Brain Networks That Track Musical Structure

: As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depen...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1060; no. 1; pp. 111 - 124
Main Author JANATA, PETR
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2005
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
DOI10.1196/annals.1360.008

Cover

Abstract : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network.
AbstractList : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network.
As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.
As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.
A bstract : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music‐responsive network.
Author JANATA, PETR
Author_xml – sequence: 1
  givenname: PETR
  surname: JANATA
  fullname: JANATA, PETR
  email: pjanata@ucdavis.edu
  organization: Center for Mind and Brain, University of California, Davis, Davis, California 95616, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16597758$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1P3DAQQK0K1F0-zr1VOfWCssw4sSc5blcFWsFWhUWoJ8vrOGq62YTajoB_j1GAQyXEyXN4b0Z-e2yn6zvL2CeEGWIpj3XX6dbPMJMwAyg-sClSXqZSZnyHTQGI0qLk2YTtef8XAHmR00c2QSlKIlFM2dFXp5suWdpw17uNT1Z_dEhWTptNcjH4xug2uQpuMGFw9oDt1vGaPXx-99n1ybfV4iw9_3n6fTE_T00OJaZVTUZUxEmTrKq1rjRxyNclSMAsTqIuTWbrorZa2AK45AC8NkIaiXUuTLbPvox7b13_b7A-qG3jjW1b3dl-8IoABVL843sgEvKSuIjg52dwWG9tpW5ds9XuQb10iIAYAeN6752tlWmCDk3fhdinVQjqqbcae6un3ir2jt7xf97r6jeNfDTumtY-vIer5e_5FSJGLR21xgd7_6ppt1GSMhLqZnmqzgTmi5sfv9Rl9gidTqHl
CitedBy_id crossref_primary_10_1146_annurev_neuro_110920_013544
crossref_primary_10_1089_brain_2016_0428
crossref_primary_10_1016_j_jad_2016_10_022
crossref_primary_10_3390_brainsci5010069
crossref_primary_10_1007_s10695_009_9324_8
crossref_primary_10_1016_j_neuroimage_2011_11_019
crossref_primary_10_1093_cercor_bhx257
crossref_primary_10_1177_0305735614548500
crossref_primary_10_1002_ajp_22999
crossref_primary_10_3109_10673229_2011_549769
crossref_primary_10_1038_s41598_019_54060_x
crossref_primary_10_1016_j_neubiorev_2011_06_005
crossref_primary_10_1007_s00108_022_01445_2
crossref_primary_10_1093_cercor_bhp008
crossref_primary_10_5937_Engrami1801028P
crossref_primary_10_1016_j_neuropsychologia_2016_08_012
crossref_primary_10_1080_09658210701734593
crossref_primary_10_1080_17513472_2023_2281895
crossref_primary_10_1007_s00429_013_0504_z
crossref_primary_10_1024_1661_4747_57_3_195
crossref_primary_10_3389_fnagi_2016_00134
crossref_primary_10_1093_cercor_bhq198
crossref_primary_10_1152_jn_00828_2007
crossref_primary_10_1016_j_neuroimage_2013_05_001
crossref_primary_10_1371_journal_pone_0021458
crossref_primary_10_1080_09658211_2023_2166078
crossref_primary_10_1038_s41598_018_35172_2
crossref_primary_10_3390_ijerph192316285
crossref_primary_10_1002_hbm_22029
crossref_primary_10_1017_S1041610217001867
Cites_doi 10.1162/08989290260138672
10.1038/nn1082
10.1007/978-3-642-85213-8
10.2307/40285676
10.1093/cercor/9.7.697
10.1523/JNEUROSCI.14-04-01908.1994
10.1162/jocn.1995.7.2.153
10.1016/j.neuroimage.2004.10.013
10.1126/science.1088545
10.1016/S0013-4694(97)00119-3
10.1037/0033-295X.89.4.334
10.1073/pnas.0135058100
10.1111/j.1469-8986.1992.tb01686.x
10.1038/87502
10.1038/7299
10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
10.1038/nrn1343
10.1162/089892902760807212
10.1006/nimg.2001.1008
10.1111/1469-8986.3810133
10.1016/S0304-3940(02)01196-5
10.1016/S0926-6410(02)00245-8
10.1073/pnas.071043098
10.1073/pnas.98.2.676
10.1525/mp.2003.20.3.283
10.1111/j.1469-7793.2000.t01-1-00259.x
10.55782/ane-2003-1453
10.1016/j.neuroimage.2003.08.016
10.1073/pnas.130177397
10.1016/S1053-8119(03)00287-8
10.1016/j.mehy.2004.09.005
10.1016/j.tics.2005.03.010
10.1016/S0304-3940(99)00836-8
10.1016/S1053-8119(03)00224-6
10.1038/nn1083
10.3758/CABN.2.2.121
10.1016/S0926-6410(00)00069-0
10.1006/nimg.2002.1144
10.1016/S0024-3205(00)00807-9
10.1016/j.conb.2005.03.005
10.1126/science.1076262
10.1007/s002210000401
10.1006/nimg.2002.1154
10.1111/j.1460-9568.2005.03981.x
10.1037/0096-1523.21.6.1278
10.1111/j.1469-8986.1987.tb01853.x
10.1016/S0926-6410(02)00138-6
10.1016/j.cogbrainres.2003.12.005
10.1037/1196-1961.51.4.336
10.1073/pnas.0504136102
10.1068/p3312
10.1162/089892900562183
10.1093/acprof:oso/9780198566427.003.0009
10.1162/089892901564298
10.1162/089892998563121
10.1523/JNEUROSCI.23-03-00994.2003
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1196/annals.1360.008
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Music
EISSN 1749-6632
EndPage 124
ExternalDocumentID 16597758
10_1196_annals_1360_008
NYAS111
ark_67375_WNG_H514CWJQ_R
Genre article
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P50 NS17778-18
– fundername: NIDCD NIH HHS
  grantid: R03 DC05146-01
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFSWV
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHDLI
AHEFC
AHMBA
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
AAHHS
AAMDK
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
WRC
WUP
7TK
7X8
ID FETCH-LOGICAL-c4091-df7c5d727a76ddbada7204b9060132045f9c3ef8fea5e80262002fc56c61f45c3
IEDL.DBID DR2
ISSN 0077-8923
IngestDate Fri Sep 05 14:03:26 EDT 2025
Thu Sep 04 16:44:52 EDT 2025
Wed Feb 19 01:48:50 EST 2025
Wed Oct 01 02:11:18 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Aug 20 07:26:35 EDT 2025
Sun Sep 21 06:18:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4091-df7c5d727a76ddbada7204b9060132045f9c3ef8fea5e80262002fc56c61f45c3
Notes istex:2204CF79B8114BFB00A49C5A6E3A729E47C733B7
ark:/67375/WNG-H514CWJQ-R
ArticleID:NYAS111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 16597758
PQID 17129725
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_70151766
proquest_miscellaneous_17129725
pubmed_primary_16597758
crossref_citationtrail_10_1196_annals_1360_008
crossref_primary_10_1196_annals_1360_008
wiley_primary_10_1196_annals_1360_008_NYAS111
istex_primary_ark_67375_WNG_H514CWJQ_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2005
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2005
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Janata, P. 1995. ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci. 7: 153-164.
Halgren, E., K. Marinkovic & P. Chauvel. 1998. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106: 156-164.
Kelley, W.M., C.N. Macrae, C.L. Wyland, et al. 2002. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14: 785-794.
Peretz, I. & M. Coltheart. 2003. Modularity of music processing. Nat. Neurosci. 6: 688-691.
Maess, B., S. Koelsch, T. C. Gunter, et al. 2001. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4: 540-545.
Volkow, N.D., G.J. Wang, J.S. Fowler, et al. 2000. Increased activity of the temporal insula in subjects with bradycardia. Life Sci. 67: 2213-2220.
Koelsch, S. 2005. Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol. 15: 207-212.
Gaab, N., C. Gaser, T. Zaehle, et al. 2003. Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling. Neuroimage 19: 1417-1426.
Patel, A.D., E. Gibson, J. Ratner, et al. 1998. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10: 717-733.
Koelsch, S., T.C. Gunter, D.Y. von Cramon, et al. 2002. Bach speaks: a cortical "language-network" serves the processing of music. Neuroimage 17: 956-966.
Koechlin, E., G. Corrado, P. Pietrini, et al. 2000. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. USA 97: 7651-7656.
Besson, M. & F. Macar. 1987. An event-related potential analysis of incongruity in music and other nonlinguistic contexts. Psychophysiology 24: 14-25.
Gusnard, D. A., E. Akbudak, G. L. Shulman, et al. 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 4259-4264.
Janata, P., J. L. Birk, B. Tillmann, et al. 2003. Online detection of tonal pop-out in modulating contexts. Mus. Percept. 20: 283-305.
Halpern, A.R. & R.J. Zatorre. 1999. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebr. Cortex 9: 697-704.
Kiehl, K.A., K.R. Laurens, T.L. Duty, et al. 2001. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38: 133-142.
Koelsch, S., T. Gunter, A.D. Friederici, et al. 2000. Brain indices of music processing: "nonmusicians" are musical. J. Cogn. Neurosci. 12: 520-541.
Beisteiner, R., M. Erdler, D. Mayer, et al. 1999. A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians. Neurosci. Lett. 277: 37-40.
Schubotz, R.I. & D.Y. von Cramon. 2002. Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI. Brain Res. Cogn. Brain Res. 14: 357-369.
Critchley, H.D., P. Rotshtein, Y. Nagai, et al. 2005. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24: 751-762.
Krumhansl, C.L. & E.J. Kessler. 1982. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89: 334-368.
Zysset, S., O. Huber, A. Samson, et al. 2003. Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects. Neurosci. Lett. 335: 183-186.
Blood, A.J., R.J. Zatorre, P. Bermudez, et al. 1999. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2: 382-387.
Zatorre, R. J., A. C. Evans & E. Meyer. 1994. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14: 1908-1919.
Grezes, J. & J. Decety. 2001. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12: 1-19.
Meister, I.G., T. Krings, H. Foltys, et al. 2004. Playing piano in the mind: an fMRI study on music imagery and performance in pianists. Cogn. Brain Res. 19: 219-228.
Janata, P., J.L. Birk, J.D. Van Horn, et al. 2002. The cortical topography of tonal structures underlying Western music. Science 298: 2167-2170.
Patel, A.D. 1998. Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus. Percept. 16: 27-42.
Ramnani, N. & A.M. Owen. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5: 184-194.
Kuniecki, M., A. Urbanik, B. Sobiecka, et al. 2003. Central control of heart rate changes during visual affective processing as revealed by fMRI. Acta Neurobiol. Exp. 63: 39-48.
Greicius, M.D., B. Krasnow, A.L. Reiss, et al. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100: 253-258.
Janata, P., B. Tillmann & J.J. Bharucha. 2002. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2: 121-140.
Fuster, J.M. 2000. Executive frontal functions. Exp. Brain Res. 133: 66-70.
Raichle, M.E., A.M. MacLeod, A.Z. Snyder, et al. 2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 676-682.
Schubotz, R.I. & D.Y. von Cramon. 2001. Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed. Cogn. Brain Res. 11: 97-112.
Zysset, S., O. Huber, E. Ferstl, et al. 2002. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15: 983-991.
Koechlin, E., C. Ody & F. Kouneiher. 2003. The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185.
Ochsner, K.N., S.A. Bunge, J.J. Gross, et al. 2002. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14: 1215-1229.
Krumhansl, C.L. 1997. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51: 336-353.
Gilbert, S.J., C.D. Frith & P.W. Burgess. 2005. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur. J. Neurosci. 21: 1423-1431.
Besson, M. & F. Faïta. 1995. An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol. Hum. Percept. Perform. 21: 1278-1296.
Levitin, D.J. & V. Menon. 2003. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroimage 20: 2142-2152.
Cuddy, L.L. & J. Duffin. 2005. Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med. Hypotheses 64: 229-235.
Regnault, P., E. Bigand & M. Besson. 2001. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J. Cogn. Neurosci. 13: 241-255.
Ochsner, K.N. & J.J. Gross. 2005. The cognitive control of emotion. Trends Cogn. Sci. 9: 242-249.
Fox, M.D., A.Z. Snyder, J.L. Vincent, et al. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102: 9673-9678.
Thompson, P.M., K.M. Hayashi, G. de Zubicaray, et al. 2003. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23: 994-1005.
Critchley, H.D., D.R. Corfield, M.P. Chandler, et al. 2000. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol. (Lond.) 523: 259-270.
Patel, A.D. 2003. Language, music, syntax, and the brain. Nat. Neurosci. 6: 674-681.
Toiviainen, P. & C.L. Krumhansl. 2003. Measuring and modeling real-time responses to music: the dynamics of tonality induction. Perception 32: 741-766.
Platel, H., J.C. Baron, B. Desgranges, et al. 2003. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20: 244-256.
Leman, M. 1995. A model of retroactive tone-center perception. Mus. Percept. 12: 439-471.
Tillmann, B., P. Janata & J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16: 145-161.
Langheim, F.J.P., J.H. Callicott, V.S. Mattay, et al. 2002. Cortical systems associated with covert music rehearsal. Neuroimage 16: 901-908.
Paller, K.A., G. McCarthy & C.C. Wood. 1992. Event-related potentials elicited by deviant endings to melodies. Psychophysiology 29: 202-206.
2002; 16
2002; 17
2002; 14
2002; 15
2005; 64
2003; 16
2005; 21
2004; 5
2000; 133
2003; 19
2005; 24
1998; 16
1997; 51
2000; 12
2000; 523
2005; 102
2003; 6
1995; 21
2000; 97
2001; 11
2001; 12
1998; 10
2001; 13
2001; 98
2000; 67
1995; 12
2002; 298
2002; 2
1999; 2
2003; 335
2003; 32
1999; 9
1995; 7
1987; 24
1982; 89
2004; 19
2001; 4
2005; 9
1992; 29
1994; 14
2001; 38
1998; 106
1999; 277
2005; 15
2003; 302
2003; 63
2003; 20
2003; 100
2003; 23
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
Patel A.D. (e_1_2_7_24_2) 1998; 16
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
Kuniecki M. (e_1_2_7_40_2) 2003; 63
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – reference: Zysset, S., O. Huber, A. Samson, et al. 2003. Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects. Neurosci. Lett. 335: 183-186.
– reference: Fuster, J.M. 2000. Executive frontal functions. Exp. Brain Res. 133: 66-70.
– reference: Besson, M. & F. Macar. 1987. An event-related potential analysis of incongruity in music and other nonlinguistic contexts. Psychophysiology 24: 14-25.
– reference: Koechlin, E., C. Ody & F. Kouneiher. 2003. The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185.
– reference: Janata, P., B. Tillmann & J.J. Bharucha. 2002. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2: 121-140.
– reference: Koechlin, E., G. Corrado, P. Pietrini, et al. 2000. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. USA 97: 7651-7656.
– reference: Ochsner, K.N. & J.J. Gross. 2005. The cognitive control of emotion. Trends Cogn. Sci. 9: 242-249.
– reference: Ochsner, K.N., S.A. Bunge, J.J. Gross, et al. 2002. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14: 1215-1229.
– reference: Ramnani, N. & A.M. Owen. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5: 184-194.
– reference: Halgren, E., K. Marinkovic & P. Chauvel. 1998. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106: 156-164.
– reference: Zysset, S., O. Huber, E. Ferstl, et al. 2002. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15: 983-991.
– reference: Kiehl, K.A., K.R. Laurens, T.L. Duty, et al. 2001. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38: 133-142.
– reference: Besson, M. & F. Faïta. 1995. An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol. Hum. Percept. Perform. 21: 1278-1296.
– reference: Schubotz, R.I. & D.Y. von Cramon. 2002. Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI. Brain Res. Cogn. Brain Res. 14: 357-369.
– reference: Schubotz, R.I. & D.Y. von Cramon. 2001. Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed. Cogn. Brain Res. 11: 97-112.
– reference: Tillmann, B., P. Janata & J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16: 145-161.
– reference: Koelsch, S., T.C. Gunter, D.Y. von Cramon, et al. 2002. Bach speaks: a cortical "language-network" serves the processing of music. Neuroimage 17: 956-966.
– reference: Platel, H., J.C. Baron, B. Desgranges, et al. 2003. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20: 244-256.
– reference: Cuddy, L.L. & J. Duffin. 2005. Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med. Hypotheses 64: 229-235.
– reference: Janata, P. 1995. ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci. 7: 153-164.
– reference: Gaab, N., C. Gaser, T. Zaehle, et al. 2003. Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling. Neuroimage 19: 1417-1426.
– reference: Koelsch, S., T. Gunter, A.D. Friederici, et al. 2000. Brain indices of music processing: "nonmusicians" are musical. J. Cogn. Neurosci. 12: 520-541.
– reference: Leman, M. 1995. A model of retroactive tone-center perception. Mus. Percept. 12: 439-471.
– reference: Blood, A.J., R.J. Zatorre, P. Bermudez, et al. 1999. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2: 382-387.
– reference: Patel, A.D., E. Gibson, J. Ratner, et al. 1998. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10: 717-733.
– reference: Kuniecki, M., A. Urbanik, B. Sobiecka, et al. 2003. Central control of heart rate changes during visual affective processing as revealed by fMRI. Acta Neurobiol. Exp. 63: 39-48.
– reference: Gilbert, S.J., C.D. Frith & P.W. Burgess. 2005. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur. J. Neurosci. 21: 1423-1431.
– reference: Grezes, J. & J. Decety. 2001. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12: 1-19.
– reference: Regnault, P., E. Bigand & M. Besson. 2001. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J. Cogn. Neurosci. 13: 241-255.
– reference: Langheim, F.J.P., J.H. Callicott, V.S. Mattay, et al. 2002. Cortical systems associated with covert music rehearsal. Neuroimage 16: 901-908.
– reference: Halpern, A.R. & R.J. Zatorre. 1999. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebr. Cortex 9: 697-704.
– reference: Janata, P., J. L. Birk, B. Tillmann, et al. 2003. Online detection of tonal pop-out in modulating contexts. Mus. Percept. 20: 283-305.
– reference: Toiviainen, P. & C.L. Krumhansl. 2003. Measuring and modeling real-time responses to music: the dynamics of tonality induction. Perception 32: 741-766.
– reference: Peretz, I. & M. Coltheart. 2003. Modularity of music processing. Nat. Neurosci. 6: 688-691.
– reference: Meister, I.G., T. Krings, H. Foltys, et al. 2004. Playing piano in the mind: an fMRI study on music imagery and performance in pianists. Cogn. Brain Res. 19: 219-228.
– reference: Patel, A.D. 1998. Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus. Percept. 16: 27-42.
– reference: Maess, B., S. Koelsch, T. C. Gunter, et al. 2001. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4: 540-545.
– reference: Gusnard, D. A., E. Akbudak, G. L. Shulman, et al. 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 4259-4264.
– reference: Patel, A.D. 2003. Language, music, syntax, and the brain. Nat. Neurosci. 6: 674-681.
– reference: Levitin, D.J. & V. Menon. 2003. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroimage 20: 2142-2152.
– reference: Fox, M.D., A.Z. Snyder, J.L. Vincent, et al. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102: 9673-9678.
– reference: Volkow, N.D., G.J. Wang, J.S. Fowler, et al. 2000. Increased activity of the temporal insula in subjects with bradycardia. Life Sci. 67: 2213-2220.
– reference: Paller, K.A., G. McCarthy & C.C. Wood. 1992. Event-related potentials elicited by deviant endings to melodies. Psychophysiology 29: 202-206.
– reference: Krumhansl, C.L. 1997. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51: 336-353.
– reference: Critchley, H.D., D.R. Corfield, M.P. Chandler, et al. 2000. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol. (Lond.) 523: 259-270.
– reference: Janata, P., J.L. Birk, J.D. Van Horn, et al. 2002. The cortical topography of tonal structures underlying Western music. Science 298: 2167-2170.
– reference: Critchley, H.D., P. Rotshtein, Y. Nagai, et al. 2005. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24: 751-762.
– reference: Krumhansl, C.L. & E.J. Kessler. 1982. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89: 334-368.
– reference: Raichle, M.E., A.M. MacLeod, A.Z. Snyder, et al. 2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 676-682.
– reference: Koelsch, S. 2005. Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol. 15: 207-212.
– reference: Zatorre, R. J., A. C. Evans & E. Meyer. 1994. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14: 1908-1919.
– reference: Beisteiner, R., M. Erdler, D. Mayer, et al. 1999. A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians. Neurosci. Lett. 277: 37-40.
– reference: Kelley, W.M., C.N. Macrae, C.L. Wyland, et al. 2002. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14: 785-794.
– reference: Greicius, M.D., B. Krasnow, A.L. Reiss, et al. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100: 253-258.
– reference: Thompson, P.M., K.M. Hayashi, G. de Zubicaray, et al. 2003. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23: 994-1005.
– volume: 97
  start-page: 7651
  year: 2000
  end-page: 7656
  article-title: Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 336
  year: 1997
  end-page: 353
  article-title: An exploratory study of musical emotions and psychophysiology
  publication-title: Can. J. Exp. Psychol.
– volume: 13
  start-page: 241
  year: 2001
  end-page: 255
  article-title: Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event‐related brain potentials
  publication-title: J. Cogn. Neurosci.
– volume: 12
  start-page: 520
  year: 2000
  end-page: 541
  article-title: Brain indices of music processing: “nonmusicians” are musical
  publication-title: J. Cogn. Neurosci.
– volume: 6
  start-page: 674
  year: 2003
  end-page: 681
  article-title: Language, music, syntax, and the brain
  publication-title: Nat. Neurosci.
– volume: 2
  start-page: 121
  year: 2002
  end-page: 140
  article-title: Listening to polyphonic music recruits domain‐general attention and working memory circuits
  publication-title: Cogn. Affect. Behav. Neurosci.
– volume: 2
  start-page: 382
  year: 1999
  end-page: 387
  article-title: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 983
  year: 2002
  end-page: 991
  article-title: The anterior frontomedian cortex and evaluative judgment: an fMRI study
  publication-title: Neuroimage
– volume: 335
  start-page: 183
  year: 2003
  end-page: 186
  article-title: Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects
  publication-title: Neurosci. Lett.
– volume: 14
  start-page: 1215
  year: 2002
  end-page: 1229
  article-title: Rethinking feelings: an fMRI study of the cognitive regulation of emotion
  publication-title: J. Cogn. Neurosci.
– volume: 277
  start-page: 37
  year: 1999
  end-page: 40
  article-title: A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians
  publication-title: Neurosci. Lett.
– volume: 16
  start-page: 27
  year: 1998
  end-page: 42
  article-title: Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus
  publication-title: Percept.
– volume: 32
  start-page: 741
  year: 2003
  end-page: 766
  article-title: Measuring and modeling real‐time responses to music: the dynamics of tonality induction
  publication-title: Perception
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 523
  start-page: 259
  year: 2000
  end-page: 270
  article-title: Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans
  publication-title: J. Physiol. (Lond.)
– volume: 9
  start-page: 697
  year: 1999
  end-page: 704
  article-title: When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies
  publication-title: Cerebr. Cortex
– volume: 20
  start-page: 283
  year: 2003
  end-page: 305
  article-title: Online detection of tonal pop‐out in modulating contexts
  publication-title: Mus. Percept.
– volume: 11
  start-page: 97
  year: 2001
  end-page: 112
  article-title: Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location, and speed
  publication-title: Cogn. Brain Res.
– volume: 63
  start-page: 39
  year: 2003
  end-page: 48
  article-title: Central control of heart rate changes during visual affective processing as revealed by fMRI
  publication-title: Acta Neurobiol. Exp.
– volume: 7
  start-page: 153
  year: 1995
  end-page: 164
  article-title: ERP measures assay the degree of expectancy violation of harmonic contexts in music
  publication-title: J. Cogn. Neurosci.
– volume: 29
  start-page: 202
  year: 1992
  end-page: 206
  article-title: Event‐related potentials elicited by deviant endings to melodies
  publication-title: Psychophysiology
– volume: 21
  start-page: 1278
  year: 1995
  end-page: 1296
  article-title: An event‐related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
– volume: 20
  start-page: 2142
  year: 2003
  end-page: 2152
  article-title: Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence
  publication-title: Neuroimage
– volume: 12
  start-page: 439
  year: 1995
  end-page: 471
  article-title: A model of retroactive tone‐center perception
  publication-title: Mus. Percept.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 357
  year: 2002
  end-page: 369
  article-title: Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 38
  start-page: 133
  year: 2001
  end-page: 142
  article-title: Neural sources involved in auditory target detection and novelty processing: an event‐related fMRI study
  publication-title: Psychophysiology
– volume: 17
  start-page: 956
  year: 2002
  end-page: 966
  article-title: Bach speaks: a cortical “language‐network” serves the processing of music
  publication-title: Neuroimage
– volume: 16
  start-page: 145
  year: 2003
  end-page: 161
  article-title: Activation of the inferior frontal cortex in musical priming
  publication-title: Cogn. Brain Res.
– volume: 16
  start-page: 901
  year: 2002
  end-page: 908
  article-title: Cortical systems associated with covert music rehearsal
  publication-title: Neuroimage
– volume: 67
  start-page: 2213
  year: 2000
  end-page: 2220
  article-title: Increased activity of the temporal insula in subjects with bradycardia
  publication-title: Life Sci.
– volume: 302
  start-page: 1181
  year: 2003
  end-page: 1185
  article-title: The architecture of cognitive control in the human prefrontal cortex
  publication-title: Science
– volume: 4
  start-page: 540
  year: 2001
  end-page: 545
  article-title: Musical syntax is processed in Broca's area: an MEG study
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 1908
  year: 1994
  end-page: 1919
  article-title: Neural mechanisms underlying melodic perception and memory for pitch
  publication-title: J. Neurosci.
– volume: 6
  start-page: 688
  year: 2003
  end-page: 691
  article-title: Modularity of music processing
  publication-title: Nat. Neurosci.
– volume: 89
  start-page: 334
  year: 1982
  end-page: 368
  article-title: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys
  publication-title: Psychol. Rev.
– volume: 19
  start-page: 219
  year: 2004
  end-page: 228
  article-title: Playing piano in the mind: an fMRI study on music imagery and performance in pianists
  publication-title: Cogn. Brain Res.
– volume: 298
  start-page: 2167
  year: 2002
  end-page: 2170
  article-title: The cortical topography of tonal structures underlying Western music
  publication-title: Science
– volume: 14
  start-page: 785
  year: 2002
  end-page: 794
  article-title: Finding the self? An event‐related fMRI study
  publication-title: J. Cogn. Neurosci.
– volume: 98
  start-page: 4259
  year: 2001
  end-page: 4264
  article-title: Medial prefrontal cortex and self‐referential mental activity: relation to a default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 244
  year: 2003
  end-page: 256
  article-title: Semantic and episodic memory of music are subserved by distinct neural networks
  publication-title: Neuroimage
– volume: 5
  start-page: 184
  year: 2004
  end-page: 194
  article-title: Anterior prefrontal cortex: insights into function from anatomy and neuroimaging
  publication-title: Nat. Rev. Neurosci.
– volume: 10
  start-page: 717
  year: 1998
  end-page: 733
  article-title: Processing syntactic relations in language and music: an event‐related potential study
  publication-title: J. Cogn. Neurosci.
– volume: 21
  start-page: 1423
  year: 2005
  end-page: 1431
  article-title: Involvement of rostral prefrontal cortex in selection between stimulus‐oriented and stimulus‐independent thought
  publication-title: Eur. J. Neurosci.
– volume: 9
  start-page: 242
  year: 2005
  end-page: 249
  article-title: The cognitive control of emotion
  publication-title: Trends Cogn. Sci.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 14
  year: 1987
  end-page: 25
  article-title: An event‐related potential analysis of incongruity in music and other nonlinguistic contexts
  publication-title: Psychophysiology
– volume: 15
  start-page: 207
  year: 2005
  end-page: 212
  article-title: Neural substrates of processing syntax and semantics in music
  publication-title: Curr. Opin. Neurobiol.
– volume: 12
  start-page: 1
  year: 2001
  end-page: 19
  article-title: Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta‐analysis
  publication-title: Hum. Brain Mapp.
– volume: 64
  start-page: 229
  year: 2005
  end-page: 235
  article-title: Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed? Med
  publication-title: Hypotheses
– volume: 19
  start-page: 1417
  year: 2003
  end-page: 1426
  article-title: Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling
  publication-title: Neuroimage
– volume: 24
  start-page: 751
  year: 2005
  end-page: 762
  article-title: Activity in the human brain predicting differential heart rate responses to emotional facial expressions
  publication-title: Neuroimage
– volume: 133
  start-page: 66
  year: 2000
  end-page: 70
  article-title: Executive frontal functions
  publication-title: Exp. Brain Res.
– volume: 23
  start-page: 994
  year: 2003
  end-page: 1005
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 106
  start-page: 156
  year: 1998
  end-page: 164
  article-title: Generators of the late cognitive potentials in auditory and visual oddball tasks
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– ident: e_1_2_7_45_2
  doi: 10.1162/08989290260138672
– ident: e_1_2_7_3_2
  doi: 10.1038/nn1082
– ident: e_1_2_7_33_2
  doi: 10.1007/978-3-642-85213-8
– ident: e_1_2_7_37_2
  doi: 10.2307/40285676
– ident: e_1_2_7_38_2
– ident: e_1_2_7_9_2
  doi: 10.1093/cercor/9.7.697
– ident: e_1_2_7_14_2
  doi: 10.1523/JNEUROSCI.14-04-01908.1994
– ident: e_1_2_7_17_2
  doi: 10.1162/jocn.1995.7.2.153
– ident: e_1_2_7_32_2
– ident: e_1_2_7_39_2
  doi: 10.1016/j.neuroimage.2004.10.013
– ident: e_1_2_7_54_2
  doi: 10.1126/science.1088545
– ident: e_1_2_7_22_2
  doi: 10.1016/S0013-4694(97)00119-3
– ident: e_1_2_7_31_2
  doi: 10.1037/0033-295X.89.4.334
– ident: e_1_2_7_51_2
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_7_16_2
  doi: 10.1111/j.1469-8986.1992.tb01686.x
– ident: e_1_2_7_26_2
  doi: 10.1038/87502
– ident: e_1_2_7_58_2
  doi: 10.1038/7299
– ident: e_1_2_7_6_2
  doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
– ident: e_1_2_7_57_2
  doi: 10.1038/nrn1343
– ident: e_1_2_7_48_2
  doi: 10.1162/089892902760807212
– ident: e_1_2_7_46_2
  doi: 10.1006/nimg.2001.1008
– ident: e_1_2_7_23_2
  doi: 10.1111/1469-8986.3810133
– ident: e_1_2_7_47_2
  doi: 10.1016/S0304-3940(02)01196-5
– ident: e_1_2_7_28_2
  doi: 10.1016/S0926-6410(02)00245-8
– ident: e_1_2_7_44_2
  doi: 10.1073/pnas.071043098
– ident: e_1_2_7_50_2
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_7_36_2
  doi: 10.1525/mp.2003.20.3.283
– ident: e_1_2_7_43_2
  doi: 10.1111/j.1469-7793.2000.t01-1-00259.x
– volume: 63
  start-page: 39
  year: 2003
  ident: e_1_2_7_40_2
  article-title: Central control of heart rate changes during visual affective processing as revealed by fMRI
  publication-title: Acta Neurobiol. Exp.
  doi: 10.55782/ane-2003-1453
– ident: e_1_2_7_29_2
  doi: 10.1016/j.neuroimage.2003.08.016
– ident: e_1_2_7_53_2
  doi: 10.1073/pnas.130177397
– ident: e_1_2_7_59_2
  doi: 10.1016/S1053-8119(03)00287-8
– ident: e_1_2_7_60_2
  doi: 10.1016/j.mehy.2004.09.005
– ident: e_1_2_7_30_2
– ident: e_1_2_7_49_2
  doi: 10.1016/j.tics.2005.03.010
– ident: e_1_2_7_20_2
  doi: 10.1016/S0304-3940(99)00836-8
– ident: e_1_2_7_13_2
  doi: 10.1016/S1053-8119(03)00224-6
– ident: e_1_2_7_4_2
  doi: 10.1038/nn1083
– ident: e_1_2_7_5_2
  doi: 10.3758/CABN.2.2.121
– ident: e_1_2_7_8_2
  doi: 10.1016/S0926-6410(00)00069-0
– volume: 16
  start-page: 27
  year: 1998
  ident: e_1_2_7_24_2
  article-title: Syntactic processing in language and music: different cognitive operations, similar neural resources? Mus
  publication-title: Percept.
– ident: e_1_2_7_10_2
  doi: 10.1006/nimg.2002.1144
– ident: e_1_2_7_42_2
  doi: 10.1016/S0024-3205(00)00807-9
– ident: e_1_2_7_2_2
  doi: 10.1016/j.conb.2005.03.005
– ident: e_1_2_7_35_2
  doi: 10.1126/science.1076262
– ident: e_1_2_7_12_2
  doi: 10.1007/s002210000401
– ident: e_1_2_7_27_2
  doi: 10.1006/nimg.2002.1154
– ident: e_1_2_7_55_2
  doi: 10.1111/j.1460-9568.2005.03981.x
– ident: e_1_2_7_18_2
  doi: 10.1037/0096-1523.21.6.1278
– ident: e_1_2_7_15_2
  doi: 10.1111/j.1469-8986.1987.tb01853.x
– ident: e_1_2_7_7_2
  doi: 10.1016/S0926-6410(02)00138-6
– ident: e_1_2_7_11_2
  doi: 10.1016/j.cogbrainres.2003.12.005
– ident: e_1_2_7_41_2
  doi: 10.1037/1196-1961.51.4.336
– ident: e_1_2_7_52_2
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_7_34_2
  doi: 10.1068/p3312
– ident: e_1_2_7_25_2
  doi: 10.1162/089892900562183
– ident: e_1_2_7_56_2
  doi: 10.1093/acprof:oso/9780198566427.003.0009
– ident: e_1_2_7_21_2
  doi: 10.1162/089892901564298
– ident: e_1_2_7_19_2
  doi: 10.1162/089892998563121
– ident: e_1_2_7_61_2
  doi: 10.1523/JNEUROSCI.23-03-00994.2003
SSID ssj0012847
Score 2.0124862
SecondaryResourceType review_article
Snippet : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In...
A bstract : As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the...
As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Acoustic Stimulation
Alzheimer disease
Alzheimer Disease - pathology
attention
Auditory Perception
autobiographical memory
Brain - pathology
Brain Mapping - methods
emotion
event-related potential
Evoked Potentials
expectancy
Humans
Magnetic Resonance Imaging
Models, Neurological
Models, Statistical
Music
Pitch Discrimination
Pitch Perception
Prefrontal Cortex - anatomy & histology
rostral medial prefrontal cortex
tonality
torus
Title Brain Networks That Track Musical Structure
URI https://api.istex.fr/ark:/67375/WNG-H514CWJQ-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1196%2Fannals.1360.008
https://www.ncbi.nlm.nih.gov/pubmed/16597758
https://www.proquest.com/docview/17129725
https://www.proquest.com/docview/70151766
Volume 1060
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0077-8923
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1749-6632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012847
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EEbyo9VmfOYjoIbVpsln3KEUtggVfqKdlsw-USip9gPrrndmkFUUR8ZbAZpnM7Mx8m8x-A7CDTmSE5XEoYsPCxHATitRpukV0ZJNMe4qN83bauknO7tiompDOwhT8EOMPbuQZPl6Tg6us7EIiSnZbNBCVaVFxFh33xUu_qbocE0j54OtjMcdYjFimJPfBGQ6-PP8pL02Ril--A52fMaxPQidzkI3EL2pPOrXhIKvpty_Mjv96v3mYLSFqcFSsqQpM2HwBpoumla8LUCnDQT_YKzmr9xcB14h6zIN2UVTeD64f1CDAPKg7ge8kjfNdeabaYc8uwc3J8XWzFZZ9GEKNu78oNI5rZhDoKJ4akymjqLNNJojKJSY6eyd0bN2hs4rZwzpR3NcbTrNUp5FLmI6XYTLv5nYVgkxHpi5soplSiXNOIdrktm61cpEWDVuF2sgKUpck5dQr40n6zYrwB6hRLZLUIlEtVdgbP_Bc8HP8PHTXm3U8TvU6VNbGmbxtn8oWQsfm7dmFvKzC9sjuEp2N_qCo3HaHOBVHeMQb7OcRHOEVcW5WYaVYMB9SpUT1x1CM0Jv9N3Fl-_4Ic0209sfx6zBT0MtSyc0GTKJx7SYCp0G25X3jHRi-EfA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4x0DReNmCDlcHIwzSxh5SmieP6ESFKx9pIY0WwJ8vxDzF1ChO00uCv585OO4qG0LTHSM7JvvPdfU7O3wF8QCcywvI0FqlhcWa4iUXuND0iOrJZqT3FxqDIe6fZ8Tk7v3cXJvBDzD64kWf4eE0OTh-kg5eLmt4WLUR1WlSd1XkGS1mOpxUCRiczCikffn005hiNEc3U9D4oYu-BgLnMtERK_v032DmPYn0a6r4CPV1AqD4ZNSfjsqlvH3A7_t8KV-BljVKj_bCtVmHBVmvwPPStvFmD1ToiXEe7NW31p9eA20T9qKIi1JVfR8MLNY4wFepR5JtJo7xvnqx2cmXfwGn3cHjQi-tWDLFGlSaxcVwzg1hH8dyYUhlFzW1KQWwuKTHaO6FT6zrOKmY7LWK5b7WdZrnOE5cxna7DYnVZ2bcQlToxLWEzzZTKnHMKASe3LauVS7Ro2wY0p2aQuuYpp3YZP6U_rwh_hxrVIkktEtXSgN3ZC78CRcfjQz96u87GqasRVbZxJs-KI9lD9HhwdvxVnjRgZ2p4if5GP1FUZS8nKIojQuJt9vgIjgiLaDcbsBF2zJ9Z5cT2x3Aasbf7U9OVxfd9TDfJ5j-O34EXveGgL_ufiy_vYDmwzVIFzhYsoqHtNuKocfneO8odO_kWEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoaG9MGBjK2MjD9PEHlKaJo7rRwTryle0MRDlyXL8IVCngKCVgL-eOzstAw1N0x4jXU62z3f3c3L-HcAndCIjLE9jkRoWZ4abWORO0yOiI5uV2lNsHBR57zjb7bP-b3dhAj_E5IMbeYaP1-Tg9tK44OWiprdFC1GdFlVndaZhNmOiQ2V924cTCikffn005hiNEc3U9D6oYuOJgkeZaZYW-eZPsPMxivVpqPsK9HgCofpk0BwNy6a-e8Lt-H8zXID5GqVGm2FbLcKUrZbgRehbebsEi3VEuI7Wa9rqL68Bt4k6r6Ii1JVfR0dnahhhKtSDyDeTRn0_PVnt6Mq-gePu16OtXly3Yog1HgCT2DiumUGso3huTKmMouY2pSA2l5QY7Z3QqXUdZxWznRax3LfaTrNc54nLmE6XYaa6qOw7iEqdmJawmWZKZc45hYCT25bVyiVatG0DmmMzSF3zlFO7jF_Sn1eEv0ONyyJpWSQuSwPWJy9cBoqO50U_e7tO5NTVgCrbOJMnxTfZQ_S4dbL7Qx42YG1seIn-Rj9RVGUvRqiKI0Libfa8BEeERbSbDXgbdszDqHJi-2M4jNjb_W_DlcXpJqabZOUf5ddg7vt2V-7vFHvv4WUgm6UCnFWYQTvbDwijhuVH7yf3xqIVlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+networks+that+track+musical+structure&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Janata%2C+Petr&rft.date=2005-12-01&rft.issn=0077-8923&rft.volume=1060&rft.spage=111&rft_id=info:doi/10.1196%2Fannals.1360.008&rft_id=info%3Apmid%2F16597758&rft.externalDocID=16597758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon