Brain Networks That Track Musical Structure
: As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depen...
Saved in:
| Published in | Annals of the New York Academy of Sciences Vol. 1060; no. 1; pp. 111 - 124 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2005
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0077-8923 1749-6632 |
| DOI | 10.1196/annals.1360.008 |
Cover
| Abstract | : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network. |
|---|---|
| AbstractList | : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network. As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network. As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network. A bstract : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network. |
| Author | JANATA, PETR |
| Author_xml | – sequence: 1 givenname: PETR surname: JANATA fullname: JANATA, PETR email: pjanata@ucdavis.edu organization: Center for Mind and Brain, University of California, Davis, Davis, California 95616, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16597758$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1P3DAQQK0K1F0-zr1VOfWCssw4sSc5blcFWsFWhUWoJ8vrOGq62YTajoB_j1GAQyXEyXN4b0Z-e2yn6zvL2CeEGWIpj3XX6dbPMJMwAyg-sClSXqZSZnyHTQGI0qLk2YTtef8XAHmR00c2QSlKIlFM2dFXp5suWdpw17uNT1Z_dEhWTptNcjH4xug2uQpuMGFw9oDt1vGaPXx-99n1ybfV4iw9_3n6fTE_T00OJaZVTUZUxEmTrKq1rjRxyNclSMAsTqIuTWbrorZa2AK45AC8NkIaiXUuTLbPvox7b13_b7A-qG3jjW1b3dl-8IoABVL843sgEvKSuIjg52dwWG9tpW5ds9XuQb10iIAYAeN6752tlWmCDk3fhdinVQjqqbcae6un3ir2jt7xf97r6jeNfDTumtY-vIer5e_5FSJGLR21xgd7_6ppt1GSMhLqZnmqzgTmi5sfv9Rl9gidTqHl |
| CitedBy_id | crossref_primary_10_1146_annurev_neuro_110920_013544 crossref_primary_10_1089_brain_2016_0428 crossref_primary_10_1016_j_jad_2016_10_022 crossref_primary_10_3390_brainsci5010069 crossref_primary_10_1007_s10695_009_9324_8 crossref_primary_10_1016_j_neuroimage_2011_11_019 crossref_primary_10_1093_cercor_bhx257 crossref_primary_10_1177_0305735614548500 crossref_primary_10_1002_ajp_22999 crossref_primary_10_3109_10673229_2011_549769 crossref_primary_10_1038_s41598_019_54060_x crossref_primary_10_1016_j_neubiorev_2011_06_005 crossref_primary_10_1007_s00108_022_01445_2 crossref_primary_10_1093_cercor_bhp008 crossref_primary_10_5937_Engrami1801028P crossref_primary_10_1016_j_neuropsychologia_2016_08_012 crossref_primary_10_1080_09658210701734593 crossref_primary_10_1080_17513472_2023_2281895 crossref_primary_10_1007_s00429_013_0504_z crossref_primary_10_1024_1661_4747_57_3_195 crossref_primary_10_3389_fnagi_2016_00134 crossref_primary_10_1093_cercor_bhq198 crossref_primary_10_1152_jn_00828_2007 crossref_primary_10_1016_j_neuroimage_2013_05_001 crossref_primary_10_1371_journal_pone_0021458 crossref_primary_10_1080_09658211_2023_2166078 crossref_primary_10_1038_s41598_018_35172_2 crossref_primary_10_3390_ijerph192316285 crossref_primary_10_1002_hbm_22029 crossref_primary_10_1017_S1041610217001867 |
| Cites_doi | 10.1162/08989290260138672 10.1038/nn1082 10.1007/978-3-642-85213-8 10.2307/40285676 10.1093/cercor/9.7.697 10.1523/JNEUROSCI.14-04-01908.1994 10.1162/jocn.1995.7.2.153 10.1016/j.neuroimage.2004.10.013 10.1126/science.1088545 10.1016/S0013-4694(97)00119-3 10.1037/0033-295X.89.4.334 10.1073/pnas.0135058100 10.1111/j.1469-8986.1992.tb01686.x 10.1038/87502 10.1038/7299 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V 10.1038/nrn1343 10.1162/089892902760807212 10.1006/nimg.2001.1008 10.1111/1469-8986.3810133 10.1016/S0304-3940(02)01196-5 10.1016/S0926-6410(02)00245-8 10.1073/pnas.071043098 10.1073/pnas.98.2.676 10.1525/mp.2003.20.3.283 10.1111/j.1469-7793.2000.t01-1-00259.x 10.55782/ane-2003-1453 10.1016/j.neuroimage.2003.08.016 10.1073/pnas.130177397 10.1016/S1053-8119(03)00287-8 10.1016/j.mehy.2004.09.005 10.1016/j.tics.2005.03.010 10.1016/S0304-3940(99)00836-8 10.1016/S1053-8119(03)00224-6 10.1038/nn1083 10.3758/CABN.2.2.121 10.1016/S0926-6410(00)00069-0 10.1006/nimg.2002.1144 10.1016/S0024-3205(00)00807-9 10.1016/j.conb.2005.03.005 10.1126/science.1076262 10.1007/s002210000401 10.1006/nimg.2002.1154 10.1111/j.1460-9568.2005.03981.x 10.1037/0096-1523.21.6.1278 10.1111/j.1469-8986.1987.tb01853.x 10.1016/S0926-6410(02)00138-6 10.1016/j.cogbrainres.2003.12.005 10.1037/1196-1961.51.4.336 10.1073/pnas.0504136102 10.1068/p3312 10.1162/089892900562183 10.1093/acprof:oso/9780198566427.003.0009 10.1162/089892901564298 10.1162/089892998563121 10.1523/JNEUROSCI.23-03-00994.2003 |
| ContentType | Journal Article |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
| DOI | 10.1196/annals.1360.008 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology Music |
| EISSN | 1749-6632 |
| EndPage | 124 |
| ExternalDocumentID | 16597758 10_1196_annals_1360_008 NYAS111 ark_67375_WNG_H514CWJQ_R |
| Genre | article Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P50 NS17778-18 – fundername: NIDCD NIH HHS grantid: R03 DC05146-01 |
| GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AELAQ AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFSWV AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHDLI AHEFC AHMBA AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION AAHHS AAMDK ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM WRC WUP 7TK 7X8 |
| ID | FETCH-LOGICAL-c4091-df7c5d727a76ddbada7204b9060132045f9c3ef8fea5e80262002fc56c61f45c3 |
| IEDL.DBID | DR2 |
| ISSN | 0077-8923 |
| IngestDate | Fri Sep 05 14:03:26 EDT 2025 Thu Sep 04 16:44:52 EDT 2025 Wed Feb 19 01:48:50 EST 2025 Wed Oct 01 02:11:18 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Aug 20 07:26:35 EDT 2025 Sun Sep 21 06:18:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4091-df7c5d727a76ddbada7204b9060132045f9c3ef8fea5e80262002fc56c61f45c3 |
| Notes | istex:2204CF79B8114BFB00A49C5A6E3A729E47C733B7 ark:/67375/WNG-H514CWJQ-R ArticleID:NYAS111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
| PMID | 16597758 |
| PQID | 17129725 |
| PQPubID | 23462 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_70151766 proquest_miscellaneous_17129725 pubmed_primary_16597758 crossref_citationtrail_10_1196_annals_1360_008 crossref_primary_10_1196_annals_1360_008 wiley_primary_10_1196_annals_1360_008_NYAS111 istex_primary_ark_67375_WNG_H514CWJQ_R |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2005 |
| PublicationDateYYYYMMDD | 2005-12-01 |
| PublicationDate_xml | – month: 12 year: 2005 text: December 2005 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: United States |
| PublicationTitle | Annals of the New York Academy of Sciences |
| PublicationTitleAlternate | Ann N Y Acad Sci |
| PublicationYear | 2005 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Janata, P. 1995. ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci. 7: 153-164. Halgren, E., K. Marinkovic & P. Chauvel. 1998. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106: 156-164. Kelley, W.M., C.N. Macrae, C.L. Wyland, et al. 2002. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14: 785-794. Peretz, I. & M. Coltheart. 2003. Modularity of music processing. Nat. Neurosci. 6: 688-691. Maess, B., S. Koelsch, T. C. Gunter, et al. 2001. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4: 540-545. Volkow, N.D., G.J. Wang, J.S. Fowler, et al. 2000. Increased activity of the temporal insula in subjects with bradycardia. Life Sci. 67: 2213-2220. Koelsch, S. 2005. Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol. 15: 207-212. Gaab, N., C. Gaser, T. Zaehle, et al. 2003. Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling. Neuroimage 19: 1417-1426. Patel, A.D., E. Gibson, J. Ratner, et al. 1998. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10: 717-733. Koelsch, S., T.C. Gunter, D.Y. von Cramon, et al. 2002. Bach speaks: a cortical "language-network" serves the processing of music. Neuroimage 17: 956-966. Koechlin, E., G. Corrado, P. Pietrini, et al. 2000. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. USA 97: 7651-7656. Besson, M. & F. Macar. 1987. An event-related potential analysis of incongruity in music and other nonlinguistic contexts. Psychophysiology 24: 14-25. Gusnard, D. A., E. Akbudak, G. L. Shulman, et al. 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 4259-4264. Janata, P., J. L. Birk, B. Tillmann, et al. 2003. Online detection of tonal pop-out in modulating contexts. Mus. Percept. 20: 283-305. Halpern, A.R. & R.J. Zatorre. 1999. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebr. Cortex 9: 697-704. Kiehl, K.A., K.R. Laurens, T.L. Duty, et al. 2001. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38: 133-142. Koelsch, S., T. Gunter, A.D. Friederici, et al. 2000. Brain indices of music processing: "nonmusicians" are musical. J. Cogn. Neurosci. 12: 520-541. Beisteiner, R., M. Erdler, D. Mayer, et al. 1999. A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians. Neurosci. Lett. 277: 37-40. Schubotz, R.I. & D.Y. von Cramon. 2002. Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI. Brain Res. Cogn. Brain Res. 14: 357-369. Critchley, H.D., P. Rotshtein, Y. Nagai, et al. 2005. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24: 751-762. Krumhansl, C.L. & E.J. Kessler. 1982. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89: 334-368. Zysset, S., O. Huber, A. Samson, et al. 2003. Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects. Neurosci. Lett. 335: 183-186. Blood, A.J., R.J. Zatorre, P. Bermudez, et al. 1999. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2: 382-387. Zatorre, R. J., A. C. Evans & E. Meyer. 1994. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14: 1908-1919. Grezes, J. & J. Decety. 2001. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12: 1-19. Meister, I.G., T. Krings, H. Foltys, et al. 2004. Playing piano in the mind: an fMRI study on music imagery and performance in pianists. Cogn. Brain Res. 19: 219-228. Janata, P., J.L. Birk, J.D. Van Horn, et al. 2002. The cortical topography of tonal structures underlying Western music. Science 298: 2167-2170. Patel, A.D. 1998. Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus. Percept. 16: 27-42. Ramnani, N. & A.M. Owen. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5: 184-194. Kuniecki, M., A. Urbanik, B. Sobiecka, et al. 2003. Central control of heart rate changes during visual affective processing as revealed by fMRI. Acta Neurobiol. Exp. 63: 39-48. Greicius, M.D., B. Krasnow, A.L. Reiss, et al. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100: 253-258. Janata, P., B. Tillmann & J.J. Bharucha. 2002. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2: 121-140. Fuster, J.M. 2000. Executive frontal functions. Exp. Brain Res. 133: 66-70. Raichle, M.E., A.M. MacLeod, A.Z. Snyder, et al. 2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 676-682. Schubotz, R.I. & D.Y. von Cramon. 2001. Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed. Cogn. Brain Res. 11: 97-112. Zysset, S., O. Huber, E. Ferstl, et al. 2002. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15: 983-991. Koechlin, E., C. Ody & F. Kouneiher. 2003. The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185. Ochsner, K.N., S.A. Bunge, J.J. Gross, et al. 2002. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14: 1215-1229. Krumhansl, C.L. 1997. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51: 336-353. Gilbert, S.J., C.D. Frith & P.W. Burgess. 2005. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur. J. Neurosci. 21: 1423-1431. Besson, M. & F. Faïta. 1995. An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol. Hum. Percept. Perform. 21: 1278-1296. Levitin, D.J. & V. Menon. 2003. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroimage 20: 2142-2152. Cuddy, L.L. & J. Duffin. 2005. Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med. Hypotheses 64: 229-235. Regnault, P., E. Bigand & M. Besson. 2001. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J. Cogn. Neurosci. 13: 241-255. Ochsner, K.N. & J.J. Gross. 2005. The cognitive control of emotion. Trends Cogn. Sci. 9: 242-249. Fox, M.D., A.Z. Snyder, J.L. Vincent, et al. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102: 9673-9678. Thompson, P.M., K.M. Hayashi, G. de Zubicaray, et al. 2003. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23: 994-1005. Critchley, H.D., D.R. Corfield, M.P. Chandler, et al. 2000. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol. (Lond.) 523: 259-270. Patel, A.D. 2003. Language, music, syntax, and the brain. Nat. Neurosci. 6: 674-681. Toiviainen, P. & C.L. Krumhansl. 2003. Measuring and modeling real-time responses to music: the dynamics of tonality induction. Perception 32: 741-766. Platel, H., J.C. Baron, B. Desgranges, et al. 2003. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20: 244-256. Leman, M. 1995. A model of retroactive tone-center perception. Mus. Percept. 12: 439-471. Tillmann, B., P. Janata & J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16: 145-161. Langheim, F.J.P., J.H. Callicott, V.S. Mattay, et al. 2002. Cortical systems associated with covert music rehearsal. Neuroimage 16: 901-908. Paller, K.A., G. McCarthy & C.C. Wood. 1992. Event-related potentials elicited by deviant endings to melodies. Psychophysiology 29: 202-206. 2002; 16 2002; 17 2002; 14 2002; 15 2005; 64 2003; 16 2005; 21 2004; 5 2000; 133 2003; 19 2005; 24 1998; 16 1997; 51 2000; 12 2000; 523 2005; 102 2003; 6 1995; 21 2000; 97 2001; 11 2001; 12 1998; 10 2001; 13 2001; 98 2000; 67 1995; 12 2002; 298 2002; 2 1999; 2 2003; 335 2003; 32 1999; 9 1995; 7 1987; 24 1982; 89 2004; 19 2001; 4 2005; 9 1992; 29 1994; 14 2001; 38 1998; 106 1999; 277 2005; 15 2003; 302 2003; 63 2003; 20 2003; 100 2003; 23 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 Patel A.D. (e_1_2_7_24_2) 1998; 16 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 Kuniecki M. (e_1_2_7_40_2) 2003; 63 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
| References_xml | – reference: Zysset, S., O. Huber, A. Samson, et al. 2003. Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects. Neurosci. Lett. 335: 183-186. – reference: Fuster, J.M. 2000. Executive frontal functions. Exp. Brain Res. 133: 66-70. – reference: Besson, M. & F. Macar. 1987. An event-related potential analysis of incongruity in music and other nonlinguistic contexts. Psychophysiology 24: 14-25. – reference: Koechlin, E., C. Ody & F. Kouneiher. 2003. The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185. – reference: Janata, P., B. Tillmann & J.J. Bharucha. 2002. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2: 121-140. – reference: Koechlin, E., G. Corrado, P. Pietrini, et al. 2000. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. USA 97: 7651-7656. – reference: Ochsner, K.N. & J.J. Gross. 2005. The cognitive control of emotion. Trends Cogn. Sci. 9: 242-249. – reference: Ochsner, K.N., S.A. Bunge, J.J. Gross, et al. 2002. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14: 1215-1229. – reference: Ramnani, N. & A.M. Owen. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5: 184-194. – reference: Halgren, E., K. Marinkovic & P. Chauvel. 1998. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106: 156-164. – reference: Zysset, S., O. Huber, E. Ferstl, et al. 2002. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15: 983-991. – reference: Kiehl, K.A., K.R. Laurens, T.L. Duty, et al. 2001. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38: 133-142. – reference: Besson, M. & F. Faïta. 1995. An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol. Hum. Percept. Perform. 21: 1278-1296. – reference: Schubotz, R.I. & D.Y. von Cramon. 2002. Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI. Brain Res. Cogn. Brain Res. 14: 357-369. – reference: Schubotz, R.I. & D.Y. von Cramon. 2001. Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed. Cogn. Brain Res. 11: 97-112. – reference: Tillmann, B., P. Janata & J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16: 145-161. – reference: Koelsch, S., T.C. Gunter, D.Y. von Cramon, et al. 2002. Bach speaks: a cortical "language-network" serves the processing of music. Neuroimage 17: 956-966. – reference: Platel, H., J.C. Baron, B. Desgranges, et al. 2003. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20: 244-256. – reference: Cuddy, L.L. & J. Duffin. 2005. Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med. Hypotheses 64: 229-235. – reference: Janata, P. 1995. ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci. 7: 153-164. – reference: Gaab, N., C. Gaser, T. Zaehle, et al. 2003. Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling. Neuroimage 19: 1417-1426. – reference: Koelsch, S., T. Gunter, A.D. Friederici, et al. 2000. Brain indices of music processing: "nonmusicians" are musical. J. Cogn. Neurosci. 12: 520-541. – reference: Leman, M. 1995. A model of retroactive tone-center perception. Mus. Percept. 12: 439-471. – reference: Blood, A.J., R.J. Zatorre, P. Bermudez, et al. 1999. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2: 382-387. – reference: Patel, A.D., E. Gibson, J. Ratner, et al. 1998. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10: 717-733. – reference: Kuniecki, M., A. Urbanik, B. Sobiecka, et al. 2003. Central control of heart rate changes during visual affective processing as revealed by fMRI. Acta Neurobiol. Exp. 63: 39-48. – reference: Gilbert, S.J., C.D. Frith & P.W. Burgess. 2005. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur. J. Neurosci. 21: 1423-1431. – reference: Grezes, J. & J. Decety. 2001. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12: 1-19. – reference: Regnault, P., E. Bigand & M. Besson. 2001. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J. Cogn. Neurosci. 13: 241-255. – reference: Langheim, F.J.P., J.H. Callicott, V.S. Mattay, et al. 2002. Cortical systems associated with covert music rehearsal. Neuroimage 16: 901-908. – reference: Halpern, A.R. & R.J. Zatorre. 1999. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebr. Cortex 9: 697-704. – reference: Janata, P., J. L. Birk, B. Tillmann, et al. 2003. Online detection of tonal pop-out in modulating contexts. Mus. Percept. 20: 283-305. – reference: Toiviainen, P. & C.L. Krumhansl. 2003. Measuring and modeling real-time responses to music: the dynamics of tonality induction. Perception 32: 741-766. – reference: Peretz, I. & M. Coltheart. 2003. Modularity of music processing. Nat. Neurosci. 6: 688-691. – reference: Meister, I.G., T. Krings, H. Foltys, et al. 2004. Playing piano in the mind: an fMRI study on music imagery and performance in pianists. Cogn. Brain Res. 19: 219-228. – reference: Patel, A.D. 1998. Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus. Percept. 16: 27-42. – reference: Maess, B., S. Koelsch, T. C. Gunter, et al. 2001. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4: 540-545. – reference: Gusnard, D. A., E. Akbudak, G. L. Shulman, et al. 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 4259-4264. – reference: Patel, A.D. 2003. Language, music, syntax, and the brain. Nat. Neurosci. 6: 674-681. – reference: Levitin, D.J. & V. Menon. 2003. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroimage 20: 2142-2152. – reference: Fox, M.D., A.Z. Snyder, J.L. Vincent, et al. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102: 9673-9678. – reference: Volkow, N.D., G.J. Wang, J.S. Fowler, et al. 2000. Increased activity of the temporal insula in subjects with bradycardia. Life Sci. 67: 2213-2220. – reference: Paller, K.A., G. McCarthy & C.C. Wood. 1992. Event-related potentials elicited by deviant endings to melodies. Psychophysiology 29: 202-206. – reference: Krumhansl, C.L. 1997. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51: 336-353. – reference: Critchley, H.D., D.R. Corfield, M.P. Chandler, et al. 2000. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol. (Lond.) 523: 259-270. – reference: Janata, P., J.L. Birk, J.D. Van Horn, et al. 2002. The cortical topography of tonal structures underlying Western music. Science 298: 2167-2170. – reference: Critchley, H.D., P. Rotshtein, Y. Nagai, et al. 2005. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24: 751-762. – reference: Krumhansl, C.L. & E.J. Kessler. 1982. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89: 334-368. – reference: Raichle, M.E., A.M. MacLeod, A.Z. Snyder, et al. 2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 676-682. – reference: Koelsch, S. 2005. Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol. 15: 207-212. – reference: Zatorre, R. J., A. C. Evans & E. Meyer. 1994. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14: 1908-1919. – reference: Beisteiner, R., M. Erdler, D. Mayer, et al. 1999. A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians. Neurosci. Lett. 277: 37-40. – reference: Kelley, W.M., C.N. Macrae, C.L. Wyland, et al. 2002. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14: 785-794. – reference: Greicius, M.D., B. Krasnow, A.L. Reiss, et al. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100: 253-258. – reference: Thompson, P.M., K.M. Hayashi, G. de Zubicaray, et al. 2003. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23: 994-1005. – volume: 97 start-page: 7651 year: 2000 end-page: 7656 article-title: Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 336 year: 1997 end-page: 353 article-title: An exploratory study of musical emotions and psychophysiology publication-title: Can. J. Exp. Psychol. – volume: 13 start-page: 241 year: 2001 end-page: 255 article-title: Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event‐related brain potentials publication-title: J. Cogn. Neurosci. – volume: 12 start-page: 520 year: 2000 end-page: 541 article-title: Brain indices of music processing: “nonmusicians” are musical publication-title: J. Cogn. Neurosci. – volume: 6 start-page: 674 year: 2003 end-page: 681 article-title: Language, music, syntax, and the brain publication-title: Nat. Neurosci. – volume: 2 start-page: 121 year: 2002 end-page: 140 article-title: Listening to polyphonic music recruits domain‐general attention and working memory circuits publication-title: Cogn. Affect. Behav. Neurosci. – volume: 2 start-page: 382 year: 1999 end-page: 387 article-title: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions publication-title: Nat. Neurosci. – volume: 15 start-page: 983 year: 2002 end-page: 991 article-title: The anterior frontomedian cortex and evaluative judgment: an fMRI study publication-title: Neuroimage – volume: 335 start-page: 183 year: 2003 end-page: 186 article-title: Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects publication-title: Neurosci. Lett. – volume: 14 start-page: 1215 year: 2002 end-page: 1229 article-title: Rethinking feelings: an fMRI study of the cognitive regulation of emotion publication-title: J. Cogn. Neurosci. – volume: 277 start-page: 37 year: 1999 end-page: 40 article-title: A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians publication-title: Neurosci. Lett. – volume: 16 start-page: 27 year: 1998 end-page: 42 article-title: Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus publication-title: Percept. – volume: 32 start-page: 741 year: 2003 end-page: 766 article-title: Measuring and modeling real‐time responses to music: the dynamics of tonality induction publication-title: Perception – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA – volume: 523 start-page: 259 year: 2000 end-page: 270 article-title: Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans publication-title: J. Physiol. (Lond.) – volume: 9 start-page: 697 year: 1999 end-page: 704 article-title: When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies publication-title: Cerebr. Cortex – volume: 20 start-page: 283 year: 2003 end-page: 305 article-title: Online detection of tonal pop‐out in modulating contexts publication-title: Mus. Percept. – volume: 11 start-page: 97 year: 2001 end-page: 112 article-title: Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed publication-title: Cogn. Brain Res. – volume: 63 start-page: 39 year: 2003 end-page: 48 article-title: Central control of heart rate changes during visual affective processing as revealed by fMRI publication-title: Acta Neurobiol. Exp. – volume: 7 start-page: 153 year: 1995 end-page: 164 article-title: ERP measures assay the degree of expectancy violation of harmonic contexts in music publication-title: J. Cogn. Neurosci. – volume: 29 start-page: 202 year: 1992 end-page: 206 article-title: Event‐related potentials elicited by deviant endings to melodies publication-title: Psychophysiology – volume: 21 start-page: 1278 year: 1995 end-page: 1296 article-title: An event‐related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 20 start-page: 2142 year: 2003 end-page: 2152 article-title: Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence publication-title: Neuroimage – volume: 12 start-page: 439 year: 1995 end-page: 471 article-title: A model of retroactive tone‐center perception publication-title: Mus. Percept. – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 357 year: 2002 end-page: 369 article-title: Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI publication-title: Brain Res. Cogn. Brain Res. – volume: 38 start-page: 133 year: 2001 end-page: 142 article-title: Neural sources involved in auditory target detection and novelty processing: an event‐related fMRI study publication-title: Psychophysiology – volume: 17 start-page: 956 year: 2002 end-page: 966 article-title: Bach speaks: a cortical “language‐network” serves the processing of music publication-title: Neuroimage – volume: 16 start-page: 145 year: 2003 end-page: 161 article-title: Activation of the inferior frontal cortex in musical priming publication-title: Cogn. Brain Res. – volume: 16 start-page: 901 year: 2002 end-page: 908 article-title: Cortical systems associated with covert music rehearsal publication-title: Neuroimage – volume: 67 start-page: 2213 year: 2000 end-page: 2220 article-title: Increased activity of the temporal insula in subjects with bradycardia publication-title: Life Sci. – volume: 302 start-page: 1181 year: 2003 end-page: 1185 article-title: The architecture of cognitive control in the human prefrontal cortex publication-title: Science – volume: 4 start-page: 540 year: 2001 end-page: 545 article-title: Musical syntax is processed in Broca's area: an MEG study publication-title: Nat. Neurosci. – volume: 14 start-page: 1908 year: 1994 end-page: 1919 article-title: Neural mechanisms underlying melodic perception and memory for pitch publication-title: J. Neurosci. – volume: 6 start-page: 688 year: 2003 end-page: 691 article-title: Modularity of music processing publication-title: Nat. Neurosci. – volume: 89 start-page: 334 year: 1982 end-page: 368 article-title: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys publication-title: Psychol. Rev. – volume: 19 start-page: 219 year: 2004 end-page: 228 article-title: Playing piano in the mind: an fMRI study on music imagery and performance in pianists publication-title: Cogn. Brain Res. – volume: 298 start-page: 2167 year: 2002 end-page: 2170 article-title: The cortical topography of tonal structures underlying Western music publication-title: Science – volume: 14 start-page: 785 year: 2002 end-page: 794 article-title: Finding the self? An event‐related fMRI study publication-title: J. Cogn. Neurosci. – volume: 98 start-page: 4259 year: 2001 end-page: 4264 article-title: Medial prefrontal cortex and self‐referential mental activity: relation to a default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 244 year: 2003 end-page: 256 article-title: Semantic and episodic memory of music are subserved by distinct neural networks publication-title: Neuroimage – volume: 5 start-page: 184 year: 2004 end-page: 194 article-title: Anterior prefrontal cortex: insights into function from anatomy and neuroimaging publication-title: Nat. Rev. Neurosci. – volume: 10 start-page: 717 year: 1998 end-page: 733 article-title: Processing syntactic relations in language and music: an event‐related potential study publication-title: J. Cogn. Neurosci. – volume: 21 start-page: 1423 year: 2005 end-page: 1431 article-title: Involvement of rostral prefrontal cortex in selection between stimulus‐oriented and stimulus‐independent thought publication-title: Eur. J. Neurosci. – volume: 9 start-page: 242 year: 2005 end-page: 249 article-title: The cognitive control of emotion publication-title: Trends Cogn. Sci. – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 14 year: 1987 end-page: 25 article-title: An event‐related potential analysis of incongruity in music and other nonlinguistic contexts publication-title: Psychophysiology – volume: 15 start-page: 207 year: 2005 end-page: 212 article-title: Neural substrates of processing syntax and semantics in music publication-title: Curr. Opin. Neurobiol. – volume: 12 start-page: 1 year: 2001 end-page: 19 article-title: Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta‐analysis publication-title: Hum. Brain Mapp. – volume: 64 start-page: 229 year: 2005 end-page: 235 article-title: Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med publication-title: Hypotheses – volume: 19 start-page: 1417 year: 2003 end-page: 1426 article-title: Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling publication-title: Neuroimage – volume: 24 start-page: 751 year: 2005 end-page: 762 article-title: Activity in the human brain predicting differential heart rate responses to emotional facial expressions publication-title: Neuroimage – volume: 133 start-page: 66 year: 2000 end-page: 70 article-title: Executive frontal functions publication-title: Exp. Brain Res. – volume: 23 start-page: 994 year: 2003 end-page: 1005 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J. Neurosci. – volume: 106 start-page: 156 year: 1998 end-page: 164 article-title: Generators of the late cognitive potentials in auditory and visual oddball tasks publication-title: Electroencephalogr. Clin. Neurophysiol. – ident: e_1_2_7_45_2 doi: 10.1162/08989290260138672 – ident: e_1_2_7_3_2 doi: 10.1038/nn1082 – ident: e_1_2_7_33_2 doi: 10.1007/978-3-642-85213-8 – ident: e_1_2_7_37_2 doi: 10.2307/40285676 – ident: e_1_2_7_38_2 – ident: e_1_2_7_9_2 doi: 10.1093/cercor/9.7.697 – ident: e_1_2_7_14_2 doi: 10.1523/JNEUROSCI.14-04-01908.1994 – ident: e_1_2_7_17_2 doi: 10.1162/jocn.1995.7.2.153 – ident: e_1_2_7_32_2 – ident: e_1_2_7_39_2 doi: 10.1016/j.neuroimage.2004.10.013 – ident: e_1_2_7_54_2 doi: 10.1126/science.1088545 – ident: e_1_2_7_22_2 doi: 10.1016/S0013-4694(97)00119-3 – ident: e_1_2_7_31_2 doi: 10.1037/0033-295X.89.4.334 – ident: e_1_2_7_51_2 doi: 10.1073/pnas.0135058100 – ident: e_1_2_7_16_2 doi: 10.1111/j.1469-8986.1992.tb01686.x – ident: e_1_2_7_26_2 doi: 10.1038/87502 – ident: e_1_2_7_58_2 doi: 10.1038/7299 – ident: e_1_2_7_6_2 doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V – ident: e_1_2_7_57_2 doi: 10.1038/nrn1343 – ident: e_1_2_7_48_2 doi: 10.1162/089892902760807212 – ident: e_1_2_7_46_2 doi: 10.1006/nimg.2001.1008 – ident: e_1_2_7_23_2 doi: 10.1111/1469-8986.3810133 – ident: e_1_2_7_47_2 doi: 10.1016/S0304-3940(02)01196-5 – ident: e_1_2_7_28_2 doi: 10.1016/S0926-6410(02)00245-8 – ident: e_1_2_7_44_2 doi: 10.1073/pnas.071043098 – ident: e_1_2_7_50_2 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_7_36_2 doi: 10.1525/mp.2003.20.3.283 – ident: e_1_2_7_43_2 doi: 10.1111/j.1469-7793.2000.t01-1-00259.x – volume: 63 start-page: 39 year: 2003 ident: e_1_2_7_40_2 article-title: Central control of heart rate changes during visual affective processing as revealed by fMRI publication-title: Acta Neurobiol. Exp. doi: 10.55782/ane-2003-1453 – ident: e_1_2_7_29_2 doi: 10.1016/j.neuroimage.2003.08.016 – ident: e_1_2_7_53_2 doi: 10.1073/pnas.130177397 – ident: e_1_2_7_59_2 doi: 10.1016/S1053-8119(03)00287-8 – ident: e_1_2_7_60_2 doi: 10.1016/j.mehy.2004.09.005 – ident: e_1_2_7_30_2 – ident: e_1_2_7_49_2 doi: 10.1016/j.tics.2005.03.010 – ident: e_1_2_7_20_2 doi: 10.1016/S0304-3940(99)00836-8 – ident: e_1_2_7_13_2 doi: 10.1016/S1053-8119(03)00224-6 – ident: e_1_2_7_4_2 doi: 10.1038/nn1083 – ident: e_1_2_7_5_2 doi: 10.3758/CABN.2.2.121 – ident: e_1_2_7_8_2 doi: 10.1016/S0926-6410(00)00069-0 – volume: 16 start-page: 27 year: 1998 ident: e_1_2_7_24_2 article-title: Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus publication-title: Percept. – ident: e_1_2_7_10_2 doi: 10.1006/nimg.2002.1144 – ident: e_1_2_7_42_2 doi: 10.1016/S0024-3205(00)00807-9 – ident: e_1_2_7_2_2 doi: 10.1016/j.conb.2005.03.005 – ident: e_1_2_7_35_2 doi: 10.1126/science.1076262 – ident: e_1_2_7_12_2 doi: 10.1007/s002210000401 – ident: e_1_2_7_27_2 doi: 10.1006/nimg.2002.1154 – ident: e_1_2_7_55_2 doi: 10.1111/j.1460-9568.2005.03981.x – ident: e_1_2_7_18_2 doi: 10.1037/0096-1523.21.6.1278 – ident: e_1_2_7_15_2 doi: 10.1111/j.1469-8986.1987.tb01853.x – ident: e_1_2_7_7_2 doi: 10.1016/S0926-6410(02)00138-6 – ident: e_1_2_7_11_2 doi: 10.1016/j.cogbrainres.2003.12.005 – ident: e_1_2_7_41_2 doi: 10.1037/1196-1961.51.4.336 – ident: e_1_2_7_52_2 doi: 10.1073/pnas.0504136102 – ident: e_1_2_7_34_2 doi: 10.1068/p3312 – ident: e_1_2_7_25_2 doi: 10.1162/089892900562183 – ident: e_1_2_7_56_2 doi: 10.1093/acprof:oso/9780198566427.003.0009 – ident: e_1_2_7_21_2 doi: 10.1162/089892901564298 – ident: e_1_2_7_19_2 doi: 10.1162/089892998563121 – ident: e_1_2_7_61_2 doi: 10.1523/JNEUROSCI.23-03-00994.2003 |
| SSID | ssj0012847 |
| Score | 2.0124862 |
| SecondaryResourceType | review_article |
| Snippet | : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In... A bstract : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the... As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 111 |
| SubjectTerms | Acoustic Stimulation Alzheimer disease Alzheimer Disease - pathology attention Auditory Perception autobiographical memory Brain - pathology Brain Mapping - methods emotion event-related potential Evoked Potentials expectancy Humans Magnetic Resonance Imaging Models, Neurological Models, Statistical Music Pitch Discrimination Pitch Perception Prefrontal Cortex - anatomy & histology rostral medial prefrontal cortex tonality torus |
| Title | Brain Networks That Track Musical Structure |
| URI | https://api.istex.fr/ark:/67375/WNG-H514CWJQ-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1196%2Fannals.1360.008 https://www.ncbi.nlm.nih.gov/pubmed/16597758 https://www.proquest.com/docview/17129725 https://www.proquest.com/docview/70151766 |
| Volume | 1060 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0077-8923 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1749-6632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012847 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EEbyo9VmfOYjoIbVpsln3KEUtggVfqKdlsw-USip9gPrrndmkFUUR8ZbAZpnM7Mx8m8x-A7CDTmSE5XEoYsPCxHATitRpukV0ZJNMe4qN83bauknO7tiompDOwhT8EOMPbuQZPl6Tg6us7EIiSnZbNBCVaVFxFh33xUu_qbocE0j54OtjMcdYjFimJPfBGQ6-PP8pL02Ril--A52fMaxPQidzkI3EL2pPOrXhIKvpty_Mjv96v3mYLSFqcFSsqQpM2HwBpoumla8LUCnDQT_YKzmr9xcB14h6zIN2UVTeD64f1CDAPKg7ge8kjfNdeabaYc8uwc3J8XWzFZZ9GEKNu78oNI5rZhDoKJ4akymjqLNNJojKJSY6eyd0bN2hs4rZwzpR3NcbTrNUp5FLmI6XYTLv5nYVgkxHpi5soplSiXNOIdrktm61cpEWDVuF2sgKUpck5dQr40n6zYrwB6hRLZLUIlEtVdgbP_Bc8HP8PHTXm3U8TvU6VNbGmbxtn8oWQsfm7dmFvKzC9sjuEp2N_qCo3HaHOBVHeMQb7OcRHOEVcW5WYaVYMB9SpUT1x1CM0Jv9N3Fl-_4Ic0209sfx6zBT0MtSyc0GTKJx7SYCp0G25X3jHRi-EfA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4x0DReNmCDlcHIwzSxh5SmieP6ESFKx9pIY0WwJ8vxDzF1ChO00uCv585OO4qG0LTHSM7JvvPdfU7O3wF8QCcywvI0FqlhcWa4iUXuND0iOrJZqT3FxqDIe6fZ8Tk7v3cXJvBDzD64kWf4eE0OTh-kg5eLmt4WLUR1WlSd1XkGS1mOpxUCRiczCikffn005hiNEc3U9D4oYu-BgLnMtERK_v032DmPYn0a6r4CPV1AqD4ZNSfjsqlvH3A7_t8KV-BljVKj_bCtVmHBVmvwPPStvFmD1ToiXEe7NW31p9eA20T9qKIi1JVfR8MLNY4wFepR5JtJo7xvnqx2cmXfwGn3cHjQi-tWDLFGlSaxcVwzg1hH8dyYUhlFzW1KQWwuKTHaO6FT6zrOKmY7LWK5b7WdZrnOE5cxna7DYnVZ2bcQlToxLWEzzZTKnHMKASe3LauVS7Ro2wY0p2aQuuYpp3YZP6U_rwh_hxrVIkktEtXSgN3ZC78CRcfjQz96u87GqasRVbZxJs-KI9lD9HhwdvxVnjRgZ2p4if5GP1FUZS8nKIojQuJt9vgIjgiLaDcbsBF2zJ9Z5cT2x3Aasbf7U9OVxfd9TDfJ5j-O34EXveGgL_ufiy_vYDmwzVIFzhYsoqHtNuKocfneO8odO_kWEQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoaG9MGBjK2MjD9PEHlKaJo7rRwTryle0MRDlyXL8IVCngKCVgL-eOzstAw1N0x4jXU62z3f3c3L-HcAndCIjLE9jkRoWZ4abWORO0yOiI5uV2lNsHBR57zjb7bP-b3dhAj_E5IMbeYaP1-Tg9tK44OWiprdFC1GdFlVndaZhNmOiQ2V924cTCikffn005hiNEc3U9D6oYuOJgkeZaZYW-eZPsPMxivVpqPsK9HgCofpk0BwNy6a-e8Lt-H8zXID5GqVGm2FbLcKUrZbgRehbebsEi3VEuI7Wa9rqL68Bt4k6r6Ii1JVfR0dnahhhKtSDyDeTRn0_PVnt6Mq-gePu16OtXly3Yog1HgCT2DiumUGso3huTKmMouY2pSA2l5QY7Z3QqXUdZxWznRax3LfaTrNc54nLmE6XYaa6qOw7iEqdmJawmWZKZc45hYCT25bVyiVatG0DmmMzSF3zlFO7jF_Sn1eEv0ONyyJpWSQuSwPWJy9cBoqO50U_e7tO5NTVgCrbOJMnxTfZQ_S4dbL7Qx42YG1seIn-Rj9RVGUvRqiKI0Libfa8BEeERbSbDXgbdszDqHJi-2M4jNjb_W_DlcXpJqabZOUf5ddg7vt2V-7vFHvv4WUgm6UCnFWYQTvbDwijhuVH7yf3xqIVlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+networks+that+track+musical+structure&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Janata%2C+Petr&rft.date=2005-12-01&rft.issn=0077-8923&rft.volume=1060&rft.spage=111&rft_id=info:doi/10.1196%2Fannals.1360.008&rft_id=info%3Apmid%2F16597758&rft.externalDocID=16597758 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |