg. Arch. Eur. J. Physiol. – volume: 144 start-page: 241 year: 1999 end-page: 254 article-title: Ca ‐induced Ca release in chromaffin cells seen from inside the ER with targeted aequorin publication-title: J. Cell Biol. – volume: 136 start-page: 833 year: 1997 end-page: 843 article-title: Mitochondrial Ca homeostasis in intact cells publication-title: J. Cell Biol. – volume: 406 start-page: 104 year: 1986 end-page: 111 article-title: Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick publication-title: Pflüg. Arch. – volume: 436 start-page: 75 year: 1998 end-page: 82 article-title: Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low‐ and high‐barium solutions publication-title: Pflüg. Arch. Eur. J. Physiol. – volume: 21 start-page: 13 year: 1998 end-page: 26 article-title: Neuronal calcium signalling publication-title: Neuron – volume: 13 start-page: 1119 year: 1994 end-page: 1129 article-title: Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells publication-title: Neuron – volume: 349 start-page: 331 year: 1994 end-page: 337 article-title: Q‐ and L‐type Ca channels dominate the control of secretion in bovine chromaffin cells publication-title: FEBS Lett. – volume: 79 start-page: 1127 year: 1999 end-page: 1155 article-title: Mitochondrial transport of cations: channels, exchangers, and permeability transition publication-title: Physiol. Rev. – volume: 63 start-page: 823 year: 1994 end-page: 867 article-title: Calcium channel diversity and neurotransmitter release: the ω‐conotoxins and ω‐agatoxins publication-title: Annu. Rev. Biochem. – volume: 336 start-page: 259 year: 1993 end-page: 262 article-title: ω‐Agatoxin‐IVA‐sensitive calcium channels in bovine chromaffin cells publication-title: FEBS Lett. – volume: 12 start-page: 663 year: 1994 end-page: 673 article-title: Calcium‐induced calcium release in cerebellar Purkinje cells publication-title: Neuron – volume: 194 start-page: 671 year: 1993 end-page: 676 article-title: Bovine chromaffin cells possess FTX‐sensitive calcium channels publication-title: Biochem. Biophys. Res. Commun. – volume: 159 start-page: 40 year: 1961 end-page: 57 article-title: The role of calcium in the secretory response of the adrenal medulla to acetylcholine publication-title: J. Physiol. – volume: 272 start-page: C1211 year: 1997 end-page: C1221 article-title: A caffeine‐sensitive Ca store modulates K ‐evoked secretion in chromaffin cells publication-title: Am. J. Physiol. – volume: 272 start-page: C476 year: 1997 end-page: C484 article-title: Different contributions of L‐ and Q‐type Ca channels to Ca signals and secretion in chromaffin cell subtypes publication-title: Am. J. Physiol. – volume: 126 start-page: 1183 year: 1994 end-page: 1194 article-title: Mitochondrial Ca homeostasis in intact cells publication-title: J. Cell Biol. – volume: 516 start-page: 1 year: 1999 end-page: 17 article-title: Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death publication-title: J. Physiol. (Lond.) – volume: 477 start-page: 197 year: 1994 end-page: 213 article-title: Ca channel subtypes in cat chromaffin cells publication-title: J. Physiol. – volume: 74 start-page: 595 year: 1994 end-page: 636 article-title: Molecular and cellular physiology of intracellular calcium stores publication-title: Physiol. Rev. – volume: 434 start-page: 179 year: 1997 end-page: 187 article-title: Calcium channel subtypes in porcine adrenal chromaffin cells publication-title: Pflüg. Arch. Eur. J. Physiol. – volume: 355 start-page: 827 year: 1992 end-page: 829 article-title: P‐type calcium channels blocked by the spider toxin ω‐Aga‐IVA publication-title: Nature – volume: 23 start-page: 10 year: 1998 end-page: 14 article-title: The endoplasmic reticulum Ca store: a view from the lumen publication-title: Trends Biochem. Sci. – volume: 494 start-page: 687 year: 1996 end-page: 695 article-title: The mechanism of calcium channel facilitation in bovine chromaffin cells publication-title: J. Physiol. – volume: 20 start-page: 129 year: 1996 end-page: 140 article-title: Excitation‐contraction coupling in heart: new insights from Ca sparks publication-title: Cell Calcium – volume: 439 start-page: 304 year: 2000 end-page: 314 article-title: Extracellular ATP regulates exocytosis in inhibiting multiple Ca( ) channel types in bovine chromaffin cells publication-title: Pflüg. Arch. – ident: e_1_2_7_12_2 doi: 10.1007/s004240050691 – ident: e_1_2_7_24_2 doi: 10.1016/S0896-6273(00)80510-3 – ident: e_1_2_7_27_2 doi: 10.1007/s004240050541 – ident: e_1_2_7_34_2 doi: 10.1152/physrev.1999.79.4.1127 – ident: e_1_2_7_15_2 doi: 10.1113/jphysiol.1996.sp021524 – ident: e_1_2_7_28_2 doi: 10.1111/j.1469-7793.1999.001aa.x – ident: e_1_2_7_14_2 doi: 10.1038/355827a0 – ident: e_1_2_7_6_2 doi: 10.1113/jphysiol.1994.sp020184 – ident: e_1_2_7_19_2 doi: 10.1016/0896-6273(94)90221-6 – ident: e_1_2_7_2_2 doi: 10.1016/S0896-6273(00)80983-6 – ident: e_1_2_7_10_2 doi: 10.1006/bbrc.1993.1874 – ident: e_1_2_7_21_2 doi: 10.1152/physrev.1994.74.3.595 – ident: e_1_2_7_23_2 doi: 10.1016/S0143-4160(96)90102-5 – ident: e_1_2_7_17_2 doi: 10.1007/BF00586670 – ident: e_1_2_7_18_2 doi: 10.1007/s004240050944 – ident: e_1_2_7_22_2 doi: 10.1016/S0968-0004(97)01143-2 – ident: e_1_2_7_20_2 doi: 10.1083/jcb.144.2.241 – ident: e_1_2_7_33_2 doi: 10.1038/35000001 – ident: e_1_2_7_3_2 doi: 10.1113/jphysiol.1961.sp006791 – ident: e_1_2_7_30_2 doi: 10.1083/jcb.126.5.1183 – ident: e_1_2_7_32_2 doi: 10.1126/science.280.5370.1763 – ident: e_1_2_7_25_2 doi: 10.1152/ajpcell.1997.272.4.C1211 – ident: e_1_2_7_8_2 doi: 10.1007/s004240050606 – ident: e_1_2_7_29_2 doi: 10.1126/science.8235595 – ident: e_1_2_7_9_2 doi: 10.1007/s004240050381 – ident: e_1_2_7_16_2 doi: 10.1016/0896-6273(94)90050-7 – ident: e_1_2_7_11_2 doi: 10.1016/0014-5793(93)80815-C – ident: e_1_2_7_13_2 doi: 10.1016/0014-5793(94)00696-2 – ident: e_1_2_7_7_2 doi: 10.1007/BF00373839 – ident: e_1_2_7_31_2 doi: 10.1083/jcb.136.4.833 – ident: e_1_2_7_4_2 doi: 10.1126/science.8235626 – ident: e_1_2_7_26_2 doi: 10.1152/ajpcell.1997.272.2.C476 – ident: e_1_2_7_5_2 doi: 10.1146/annurev.bi.63.070194.004135 |
SSID | ssj0012847 |
Score | 1.7763199 |
SecondaryResourceType | review_article |
Snippet | : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration, [Ca2+]c, depend on at least three efficient regulatory... A bstract : At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration, [Ca 2+ ] c , depend on at least three... At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Animals Binding Sites Caffeine - pharmacology Calcium - metabolism calcium signal Catecholamines - metabolism Cattle chromaffin cell Chromaffin Cells - metabolism Cytoskeleton Endoplasmic Reticulum - metabolism Exocytosis Humans Kinetics Models, Biological Potassium - metabolism Potassium - pharmacology Protein Structure, Tertiary |
Title | Calcium Entry, Calcium Redistribution, and Exocytosis |
URI | https://api.istex.fr/ark:/67375/WNG-4R8DT749-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2002.tb04444.x https://www.ncbi.nlm.nih.gov/pubmed/12438100 https://www.proquest.com/docview/72685391 |
Volume | 971 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0077-8923 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1749-6632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012847 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VoEpcKI8C4dH6gKoi4Sixd73eY0STIiRySIOA08q73khRglPhREr49cysHUMqDqVqbpYyfuzOfPONvfsNwKkdMCO41b7BhOAzbqwvtbB-bMIoklhjmJQ2OF93o8sbdnXH78rt0bQXptCHqF64UWQ4vKYAT3S-GuSCSR8zZqEnSe84Gf7qxCibIXffbHuVlpTDYQfLAmEZaU2pQFot63nzVCvZap0Gfv4WFV1lti41dT7Bw_KhihUpo_psquvm6Q-9x__11FuwWXJYr1U43TZ8sNkOfCy6Wi52YLvEi9z7Xopan-0Cv0jGZjh78NrUyeTcWx72aF9w1XXr3Euy1GvPJ2YxneTD_DPcdNr9i0u_bNngG0bKpBFWRzi7DWsNSwTmf0OoEaQm0oKnjVijRwykNRLrSGRiAyy2TDhoItLZmGvLwj1YyyaZPQCPy5jUyBB_WcpsqpMIwcVwaXWQIC8UNZDLqVGm1DOnthpj9aquwbFSNFbUbTNQ5VipeQ3CyvZ3oerxV1bfnAdUJsnjiNbFCa5uuz8V68U_-mTarMHXpYsojFb6BJNkdjLLlQgi5EcS_7FfeM7L5QMnttaoQezm_x33pbr3rV_NRnz476ZHsFG0uaFVisewNn2c2RNkW1P9xUXRMwQlF4A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hEGIvvJbdLc8c0AokUrWpHcfHqhS6C-2hFAEnK3ZcCQEpoq1U-PXM5AVFHACRW6RMEjszn79x7G8Adm2fGcGtdg0OCC7jxrpSC-sGpub7EnMME9EG53bHb52z_5f8cgba-V6YVB-imHCjyEjwmgKcJqSno1ww6eKQmQpK0iQnw6OMlHKOfthRnB52CzWpBIkTYBYIzEhsMg3SYmHPu_eaGq_mqOsn75HRaW6bDE5HSxDnzUrXpNyUxyNdNk9vFB-_rd3LsJjRWKee-t0KzNh4FebTwpaPq7CSQcbQ2ct0rfd_Am-Et-Z6fOc0qZjJgZOfdmlrcFF468AJ48hpTgbmcTQYXg_X4Pyo2Wu03Kxqg2sYiZP6mCDhB65Ya1gokAIYAg4vMr4WPKoEGp2iL62RmEoiGetjvmVq_SqCnQ24tqz2C2bjQWz_gMNlQIJkCMEsYjbSoY_4Yri02guRGooSyPzbKJNJmlNljVv1KrXBvlLUV1Rw01NZX6lJCWqF7X0q7PEhq7-JCxQm4cMNLY0TXF10jhXrBoc9Mq2WYCf3EYUBS39hwtgOxkMlPB8pksQrfqeu8_J4L9Fbq5QgSBzgE--lOlf1s2olWP-66Q4stHrtU3X6r3OyAT_Sqje0aHETZkcPY7uF5Gukt5OQegaTDBuc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hEIjLQnnsdnnlsEIgkapN7Tg-oj5gF7ZCBQR7smLHkSogRbSVyv76nUnSQFEPsCK3SJk87JnP3zj2NwA_bMyM4Fa7BgcEl3FjXamFdQNT932JOYaJaIPz745_es1-3fLbfHs07YXJ9CGKCTeKjBSvKcAfo3g6yAWTLo6YmZ4kzXEyPCrIKBeYj-kWUaRuISaVAnGKywJxGXlNLkFarOuZea-p4WqBWn48i4tOU9t0bGqvwMPkq7IlKXeV0VBXzN83go-f9dmr8CUnsc5x5nUlmLPJGixmZS2f16CUA8bAOchVrQ_XgTfCe9MbPTgtKmVy5ExOu7QxuCi7deSESeS0xn3zPOwPeoMNuG63rhqnbl6zwTWMpEl9TI-we6vWGhYKJACGYMOLjK8Fj6qBRpeIpTUSE0mkYjFmW6Ye1xDqbMC1ZfVNmE_6if0GDpcByZEhALOI2UiHPqKL4dJqL0RiKMogJ12jTC5oTnU17tWrxAbbSlFbUblNT-VtpcZlqBe2j5msx7us9lMPKEzCpztaGCe4uumcKNYNmldkWivD3sRFFIYr_YMJE9sfDZTwfCRIEq_4mnnOy-O9VG2tWoYg7f8PvJfq_Dm-rFWD7_9vugdLF822Ov_ZOduC5azkDa1Y3Ib54dPI7iDzGurdNKD-AQ9LGks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+Entry%2C+Calcium+Redistribution%2C+and+Exocytosis&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=CUCHILLO%E2%80%90IB%C3%81%C3%91EZ%2C+INMACULADA&rft.au=ALBILLOS%2C+ALMUDENA&rft.au=ALDEA%2C+MARCOS&rft.au=ARROYO%2C+GLORIA&rft.date=2002-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=971&rft.issue=1&rft.spage=108&rft.epage=116&rft_id=info:doi/10.1111%2Fj.1749-6632.2002.tb04444.x&rft.externalDBID=10.1111%252Fj.1749-6632.2002.tb04444.x&rft.externalDocID=NYAS108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |