IDENTIFYING A SEPSIS SUBPHENOTYPE CHARACTERIZED BY DYSREGULATED LIPOPROTEIN METABOLISM USING A SIMPLIFIED CLINICAL DATA ALGORITHM

Background: Cholesterol metabolism is dysregulated in sepsis contributing to patient heterogeneity. Subphenotypes displaying lower lipoprotein levels and higher mortality (previously subphenotyped hypolipoprotein phenotype [HYPO]) or higher lipoprotein levels and lower mortality (previously subpheno...

Full description

Saved in:
Bibliographic Details
Published inShock (Augusta, Ga.) Vol. 64; no. 2; p. 218
Main Authors Labilloy, Guillaume, Tanaka, Sébastien, Black, Lauren Page, Augustin, Beulah, Hopson, Charlotte, Bethencourt, Joanne, Wu, Dongyuan, Sulaiman, Dawoud, Bertrand, Andrew, Salomão, Reinaldo, Graim, Kiley, Datta, Susmita, Reddy, Srinivasa, Guirgis, Faheem W, Hofmaenner, Daniel A
Format Journal Article
LanguageEnglish
Published United States 01.08.2025
Subjects
Online AccessGet full text
ISSN1540-0514
1073-2322
1540-0514
DOI10.1097/SHK.0000000000002605

Cover

Abstract Background: Cholesterol metabolism is dysregulated in sepsis contributing to patient heterogeneity. Subphenotypes displaying lower lipoprotein levels and higher mortality (previously subphenotyped hypolipoprotein phenotype [HYPO]) or higher lipoprotein levels and lower mortality (previously subphenotyped normolipoprotein phenotype [NORMO]) were described. We developed a simplified clinical algorithm for bedside subphenotype recognition. Methods: We analyzed data from four prospective studies (internal dataset), focusing on HYPO and NORMO subphenotypes. A 1,000-tree random forest classifier and logistic regression models were built, using clinical features to predict subphenotypes. Performance was evaluated by comparing predictions to actual subphenotypes derived from a machine learning model. The model was applied to an external dataset of 281 patients from three French studies. Results: The internal cohort consisted of 386 patients (median age, 63 years; 46% female). Four clinical features (hepatic SOFA, cardiovascular SOFA, low [low-density lipoprotein cholesterol {LDL-C}] and high-density lipoprotein cholesterol [high-density lipoprotein cholesterol {HDL-C}]) predicted HYPO versus NORMO subphenotypes with an area under the receiver operating characteristic curve of 0.86, a sensitivity of 0.771, and a specificity of 0.779. In the internal dataset, 28-day mortality for HYPO versus NORMO patients was 26% versus 15%, and in the external cohort, 30% versus 10%. HYPO internal versus external dataset LDL-C levels were similar ( P = 0.99), but HDL-C ( P = 0.02) levels were different. Median NORMO internal versus external dataset LDL-C ( P = 0.99) and HDL-C ( P = 0.12) levels were similar. HYPO patients had lower LDL-C, HDL-C and total cholesterol than NORMO patients in both internal and external datasets. Conclusions: Our simplified clinical data algorithm may allow for bedside recognition of septic patients displaying lipid dysregulation subphenotypes. External validation is needed to verify these results.
AbstractList Background: Cholesterol metabolism is dysregulated in sepsis contributing to patient heterogeneity. Subphenotypes displaying lower lipoprotein levels and higher mortality (previously subphenotyped hypolipoprotein phenotype [HYPO]) or higher lipoprotein levels and lower mortality (previously subphenotyped normolipoprotein phenotype [NORMO]) were described. We developed a simplified clinical algorithm for bedside subphenotype recognition. Methods: We analyzed data from four prospective studies (internal dataset), focusing on HYPO and NORMO subphenotypes. A 1,000-tree random forest classifier and logistic regression models were built, using clinical features to predict subphenotypes. Performance was evaluated by comparing predictions to actual subphenotypes derived from a machine learning model. The model was applied to an external dataset of 281 patients from three French studies. Results: The internal cohort consisted of 386 patients (median age, 63 years; 46% female). Four clinical features (hepatic SOFA, cardiovascular SOFA, low [low-density lipoprotein cholesterol {LDL-C}] and high-density lipoprotein cholesterol [high-density lipoprotein cholesterol {HDL-C}]) predicted HYPO versus NORMO subphenotypes with an area under the receiver operating characteristic curve of 0.86, a sensitivity of 0.771, and a specificity of 0.779. In the internal dataset, 28-day mortality for HYPO versus NORMO patients was 26% versus 15%, and in the external cohort, 30% versus 10%. HYPO internal versus external dataset LDL-C levels were similar ( P = 0.99), but HDL-C ( P = 0.02) levels were different. Median NORMO internal versus external dataset LDL-C ( P = 0.99) and HDL-C ( P = 0.12) levels were similar. HYPO patients had lower LDL-C, HDL-C and total cholesterol than NORMO patients in both internal and external datasets. Conclusions: Our simplified clinical data algorithm may allow for bedside recognition of septic patients displaying lipid dysregulation subphenotypes. External validation is needed to verify these results.
Author Reddy, Srinivasa
Bethencourt, Joanne
Hofmaenner, Daniel A
Guirgis, Faheem W
Tanaka, Sébastien
Black, Lauren Page
Wu, Dongyuan
Sulaiman, Dawoud
Bertrand, Andrew
Graim, Kiley
Labilloy, Guillaume
Augustin, Beulah
Hopson, Charlotte
Salomão, Reinaldo
Datta, Susmita
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Labilloy
  fullname: Labilloy, Guillaume
  organization: UF Health Jacksonville, Center for Data Solutions, Jacksonville, Florida
– sequence: 2
  givenname: Sébastien
  surname: Tanaka
  fullname: Tanaka, Sébastien
– sequence: 3
  givenname: Lauren Page
  surname: Black
  fullname: Black, Lauren Page
  organization: Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
– sequence: 4
  givenname: Beulah
  surname: Augustin
  fullname: Augustin, Beulah
  organization: Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
– sequence: 5
  givenname: Charlotte
  surname: Hopson
  fullname: Hopson, Charlotte
  organization: Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
– sequence: 6
  givenname: Joanne
  surname: Bethencourt
  fullname: Bethencourt, Joanne
  organization: Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
– sequence: 7
  givenname: Dongyuan
  surname: Wu
  fullname: Wu, Dongyuan
  organization: Department of Biostatistics, University of Florida School of Public Health and Health Professions, Gainesville, Florida
– sequence: 8
  givenname: Dawoud
  surname: Sulaiman
  fullname: Sulaiman, Dawoud
  organization: Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California
– sequence: 9
  givenname: Andrew
  surname: Bertrand
  fullname: Bertrand, Andrew
  organization: Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
– sequence: 10
  givenname: Reinaldo
  surname: Salomão
  fullname: Salomão, Reinaldo
  organization: Laboratory of Sepsis Research (LPS), Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
– sequence: 11
  givenname: Kiley
  surname: Graim
  fullname: Graim, Kiley
  organization: University of Florida College of Engineering, Department of Computer and Information Science and Engineering, Gainesville, Florida
– sequence: 12
  givenname: Susmita
  surname: Datta
  fullname: Datta, Susmita
  organization: Department of Biostatistics, University of Florida School of Public Health and Health Professions, Gainesville, Florida
– sequence: 13
  givenname: Srinivasa
  surname: Reddy
  fullname: Reddy, Srinivasa
  organization: Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California
– sequence: 14
  givenname: Faheem W
  surname: Guirgis
  fullname: Guirgis, Faheem W
  organization: Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
– sequence: 15
  givenname: Daniel A
  orcidid: 0000-0002-9334-7753
  surname: Hofmaenner
  fullname: Hofmaenner, Daniel A
  organization: Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40267485$$D View this record in MEDLINE/PubMed
BookMark eNpdkMluwjAURa2KqkDbP6gq_wDUcZxpaRJDrDqDYmeRbqIMRh2AIiJUseyfNwhaob7Fe_dJ597FHYPB5nOjAXgw0NRAnvMkw-cpuhhsI-sKjAyLoAmyDDK40EMw7rr3niGm59yAIelph7jWCHzzgMWKzwseLyCFkqWSSyjzWRqyOFFFyqAf0oz6imX8hQVwVsCgkBlb5IKq_hc8TdIsUYzHMGKKzhLBZQRzeQ7kUSr4nPekL3jMfSpgQBWFVCySjKswugPXy2rV6fvzvQX5nCk_nIhkccQnDUGeddyWWTvYrkhr47ZFZuugGruN52nbbdq6tXSz1MjUXuWiZUWIobHh4rbGROMevwXWKXe_2VaHr2q1Kre7t3W1O5QGKo-Vlt3rR_m_0t73ePJt9_Vat3-m3w7NHxW-acY
ContentType Journal Article
Copyright Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.
Copyright_xml – notice: Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.1097/SHK.0000000000002605
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1540-0514
ExternalDocumentID 10.1097/shk.0000000000002605
40267485
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM133815
GroupedDBID ---
.-D
.XZ
.Z2
123
5VS
71W
AAAAV
AAHPQ
AAIQE
AAJCS
AAMTA
AARTV
AASCR
AAYEP
ABASU
ABBUW
ABDIG
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZZY
ACDDN
ACEWG
ACGFO
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADGGA
ADHPY
AEBDS
AENEX
AFBFQ
AFDTB
AFEXH
AFNMH
AHQNM
AHQVU
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EEVPB
EIF
EX3
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
H0~
HLJTE
IKREB
IN~
K8S
KD2
N9A
NPM
ODMTH
OHYEH
OK1
OLG
OPUJH
OVD
OVDNE
OXXIT
P2P
RIG
RLZ
S4S
TEORI
TSPGW
V2I
W2D
W3M
WOQ
WOW
ZFV
2WC
53G
ABZAD
ACBKD
ADFPA
ADKSD
ADNKB
ADTOC
AE3
AEETU
AJNYG
BS7
DUNZO
EJD
JK3
JK8
N~M
OCUKA
ODA
ORVUJ
OUVQU
P-K
R58
S4R
UNPAY
X3V
X3W
ZGI
ZXP
ZZMQN
ID FETCH-LOGICAL-c4095-c4053b726a4d62dd03d70b28c99e68cdbd5ecfe03e9a80fa441e2182db24e2d03
IEDL.DBID UNPAY
ISSN 1540-0514
1073-2322
IngestDate Sun Oct 26 05:15:19 EDT 2025
Fri Aug 01 03:41:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords LDL-C—low-density lipoprotein cholesterol
CI—confidence interval
HDL-C—high-density lipoprotein cholesterol
lipids
NORMO—previously subphenotyped normolipoprotein phenotype
subphenotyping
IQR—interquartile range
LOS—length of stay
SOFA—sequential organ failure assessment
AUC—area under the receiver operating characteristic curve
HYPO—previously subphenotyped hypolipoprotein phenotype
Sepsis
cholesterol
REDCap—Research Electronic Data Capture Database
lipid dysregulation
ICU—intensive care unit
lipoproteins
Language English
License Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4095-c4053b726a4d62dd03d70b28c99e68cdbd5ecfe03e9a80fa441e2182db24e2d03
ORCID 0000-0002-9334-7753
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1097/shk.0000000000002605
PMID 40267485
ParticipantIDs unpaywall_primary_10_1097_shk_0000000000002605
pubmed_primary_40267485
PublicationCentury 2000
PublicationDate 20250800
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Shock (Augusta, Ga.)
PublicationTitleAlternate Shock
PublicationYear 2025
SSID ssj0024397
Score 2.4542556
Snippet Background: Cholesterol metabolism is dysregulated in sepsis contributing to patient heterogeneity. Subphenotypes displaying lower lipoprotein levels and...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 218
SubjectTerms Aged
Algorithms
Cholesterol, HDL - blood
Female
Humans
Lipoproteins - metabolism
Male
Middle Aged
Phenotype
Prospective Studies
Sepsis - blood
Sepsis - metabolism
Title IDENTIFYING A SEPSIS SUBPHENOTYPE CHARACTERIZED BY DYSREGULATED LIPOPROTEIN METABOLISM USING A SIMPLIFIED CLINICAL DATA ALGORITHM
URI https://www.ncbi.nlm.nih.gov/pubmed/40267485
https://doi.org/10.1097/shk.0000000000002605
UnpaywallVersion publishedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFD44fdhedmE3d5E87HF1rk16eRSdyJgibIJ7kqSJs1jbYitD3_bPl_QiThhsfSiUtiEkpz1fcr7zHYA7wgSVazQsvzSDaJgwpQFpMU23qKps7ig3o9gWfbM7xM8jMirBfZEL8yN-71gP8XSWSQzmh4Lfe1AxiUTeZagM-4Pme0YrNDQJDtLgpor1K1nvIlPul2a2fM7-Mojo6pP6_pZz6RxBr-hWximZ1ZcJq7vrHcXGv_b7GA5zlImamVmcQEkEp_CVJeWmiU2IolcRxV6M5J9D0bxCtReLWhv55rXgiK1QeyVdaFqtXl6_eFGY6jp4AeqJRJqP78VzlLIOVIOeYqdPJKZFudqoj9o0oajpf4QLL5nOz2DYeXprdbW8AoPmynUfUWdiMEs3KeamznnD4FaD6bbrOMK0Xc44Ee5ENAzhULsxoRJbCSUJz5mOhS4fP4dyEAbiEhAlXKePVDXLMTcwZRI7WVSiOcO1HW5U4SKbjXGUyWyMsSqOhW1ShfpmejY3i9i5HOfx7jhf_feFazjQVVnflNd3A-VksRS3EmskrAZ7_UGvlhvaN63qywk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFA5OH7aXXdjN3cjDHlfX5dLLo-hExpTBJrgnSZo4i7UttjL0bf98SS_ihMHWh0JpG0Jy2vMl5zvfAeCWcsnUGo2oLw1Tg1CuNSBtbiCb6crmrnYzmm3Rt7oD8jSkwwq4K3NhfsTvXfs-mUxzicHi0PB7B9QsqpB3FdQG_Zfme04rxIYCB1lwU8f6tax3mSn3SzMbPmd3EcZs-cmCYMO5dA5Ar-xWzimZNhYpb3irLcXGv_b7EOwXKBM2c7M4AhUZHoOvPCk3S2yCDL7KOPETqP4cmuYV6b1Y2FrLN6-kgHwJ20vlQrNq9er62Y-jTNfBD2FPpsp8Aj-ZwYx1oBv0NTt9rDAtLNRGA9hmKYPN4COa--lkdgIGnce3VtcoKjAYnlr3UX2mmNvIYkRYSAgTC9vkyPFcV1qOJ7ig0htLE0uXOeaYKWwltSS84IhIpB4_BdUwCuU5gIwKxB6YblYQgQnjCjvZTKE57DmuwHVwls_GKM5lNkZEF8ciDq2Dxnp61jfL2Lka59H2OF_894VLsId0Wd-M13cFqul8Ia8V1kj5TWFi3_Dayf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+a+Sepsis+Subphenotype+Characterized+by+Dysregulated+Lipoprotein+Metabolism+Using+a+Simplified+Clinical+Data+Algorithm&rft.jtitle=Shock+%28Augusta%2C+Ga.%29&rft.date=2025-08-01&rft.issn=1540-0514&rft_id=info:doi/10.1097%2Fshk.0000000000002605&rft.externalDocID=10.1097%2Fshk.0000000000002605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-0514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-0514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-0514&client=summon