A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs

The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 31; no. 1; pp. 262 - 279
Main Authors Yu, Wenqing, Wang, Xingju, Jiang, Xin, Zhao, Ranhang, Zhao, Shen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-31148-6

Cover

Abstract The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model’s hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination ( R 2 ), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration ( R 2  = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality. Graphical Abstract
AbstractList The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model's hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R ), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration (R  = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.
The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model’s hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R²), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration (R² = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.
The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model’s hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination ( R 2 ), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration ( R 2  = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality. Graphical Abstract
The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model’s hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R2), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration (R2 = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.
The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model's hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R2), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration (R2 = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning (ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then input into a bidirectional long short-term memory (BiLSTM) model, and the model's hyperparameters are optimized using the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R2), frequency histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that the SKB model performs best in predicting Chl-a concentration (R2 = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger prediction time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.
Author Wang, Xingju
Zhao, Shen
Jiang, Xin
Zhao, Ranhang
Yu, Wenqing
Author_xml – sequence: 1
  givenname: Wenqing
  surname: Yu
  fullname: Yu, Wenqing
  organization: Department of Civil Engineering and Water Conservancy, Shandong University
– sequence: 2
  givenname: Xingju
  surname: Wang
  fullname: Wang, Xingju
  organization: Department of Civil Engineering and Water Conservancy, Shandong University
– sequence: 3
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
  organization: Water Resources Research Institute of Shandong Province
– sequence: 4
  givenname: Ranhang
  orcidid: 0009-0001-9420-1422
  surname: Zhao
  fullname: Zhao, Ranhang
  email: ranhang-z@sdu.edu.cn
  organization: Department of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus of Shandong University
– sequence: 5
  givenname: Shen
  surname: Zhao
  fullname: Zhao, Shen
  organization: Water Resources Research Institute of Shandong Province, School of Water Conservancy and Environment, University of Jinan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38015396$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuHCEQRVFkK37lB7KIkLLJphOgaR5Ly8pLspRNskY0VM9gMTCBHkfzA_nu0B47jrxwFggKnVtQ956ho5QTIPSakveUEPmhUtoPoiOs73pKuerEC3RKBeWd5Fof_XM-QWe13hDCiGbyJTrpFaFDr8Up-n2JU76FiNf7sQSPN9m3YrQVPM4Jz79yV2e7AuztbPG2ZAe1hrTCNjXYunVIgCPYkpbLKZdlgbN1Xmq3jrnk7XofY2exy8lBmoudQ2sdEi5QodzmUOoFOp5srPDqfj9HPz59_H71pbv-9vnr1eV15zhRczepkZEJvNcT4yCU9QIIk9QKIpRS0-DHkQrhpdUjob1kxDIvubRNNA6S9Ofo3aFvm-TnDupsNqE6iNEmyLtq-maLaN6y_6NMaS4ZowNv6Nsn6E3eldQGMUxTrgXXjDXqzT21GzfgzbaEjS178xBGA9gBcCXXWmD6i1BilsTNIXHTEjd3iZtFpJ6IXJjvHG5Gh_i8tD9Ia3snraA8fvsZ1R8wl8B_
CitedBy_id crossref_primary_10_1007_s11356_024_33722_y
crossref_primary_10_1016_j_jenvman_2024_121463
crossref_primary_10_1016_j_jenvman_2025_124832
crossref_primary_10_1016_j_ecolind_2025_113215
Cites_doi 10.1016/j.jembe.2004.02.022
10.1016/j.compbiomed.2021.104516
10.1007/s11269-019-2183-x
10.1016/j.jglr.2022.04.015
10.1016/j.pce.2022.103193
10.1065/espr2005.04.241
10.1016/j.envres.2022.114723
10.1016/j.ecolind.2008.11.013
10.1007/s12665-012-2152-7
10.1007/s11356-022-18874-z
10.1016/j.envres.2023.116365
10.3390/rs14215461
10.1016/j.renene.2020.09.141
10.1016/j.jhydrol.2023.129207
10.3389/fenrg.2022.972437
10.1002/2013jd020420
10.1016/j.scitotenv.2011.09.030
10.3390/ijerph15071322
10.1016/s0304-3800(02)00281-8
10.1007/s11269-018-2077-3
10.1007/s10201-010-0336-y
10.1016/j.envres.2023.115560
10.1016/j.ress.2019.01.006
10.1016/j.envres.2023.115259
10.1007/s11269-018-1902-z
10.1016/j.jlp.2023.105082
10.3390/rs12091412
10.1007/s11356-017-8402-1
10.1016/j.jclepro.2023.137885
10.1016/j.jhydrol.2019.123915
10.1016/j.scitotenv.2018.05.215
10.1016/j.rsma.2021.101916
10.3390/w12061822
10.1016/j.chemosphere.2020.126169
10.1016/j.apenergy.2018.11.063
10.1007/s10661-019-7394-3
10.1016/j.jhydrol.2019.124488
10.1016/j.compstruc.2020.106358
10.1016/j.advwatres.2009.01.009
10.1007/s00027-014-0339-6
10.1016/s0048-9697(00)00691-4
10.1016/j.measurement.2014.03.044
10.1016/j.ymssp.2018.05.019
10.1016/j.jhydrol.2022.128766
10.1016/j.scitotenv.2014.09.005
10.1016/j.ecolind.2023.110133
10.3390/fi12020034
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-31148-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 279
ExternalDocumentID 38015396
10_1007_s11356_023_31148_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Shandong Province Water Conservancy Research and Technology Promotion Program
  grantid: SDSLKY201902
– fundername: Jinan Water Science and Technology Program
  grantid: JNSWKJ202202
– fundername: Research Fund of Water Research Institute of Shandong Province
  grantid: SDSKYZX202102
– fundername: National Natural Science Foundation of China
  grantid: 42377077
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 42377077
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-f8b20fedd9f24e68ad6e0271a606888f5dbb166d7a9b013720a2d747a0feb5703
IEDL.DBID BENPR
ISSN 1614-7499
0944-1344
IngestDate Thu Oct 02 05:55:17 EDT 2025
Thu Sep 04 19:45:05 EDT 2025
Tue Oct 07 06:41:38 EDT 2025
Wed Feb 19 02:09:07 EST 2025
Thu Apr 24 23:01:08 EDT 2025
Wed Oct 01 04:12:33 EDT 2025
Fri Feb 21 02:41:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chlorophyll-a
Bidirectional long short-term memory
Kernel principal component analysis
Prediction
Symplectic geometry mode decomposition
Eutrophication
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f8b20fedd9f24e68ad6e0271a606888f5dbb166d7a9b013720a2d747a0feb5703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-9420-1422
PMID 38015396
PQID 2914964922
PQPubID 54208
PageCount 18
ParticipantIDs proquest_miscellaneous_3153600720
proquest_miscellaneous_2894722154
proquest_journals_2914964922
pubmed_primary_38015396
crossref_primary_10_1007_s11356_023_31148_6
crossref_citationtrail_10_1007_s11356_023_31148_6
springer_journals_10_1007_s11356_023_31148_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Li (CR20) 2023; 216
Wang, Xu (CR35) 2020; 12
Qin, Li, Liang, Lee, Zhang, Gu (CR30) 2019; 236
Wang, Zhang, Yu, Salhi, Chen, Wang (CR36) 2021; 134
Lee, Lee (CR18) 2018; 15
Niu, Liu, Lu, Zhu, Sun, Wang (CR25) 2021; 47
Zhu, Guo, Huang, Tian, Zhang (CR47) 2023; 619
Zhang, Zhang, Huang, Gao (CR43) 2017; 24
Zhang, Chen, Zheng, Cao (CR45) 2023; 221
Chen, Jing, Chang, Liu (CR7) 2019; 185
Yu, Yang, Luo, Shang (CR40) 2020; 582
Ozdogan-Sarikoc, Sarikoc, Celik, Dadaser-Celik (CR26) 2023; 616
Shi, Yu, Zhao, Sun, Liu, Huo (CR32) 2023; 148
Cho, Lim, Jung, Kim, Chae, Park (CR8) 2014; 53
Gentine, Conard, O'Reilly, Cooper, Fiorino, Harrison (CR11) 2022; 48
Latifoglu (CR17) 2022; 29
Zhang, Zhang, Bao (CR44) 2023; 83
Wang, Fan, Yang, Zhou (CR37) 2023; 232
Park, Cho, Park, Cha, Kim (CR28) 2015; 502
Wu, Xia, Li, Mou (CR38) 2014; 76
Alexakis, Kagalou, Tsakiris (CR1) 2013; 70
Yu, Qiao, Wang (CR41) 2022; 10
Glasgow, Burkholder, Reed, Lewitus, Kleinman (CR12) 2004; 300
Hejazi, Cai (CR15) 2009; 32
Liu, Liu, Liu, Luo, Pei (CR21) 2023; 224
Pepe, Giardino, Borsani, Cardoso, Chiaudani, Premazzi (CR29) 2001; 268
Antico, Schlotthauer, Torres (CR2) 2014; 119
Hadi, Tombul (CR13) 2018; 32
Lu, Ma (CR22) 2020; 249
Zhou, Peng (CR46) 2020; 241
Dzurume, Dube, Shoko (CR9) 2022; 127
Gao, Huang, Shi, Tai, Zhang (CR10) 2020; 162
Rakocevic-Nedovic, Hollert (CR31) 2005; 12
Tong, Wang, Li, Yang, Zhao, Xu (CR34) 2019; 191
Pan, Yang, Li, Zheng, Cheng (CR27) 2019; 114
Cen, Jiang, Han, Lin, Liu, Jia (CR5) 2022; 14
Mohebzadeh, Yeom, Lee (CR23) 2020; 12
Myronidis, Ioannou, Fotakis, Dörflinger (CR24) 2018; 32
Xie, Zhang, Hou, Xie, Lv, Liu (CR39) 2019; 577
Chen, Li, Dai, Sun, Chen (CR6) 2011; 12
Zamani, Nikoo, Niknazar, Al-Rawas, Al-Wardy, Gandomi (CR42) 2023; 416
Kerimoglu, Grosse, Kreus, Lenhart, van Beusekom (CR16) 2018; 639
Boyer, Kelble, Ortner, Rudnick (CR3) 2009; 9
He, Luo, Zuo, Xie (CR14) 2019; 33
Lee, Huang, Dickman, Jayawardena (CR19) 2003; 159
Carvalho, Miller, Scott, Codd, Davies, Tyler (CR4) 2011; 409
Shin, Kim, Hong, Lee, Lee, Hong (CR33) 2020; 12
SJ Hadi (31148_CR13) 2018; 32
Y Qin (31148_CR30) 2019; 236
XX He (31148_CR14) 2019; 33
XF Wang (31148_CR35) 2020; 12
A Antico (31148_CR2) 2014; 119
XN Tong (31148_CR34) 2019; 191
MG Zamani (31148_CR42) 2023; 416
W Liu (31148_CR21) 2023; 224
T Dzurume (31148_CR9) 2022; 127
O Kerimoglu (31148_CR16) 2018; 639
S Lee (31148_CR18) 2018; 15
X Wang (31148_CR36) 2021; 134
K Wang (31148_CR37) 2023; 232
Y Niu (31148_CR25) 2021; 47
G Ozdogan-Sarikoc (31148_CR26) 2023; 616
D Alexakis (31148_CR1) 2013; 70
T Xie (31148_CR39) 2019; 577
Y Park (31148_CR28) 2015; 502
M Pepe (31148_CR29) 2001; 268
L Latifoglu (31148_CR17) 2022; 29
MI Hejazi (31148_CR15) 2009; 32
C Zhang (31148_CR43) 2017; 24
K Zhang (31148_CR44) 2023; 83
HB Cen (31148_CR5) 2022; 14
JA Gentine (31148_CR11) 2022; 48
JN Boyer (31148_CR3) 2009; 9
BX Gao (31148_CR10) 2020; 162
ZY Yu (31148_CR40) 2020; 582
L Carvalho (31148_CR4) 2011; 409
J Rakocevic-Nedovic (31148_CR31) 2005; 12
HF Lu (31148_CR22) 2020; 249
H Mohebzadeh (31148_CR23) 2020; 12
XH Zhang (31148_CR45) 2023; 221
JL Chen (31148_CR7) 2019; 185
Y Shin (31148_CR33) 2020; 12
T Zhou (31148_CR46) 2020; 241
Y Li (31148_CR20) 2023; 216
MJ Chen (31148_CR6) 2011; 12
XT Zhu (31148_CR47) 2023; 619
S Cho (31148_CR8) 2014; 53
HB Glasgow (31148_CR12) 2004; 300
D Myronidis (31148_CR24) 2018; 32
Q Wu (31148_CR38) 2014; 76
DK Yu (31148_CR41) 2022; 10
JHW Lee (31148_CR19) 2003; 159
XH Shi (31148_CR32) 2023; 148
HY Pan (31148_CR27) 2019; 114
References_xml – volume: 300
  start-page: 409
  year: 2004
  end-page: 448
  ident: CR12
  article-title: Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies
  publication-title: J Exp Mar Biol Ecol
  doi: 10.1016/j.jembe.2004.02.022
– volume: 134
  start-page: 13
  year: 2021
  ident: CR36
  article-title: Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104516
– volume: 33
  start-page: 1571
  year: 2019
  end-page: 1590
  ident: CR14
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-2183-x
– volume: 48
  start-page: 927
  year: 2022
  end-page: 934
  ident: CR11
  article-title: Environmental predictors of phytoplankton chlorophyll-a in Great Lakes coastal wetlands
  publication-title: J Great Lakes Res
  doi: 10.1016/j.jglr.2022.04.015
– volume: 127
  start-page: 103193
  year: 2022
  ident: CR9
  article-title: Remotely sensed data for estimating chlorophyll-a concentration in wetlands located in the Limpopo Transboundary River Basin, South Africa
  publication-title: Phys Chem Earth
  doi: 10.1016/j.pce.2022.103193
– volume: 12
  start-page: 146
  year: 2005
  end-page: 152
  ident: CR31
  article-title: Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan)
  publication-title: Environ Sci Pollut R
  doi: 10.1065/espr2005.04.241
– volume: 216
  start-page: 114723
  year: 2023
  ident: CR20
  article-title: Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.114723
– volume: 9
  start-page: S56
  year: 2009
  end-page: S67
  ident: CR3
  article-title: Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2008.11.013
– volume: 70
  start-page: 687
  year: 2013
  end-page: 698
  ident: CR1
  article-title: Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-2152-7
– volume: 29
  start-page: 42899
  year: 2022
  end-page: 42912
  ident: CR17
  article-title: A novel combined model for prediction of daily precipitation data using instantaneous frequency feature and bidirectional long short time memory networks
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-022-18874-z
– volume: 232
  start-page: 116365
  year: 2023
  ident: CR37
  article-title: An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.116365
– volume: 14
  start-page: 16
  year: 2022
  ident: CR5
  article-title: Applying deep learning in the prediction of chlorophyll-a in the East China Sea
  publication-title: Remote Sens
  doi: 10.3390/rs14215461
– volume: 162
  start-page: 1665
  year: 2020
  end-page: 1683
  ident: CR10
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2020.09.141
– volume: 619
  start-page: 19
  year: 2023
  ident: CR47
  article-title: A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129207
– volume: 10
  start-page: 9
  year: 2022
  ident: CR41
  article-title: Light intensity optimization of optical fiber stress sensor based on SSA-LSTM model
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.972437
– volume: 119
  start-page: 1218
  year: 2014
  end-page: 1233
  ident: CR2
  article-title: Analysis of hydroclimatic variability and trends using a novel empiricalmode decomposition: application to the Parana River Basin
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2013jd020420
– volume: 409
  start-page: 5353
  year: 2011
  end-page: 5358
  ident: CR4
  article-title: Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.09.030
– volume: 15
  start-page: 1322
  year: 2018
  ident: CR18
  article-title: Improved prediction of harmful algal blooms in four major South Korea’s rivers using deep learning models
  publication-title: Int J Env Res Pub He
  doi: 10.3390/ijerph15071322
– volume: 159
  start-page: 179
  year: 2003
  end-page: 201
  ident: CR19
  article-title: Neural network modelling of coastal algal blooms
  publication-title: Ecol Model
  doi: 10.1016/s0304-3800(02)00281-8
– volume: 32
  start-page: 4661
  year: 2018
  end-page: 4679
  ident: CR13
  article-title: Streamflow forecasting using four wavelet transformation combinations approaches with data-driven models: a comparative study
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-2077-3
– volume: 12
  start-page: 187
  year: 2011
  end-page: 192
  ident: CR6
  article-title: Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa
  publication-title: Limnology
  doi: 10.1007/s10201-010-0336-y
– volume: 224
  start-page: 115560
  year: 2023
  ident: CR21
  article-title: A novel deep learning ensemble model based on two-stage feature selection and intelligent optimization for water quality prediction
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.115560
– volume: 185
  start-page: 372
  year: 2019
  end-page: 382
  ident: CR7
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2019.01.006
– volume: 221
  start-page: 9
  year: 2023
  ident: CR45
  article-title: Improved prediction of chlorophyll-a concentrations in reservoirs by GRU neural network based on particle swarm algorithm optimized variational modal decomposition
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.115259
– volume: 32
  start-page: 1759
  year: 2018
  end-page: 1776
  ident: CR24
  article-title: Streamflow and hydrological drought trend analysis and forecasting in Cyprus
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1902-z
– volume: 83
  start-page: 14
  year: 2023
  ident: CR44
  article-title: Prediction of gas explosion pressures: a machine learning algorithm based on KPCA and an optimized LSSVM
  publication-title: J Loss Prevent Proc
  doi: 10.1016/j.jlp.2023.105082
– volume: 12
  start-page: 19
  year: 2020
  ident: CR23
  article-title: Spatial downscaling of MODIS chlorophyll-a with genetic programming in South Korea
  publication-title: Remote Sens
  doi: 10.3390/rs12091412
– volume: 24
  start-page: 6746
  year: 2017
  end-page: 6756
  ident: CR43
  article-title: Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-017-8402-1
– volume: 416
  start-page: 18
  year: 2023
  ident: CR42
  article-title: A multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and Bayesian maximum entropy
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.137885
– volume: 577
  start-page: 15
  year: 2019
  ident: CR39
  article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the Han River Basin, China
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123915
– volume: 639
  start-page: 1311
  year: 2018
  end-page: 1323
  ident: CR16
  article-title: A model-based projection of historical state of a coastal ecosystem: relevance of phytoplankton stoichiometry
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.05.215
– volume: 47
  start-page: 8
  year: 2021
  ident: CR25
  article-title: Phytoplankton blooms and its influencing environmental factors in the southern Yellow Sea
  publication-title: Reg Stud Mar Sci
  doi: 10.1016/j.rsma.2021.101916
– volume: 12
  start-page: 18
  year: 2020
  ident: CR33
  article-title: Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods
  publication-title: Water
  doi: 10.3390/w12061822
– volume: 249
  start-page: 12
  year: 2020
  ident: CR22
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
– volume: 236
  start-page: 262
  year: 2019
  end-page: 272
  ident: CR30
  article-title: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.11.063
– volume: 191
  start-page: 12
  year: 2019
  ident: CR34
  article-title: Trend analysis and modeling of nutrient concentrations in a preliminary eutrophic lake in China
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7394-3
– volume: 582
  start-page: 10
  year: 2020
  ident: CR40
  article-title: Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124488
– volume: 241
  start-page: 22
  year: 2020
  ident: CR46
  article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106358
– volume: 32
  start-page: 582
  year: 2009
  end-page: 593
  ident: CR15
  article-title: Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2009.01.009
– volume: 76
  start-page: 339
  year: 2014
  end-page: 351
  ident: CR38
  article-title: Impacts of meteorological variations on urban lake water quality: a sensitivity analysis for 12 urban lakes with different trophic states
  publication-title: Aquat Sci
  doi: 10.1007/s00027-014-0339-6
– volume: 268
  start-page: 31
  year: 2001
  end-page: 45
  ident: CR29
  article-title: Relationship between apparent optical properties and photosynthetic pigments in the sub-alpine Lake Iseo
  publication-title: Sci Total Environ
  doi: 10.1016/s0048-9697(00)00691-4
– volume: 53
  start-page: 224
  year: 2014
  end-page: 233
  ident: CR8
  article-title: Factors affecting algal blooms in a man-made lake and prediction using an artificial neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.03.044
– volume: 114
  start-page: 189
  year: 2019
  end-page: 211
  ident: CR27
  article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2018.05.019
– volume: 616
  start-page: 11
  year: 2023
  ident: CR26
  article-title: Reservoir volume forecasting using artificial intelligence-based models: artificial neural networks, support vector regression, and long short-term memory
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128766
– volume: 502
  start-page: 31
  year: 2015
  end-page: 41
  ident: CR28
  article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.09.005
– volume: 148
  start-page: 12
  year: 2023
  ident: CR32
  article-title: Impacts of environmental factors on Chlorophyll-a in lakes in cold and arid regions: a 10-year study of Wuliangsuhai Lake, China
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2023.110133
– volume: 12
  start-page: 13
  year: 2020
  ident: CR35
  article-title: Unsteady multi-element time series analysis and prediction based on spatial-temporal attention and error forecast fusion
  publication-title: Future Internet
  doi: 10.3390/fi12020034
– volume: 70
  start-page: 687
  year: 2013
  ident: 31148_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-2152-7
– volume: 502
  start-page: 31
  year: 2015
  ident: 31148_CR28
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.09.005
– volume: 582
  start-page: 10
  year: 2020
  ident: 31148_CR40
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124488
– volume: 249
  start-page: 12
  year: 2020
  ident: 31148_CR22
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
– volume: 232
  start-page: 116365
  year: 2023
  ident: 31148_CR37
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.116365
– volume: 241
  start-page: 22
  year: 2020
  ident: 31148_CR46
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106358
– volume: 185
  start-page: 372
  year: 2019
  ident: 31148_CR7
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2019.01.006
– volume: 191
  start-page: 12
  year: 2019
  ident: 31148_CR34
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7394-3
– volume: 32
  start-page: 582
  year: 2009
  ident: 31148_CR15
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2009.01.009
– volume: 47
  start-page: 8
  year: 2021
  ident: 31148_CR25
  publication-title: Reg Stud Mar Sci
  doi: 10.1016/j.rsma.2021.101916
– volume: 12
  start-page: 13
  year: 2020
  ident: 31148_CR35
  publication-title: Future Internet
  doi: 10.3390/fi12020034
– volume: 616
  start-page: 11
  year: 2023
  ident: 31148_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128766
– volume: 48
  start-page: 927
  year: 2022
  ident: 31148_CR11
  publication-title: J Great Lakes Res
  doi: 10.1016/j.jglr.2022.04.015
– volume: 162
  start-page: 1665
  year: 2020
  ident: 31148_CR10
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2020.09.141
– volume: 12
  start-page: 187
  year: 2011
  ident: 31148_CR6
  publication-title: Limnology
  doi: 10.1007/s10201-010-0336-y
– volume: 268
  start-page: 31
  year: 2001
  ident: 31148_CR29
  publication-title: Sci Total Environ
  doi: 10.1016/s0048-9697(00)00691-4
– volume: 119
  start-page: 1218
  year: 2014
  ident: 31148_CR2
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2013jd020420
– volume: 300
  start-page: 409
  year: 2004
  ident: 31148_CR12
  publication-title: J Exp Mar Biol Ecol
  doi: 10.1016/j.jembe.2004.02.022
– volume: 10
  start-page: 9
  year: 2022
  ident: 31148_CR41
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.972437
– volume: 12
  start-page: 19
  year: 2020
  ident: 31148_CR23
  publication-title: Remote Sens
  doi: 10.3390/rs12091412
– volume: 53
  start-page: 224
  year: 2014
  ident: 31148_CR8
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.03.044
– volume: 409
  start-page: 5353
  year: 2011
  ident: 31148_CR4
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.09.030
– volume: 32
  start-page: 4661
  year: 2018
  ident: 31148_CR13
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-2077-3
– volume: 76
  start-page: 339
  year: 2014
  ident: 31148_CR38
  publication-title: Aquat Sci
  doi: 10.1007/s00027-014-0339-6
– volume: 216
  start-page: 114723
  year: 2023
  ident: 31148_CR20
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.114723
– volume: 15
  start-page: 1322
  year: 2018
  ident: 31148_CR18
  publication-title: Int J Env Res Pub He
  doi: 10.3390/ijerph15071322
– volume: 14
  start-page: 16
  year: 2022
  ident: 31148_CR5
  publication-title: Remote Sens
  doi: 10.3390/rs14215461
– volume: 639
  start-page: 1311
  year: 2018
  ident: 31148_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.05.215
– volume: 29
  start-page: 42899
  year: 2022
  ident: 31148_CR17
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-022-18874-z
– volume: 33
  start-page: 1571
  year: 2019
  ident: 31148_CR14
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-2183-x
– volume: 114
  start-page: 189
  year: 2019
  ident: 31148_CR27
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2018.05.019
– volume: 619
  start-page: 19
  year: 2023
  ident: 31148_CR47
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129207
– volume: 83
  start-page: 14
  year: 2023
  ident: 31148_CR44
  publication-title: J Loss Prevent Proc
  doi: 10.1016/j.jlp.2023.105082
– volume: 12
  start-page: 18
  year: 2020
  ident: 31148_CR33
  publication-title: Water
  doi: 10.3390/w12061822
– volume: 236
  start-page: 262
  year: 2019
  ident: 31148_CR30
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.11.063
– volume: 159
  start-page: 179
  year: 2003
  ident: 31148_CR19
  publication-title: Ecol Model
  doi: 10.1016/s0304-3800(02)00281-8
– volume: 9
  start-page: S56
  year: 2009
  ident: 31148_CR3
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2008.11.013
– volume: 32
  start-page: 1759
  year: 2018
  ident: 31148_CR24
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1902-z
– volume: 416
  start-page: 18
  year: 2023
  ident: 31148_CR42
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.137885
– volume: 221
  start-page: 9
  year: 2023
  ident: 31148_CR45
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.115259
– volume: 224
  start-page: 115560
  year: 2023
  ident: 31148_CR21
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.115560
– volume: 134
  start-page: 13
  year: 2021
  ident: 31148_CR36
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104516
– volume: 24
  start-page: 6746
  year: 2017
  ident: 31148_CR43
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-017-8402-1
– volume: 577
  start-page: 15
  year: 2019
  ident: 31148_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123915
– volume: 12
  start-page: 146
  year: 2005
  ident: 31148_CR31
  publication-title: Environ Sci Pollut R
  doi: 10.1065/espr2005.04.241
– volume: 148
  start-page: 12
  year: 2023
  ident: 31148_CR32
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2023.110133
– volume: 127
  start-page: 103193
  year: 2022
  ident: 31148_CR9
  publication-title: Phys Chem Earth
  doi: 10.1016/j.pce.2022.103193
SSID ssj0020927
Score 2.3961723
Snippet The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms in reservoirs. Nevertheless,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms algae
Algal blooms
algorithms
Aquatic environment
Aquatic Pollution
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Back propagation networks
China
Chlorophyll
Data processing
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Eutrophication
geometry
Kernel functions
Learning algorithms
Long short-term memory
Machine learning
model validation
Monitoring systems
Multivariate analysis
Neural networks
Passeriformes
Performance prediction
prediction
Prediction models
principal component analysis
Principal components analysis
regression analysis
Research Article
Reservoirs
Root-mean-square errors
Search algorithms
Sequences
Support vector machines
Time series
time series analysis
Waste Water Technology
Water Management
Water monitoring
Water Pollution Control
Water quality
Water quality management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swEBZr9tKX0m5rmzYbN9jbarBlS5EeQ2kpe9jTAnkzsiW3hSCXOMnYH-jv7p0tJ5Q0hT34SScsfCffnXTfd4z9UIZIQKyIMDTGBEU5HpmxcZilUFcULazrCmR_y7tp9msmZgEU1vTV7v2VZPun3oLdklRQwSzhwegYTB6wj4LovNCKp3yySbNizccBHvP2vNcuaCeu3LkTbV3N7TE7CjEiTDqlnrAPzn9ipzdbSBoOhj3ZfGbPE_D12s3h4R-hr6DtbQPknSzUHpZ_6wgjwHsHVAwKTx0wAN8LxqNwW0vpIDSPuAeMYelxpWmoIBrKB0zoa9TFfB4ZKAnk6APTLjx6IPDSYl0_LpovbHp78-f6LgrdFaIyi9UyqlTB48pZqyueOamMlQ5z1MRI6kOjKmGLIpHSjo2ms9Ixjw23mHwYnFQQb9cpG_jau3MGQpbKiEpxw1OCrurYFkmllFaU66psyJL-g-dloB6nDhjzfEuaTErKUUl5q6RcDtnPzZynjnjjXelRr8c8bMIm5xrTP5lpzofs-2YYtw_diRjv6hXKKE10mRhI7pdJ0SsQjT-Ph-yss5HNklL08CLVuICr3mi2C9i_3ov_E79khxyDqe7oZ8QGy8XKfcVgaFl8a23_BZ6DAYQ
  priority: 102
  providerName: Springer Nature
Title A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
URI https://link.springer.com/article/10.1007/s11356-023-31148-6
https://www.ncbi.nlm.nih.gov/pubmed/38015396
https://www.proquest.com/docview/2914964922
https://www.proquest.com/docview/2894722154
https://www.proquest.com/docview/3153600720
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL3a2hdeEF-DwqiMxBtEJI7j2A8IlaljAqlCiErlKXJiZ5tUOV3bDfEH-N3cmzit0LQ9tA-No1q5dnyufc85AG-VIREQm0UIjTFBUY5HJjcOsxRyRdGZdV2B7EyezcXXRbY4gFnPhaGyyv6d2L6obVPRHvkHrhHLS6E5_7S6isg1ik5XewsNE6wV7MdWYuwQhpyUsQYw_Dydff-xS8Fi3Zm4aiGiJBUi0Gg6Ml2SZlSQS3wz2maT_y9Vt_DnrbPTdkk6fQQPA5Zkky74j-HA-SdwNN1T1_BimLubp_B3wnxz45bs4g-xtFjrgcNoFbOs8Wz7u4kQKZ47RkWjbNURCPB_mfHYuK25dCyYTJwzxLr0cZXZUOE0qy4w8W8wZstlZFhFZEgfFHnZpWdEclrfNJfrzTOYn05_npxFwYUhqkSstlGtSh7Xzlpdc-GkMlY6zGUTI8mvRtWZLctESpsbTXuqOY8Nt5ikGLypJH2vIxj4xrsXwDJZKZPVihueEsVVx7ZMaqW0opxYiREk_QMvqiBRTk4Zy2IvrkxBKjBIRRukQo7g3e6eVSfQcW_r4z6ORZism2I_tEbwZncZpxmdnRjvmmtsozTJaiLgvLtNiqsHyf3zeATPuzGy61KKSCBLNXbgfT9o9h24u78v7-_vK3jAEWR1W0LHMNiur91rBEnbcgyH-SLHb3WSjGE4-fLr23QcZgP-OueTf73OETg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAXVD4KSwsYCU4QkTiO1z5UqMBWW1pWCLVSb8GJnbZSlCybbav-AX4Wv42ZxNkVqtpbD3uKszvaGdtv7HnzAN4qQ01AbBIgNMYERTkemKFxmKWQKopOrOsKZCdyfCS-HSfHK_C358JQWWW_JrYLta1zOiP_yDVieSk055-mvwNSjaLb1V5Cw3hpBbvdthjzxI59d3WJKVyzvfcV_f2O893R4Zdx4FUGglyEah4UKuNh4azVBRdOKmOlw1wtMpL0WFSR2CyLpLRDo-nMcMhDwy2CcIMvZdS_Cr_3HqyJWGhM_tY-jyY_fi5SvlB3orFaiCCKhfC0nY68F8UJFQATv42O9eT_W-M1vHvtrrbdAnfX4aHHrmynC7ZHsOKqx7AxWlLl8KFfK5on8GeHVfWFK9npFbHCWKu5w2jXtKyu2PyyDhCZnjhGRaps2hEW8HeZqXBwW-PpmBe1OGGIrenjctNQoTbLT8t6VmOMlGVgWE7ky8p3AGZnFSNS1eyiPps1T-HoTvyxAatVXbnnwBKZK5MUihseE6VWhzaLCqW0ohxciQFE_R-e5r4lOilzlOmymTM5KUUnpa2TUjmA94t3pl1DkFtHb_V-TP3i0KTLUB7Am8VjnNZ0V2MqV5_jGKWpjScC3JvHxLhbkbwADwfwrIuRhUkxIo8k1mjAhz5olgbcbO-L2-19DffHh98P0oO9yf4mPOAI8LrjqC1Ync_O3UsEaPPslZ8FDH7d9cT7B_6lSiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuiL_ShQJGghNETRzHsQ8IVbSrlqKKA5X2FpzYaStFybLZtuoL8FA8HTNxshGq2lsPOcXZTHZm7G_s-WYA3itDRUBsEiA0xgBFOR6Y1DiMUqgrik6s8wmyR3L_WHybJbM1-DtwYSitcpgTu4naNgXtkW9zjVheCs35dtmnRfzYnX6Z_w6ogxSdtA7tNLyJHLqrSwzf2s8Hu6jrD5xP935-3Q_6DgNBIUK1DEqV87B01uqSCyeVsdJhnBYZSb1YVJnYPI-ktKnRtF-Y8tBwiwDc4EM51a7C370H99MYvwp9KZ2NwV6ofbtYLUQQxUL0hB1P24vihFJ_idlGG3ry_0XxGtK9dkrbLX7Tx_CoR61sx5vZE1hz9VPY2BtJcniznyXaZ_Bnh9XNhavY6RXxwVjXbYfRemlZU7PlZRMgJj1xjNJT2dxTFfC9zNQ4uMvudKxvZ3HCEFXT5QrTUoo2K06rZtGgdVRVYFhBtMu6r_3LzmpGdKrFRXO2aJ_D8Z1oYwPW66Z2m8ASWSiTlIobHhOZVoc2j0qltKLoW4kJRMMfnhV9MXTqyVFlYxlnUlKGSso6JWVyAh9Xz8x9KZBbR28Nesz6aaHNRiOewLvVbXRoOqUxtWvOcYzSVMAToe3NY2Jcp6ixAA8n8MLbyEqkGDFHEmsU4NNgNKMAN8v78nZ538IDdLfs-8HR4St4yBHZ-X2oLVhfLs7da0Rmy_xN5wIMft21z_0D6qtHuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+based+on+two-stage+data+processing+and+machine+learning+for+forecasting+chlorophyll-a+concentration+in+reservoirs&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Yu%2C+Wenqing&rft.au=Wang%2C+Xingju&rft.au=Jiang%2C+Xin&rft.au=Zhao%2C+Ranhang&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=31&rft.issue=1&rft.spage=262&rft.epage=279&rft_id=info:doi/10.1007%2Fs11356-023-31148-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon