Deep Transfer Learning-Based Feature Extraction: An Approach to Improve Nonintrusive Load Monitoring
The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, m...
Saved in:
Published in | IEEE access Vol. 9; pp. 139328 - 139335 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3118947 |
Cover
Abstract | The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, mainly the models based on convolutional neural networks. However, the efficient training of these models is strongly dependent on the quantity and balance of the data, i.e., characteristics that are not normally found in nonintrusive load monitoring datasets. To deal with these challenges, this paper proposes an approach based on three stages, that are: (i) time series transformation into 2D images; (ii) feature extraction using deep transfer learning; and (iii) classification/labelling of loads. Moreover, it was analyzed and defined the better window size per load in relation to the f1-score reached by the classifiers. In this sense, it was considered five loads present in the Reference Energy Disaggregation Dataset, where the proposed approach was able to obtain an average f1-score of 83.2%. From the results analysis, it was demonstrated the greater capacity of the proposed approach to infer and generalize its responses. |
---|---|
AbstractList | The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, mainly the models based on convolutional neural networks. However, the efficient training of these models is strongly dependent on the quantity and balance of the data, i.e., characteristics that are not normally found in nonintrusive load monitoring datasets. To deal with these challenges, this paper proposes an approach based on three stages, that are: (i) time series transformation into 2D images; (ii) feature extraction using deep transfer learning; and (iii) classification/labelling of loads. Moreover, it was analyzed and defined the better window size per load in relation to the f1-score reached by the classifiers. In this sense, it was considered five loads present in the Reference Energy Disaggregation Dataset, where the proposed approach was able to obtain an average f1-score of 83.2%. From the results analysis, it was demonstrated the greater capacity of the proposed approach to infer and generalize its responses. |
Author | Cavalca, Diego L. Fernandes, Ricardo A. S. |
Author_xml | – sequence: 1 givenname: Diego L. orcidid: 0000-0002-7793-9425 surname: Cavalca fullname: Cavalca, Diego L. organization: Graduate Program in Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil – sequence: 2 givenname: Ricardo A. S. orcidid: 0000-0003-2361-6505 surname: Fernandes fullname: Fernandes, Ricardo A. S. email: ricardo.asf@ufscar.br organization: Graduate Program in Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil |
BookMark | eNp9UcFuEzEQtVArtZR-QS-WOG-w117byy2ElEYK9ND2bE3s2eIoXQfbQfD3ON2CEAd88czTvKc3816TkzGOSMgVZzPOWf9uvlgs7-5mLWv5THBueqlfkfOWq74RnVAnf9Vn5DLnLavPVKjT58R_RNzT-wRjHjDRNUIaw_jYfICMnl4jlENCuvxRErgS4viezkc63-9TBPeVlkhXT7X-jvRLrLySDjnUZh3B088VKTFVtTfkdIBdxsuX_4I8XC_vFzfN-vbTajFfN04yU5rBSONAg8MegW-k5v1Gq070XmspGLZsUz1L2QlvNp4L9KozxhnotHdSaXFBVpOuj7C1-xSeIP20EYJ9BmJ6tJBKcDu0VRekUJJ5JSXnEgYtBwHopEZUDqrW20mrrvftgLnYbTyksdq3bWfaViqjTJ3qpymXYs4JB-tCgeOh6sHCznJmjxnZKSN7zMi-ZFS54h_ub8f_Z11NrICIfxh9V1eRUvwCyPiesw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_egyai_2024_100384 crossref_primary_10_3390_jsan14020025 crossref_primary_10_1016_j_scs_2022_104059 crossref_primary_10_1002_int_22876 crossref_primary_10_1016_j_epsr_2021_107734 crossref_primary_10_1016_j_egyai_2021_100126 crossref_primary_10_1186_s40537_023_00727_2 |
Cites_doi | 10.1016/0378-7788(95)00958-2 10.1109/5.192069 10.1109/TII.2012.2234469 10.1109/TSG.2018.2826844 10.1109/TSG.2012.2185522 10.1109/TSG.2016.2631238 10.1109/TPWRD.2009.2033799 10.1109/TSG.2013.2271282 10.3390/en12142641 10.1016/j.apenergy.2019.03.014 10.1016/j.epsr.2017.12.012 10.1016/j.scs.2020.102399 10.3390/su12083158 10.1109/TSG.2018.2871620 10.1016/j.apenergy.2011.11.027 10.1016/j.enbuild.2019.06.046 10.1109/TSG.2017.2666220 10.1109/67.75875 10.1109/ACCESS.2018.2850707 10.1016/j.epsr.2020.106887 10.1016/S0378-7788(99)00007-9 10.1109/ACCESS.2021.3078340 10.1109/TCE.2007.381742 10.1109/TSG.2017.2743763 10.1109/61.97667 10.1016/j.rser.2017.05.096 10.1155/2017/4216281 10.1109/TSG.2015.2494592 10.1109/TCE.2012.6170051 10.1016/j.jobe.2020.101601 10.1209/0295-5075/114/38003 10.1109/TSG.2011.2163950 10.1049/iet-gtd.2016.1615 10.1109/TSG.2018.2865702 10.1007/s12053-017-9561-0 10.3390/en11092460 10.1109/TPWRD.2005.852370 10.1109/61.400897 10.1109/TSG.2016.2584581 10.1109/ACCESS.2016.2557460 10.1016/j.rser.2021.110847 10.1016/j.enbuild.2017.09.087 10.1109/ACCESS.2019.2913469 10.1209/0295-5075/4/9/004 10.1016/j.physrep.2006.11.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3118947 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 139335 |
ExternalDocumentID | oai_doaj_org_article_765a43640d644114af74f3aec47ee6ca 10_1109_ACCESS_2021_3118947 9564044 |
Genre | orig-research |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 funderid: 10.13039/501100002322 – fundername: São Paulo Research Foundation (FAPESP) grantid: 2019/15192-9 funderid: 10.13039/501100001807 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-f848ca7ace9ea1b4719b76539d77430e20b9574453d8bd13ed6588c8a57dc4673 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Mon Jun 30 04:39:23 EDT 2025 Tue Jul 01 04:20:40 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Wed Aug 27 02:26:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-f848ca7ace9ea1b4719b76539d77430e20b9574453d8bd13ed6588c8a57dc4673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2361-6505 0000-0002-7793-9425 |
OpenAccessLink | https://doaj.org/article/765a43640d644114af74f3aec47ee6ca |
PQID | 2582246868 |
PQPubID | 4845423 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_765a43640d644114af74f3aec47ee6ca proquest_journals_2582246868 crossref_citationtrail_10_1109_ACCESS_2021_3118947 crossref_primary_10_1109_ACCESS_2021_3118947 ieee_primary_9564044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 johnson (ref36) 2013; 14 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 simonyan (ref50) 2014 ref37 ref31 ref30 ref33 ref2 ref1 ref39 ref38 krizhevsky (ref49) 2012 ref24 ref23 ref26 kolter (ref35) 2011; 25 ref25 ref20 ref22 ref21 cavalca (ref34) 2020 ref28 ref27 ref29 baptista (ref32) 2018; 11 |
References_xml | – ident: ref9 doi: 10.1016/0378-7788(95)00958-2 – ident: ref7 doi: 10.1109/5.192069 – ident: ref12 doi: 10.1109/TII.2012.2234469 – ident: ref28 doi: 10.1109/TSG.2018.2826844 – ident: ref23 doi: 10.1109/TSG.2012.2185522 – ident: ref45 doi: 10.1109/TSG.2016.2631238 – ident: ref14 doi: 10.1109/TPWRD.2009.2033799 – ident: ref17 doi: 10.1109/TSG.2013.2271282 – ident: ref21 doi: 10.3390/en12142641 – volume: 14 start-page: 673 year: 2013 ident: ref36 article-title: Bayesian nonparametric hidden semi-Markov models publication-title: J Mach Learn Res – ident: ref20 doi: 10.1016/j.apenergy.2019.03.014 – ident: ref18 doi: 10.1016/j.epsr.2017.12.012 – ident: ref30 doi: 10.1016/j.scs.2020.102399 – ident: ref29 doi: 10.3390/su12083158 – ident: ref27 doi: 10.1109/TSG.2018.2871620 – ident: ref16 doi: 10.1016/j.apenergy.2011.11.027 – ident: ref26 doi: 10.1016/j.enbuild.2019.06.046 – ident: ref43 doi: 10.1109/TSG.2017.2666220 – volume: 25 start-page: 59 year: 2011 ident: ref35 article-title: REDD: A public data set for energy disaggregation research publication-title: Proc Workshop Data Mining Appl Sustainability (SIGKDD) – ident: ref5 doi: 10.1109/67.75875 – ident: ref42 doi: 10.1109/ACCESS.2018.2850707 – ident: ref31 doi: 10.1016/j.epsr.2020.106887 – ident: ref10 doi: 10.1016/S0378-7788(99)00007-9 – ident: ref3 doi: 10.1109/ACCESS.2021.3078340 – ident: ref15 doi: 10.1109/TCE.2007.381742 – ident: ref22 doi: 10.1109/TSG.2017.2743763 – ident: ref6 doi: 10.1109/61.97667 – start-page: 1097 year: 2012 ident: ref49 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1016/j.rser.2017.05.096 – ident: ref41 doi: 10.1155/2017/4216281 – ident: ref37 doi: 10.1109/TSG.2015.2494592 – ident: ref25 doi: 10.1109/TCE.2012.6170051 – ident: ref4 doi: 10.1016/j.jobe.2020.101601 – ident: ref46 doi: 10.1209/0295-5075/114/38003 – ident: ref24 doi: 10.1109/TSG.2011.2163950 – ident: ref38 doi: 10.1049/iet-gtd.2016.1615 – ident: ref44 doi: 10.1109/TSG.2018.2865702 – start-page: 1 year: 2014 ident: ref50 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent – ident: ref13 doi: 10.1007/s12053-017-9561-0 – volume: 11 start-page: 1 year: 2018 ident: ref32 article-title: Implementation strategy of convolution neural networks on field programmable gate arrays for appliance classification using the voltage and current (VI) trajectory publication-title: Energies doi: 10.3390/en11092460 – ident: ref11 doi: 10.1109/TPWRD.2005.852370 – ident: ref8 doi: 10.1109/61.400897 – ident: ref40 doi: 10.1109/TSG.2016.2584581 – ident: ref19 doi: 10.1109/ACCESS.2016.2557460 – start-page: 1 year: 2020 ident: ref34 article-title: Recurrence plots and convolutional neural networks applied to nonintrusive load monitoring publication-title: Proc Power Energy Soc Gen Meet (PESGM) – ident: ref1 doi: 10.1016/j.rser.2021.110847 – ident: ref33 doi: 10.1016/j.enbuild.2017.09.087 – ident: ref39 doi: 10.1109/ACCESS.2019.2913469 – ident: ref47 doi: 10.1209/0295-5075/4/9/004 – ident: ref48 doi: 10.1016/j.physrep.2006.11.001 |
SSID | ssj0000816957 |
Score | 2.256329 |
Snippet | The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139328 |
SubjectTerms | Artificial neural networks Convolutional neural network Convolutional neural networks Datasets Deep learning deep transfer learning Feature extraction Hidden Markov models Image classification Load Machine learning Meters Monitoring nonintrusive load monitoring recurrence plots Time series analysis Training Transfer learning |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQ2kLFthT50CNZ8mEnTm_LAkJV4QQSN8sfkx5Au2iblar-emZib4TaCvUWRU7i5NmeNxPPG4AvtStRk5ucOfKRM-kkZrbMQ2adQ-U05i5wNvLVdX15K7_dqbstOB5zYRBx2HyGUz4c_uWHpV9zqOyEuLzMpdyGbRpmMVdrjKdwAYlWNUlYqMjbk9l8Tu9ALmBZkGda6JZLqDwzPoNGfyqq8tdKPJiXi1242nQs7iq5n657N_W__9Bs_N-ev4U3iWeKWRwY72ALF-_h9TP1wT0IZ4iPYjBWHa5EUlr9kZ2SYQuCueF6heL8V7-KyQ9fxWwhZkmDXPRLEQMSKK45pMvJG7Ryiu9LG0RcKfgx-3B7cX4zv8xS0YXMy1z3Wael9raxHlu0hSPb1RKMqmoDEcUqxzJ39JmlVFXQLhQVBuIw2murmuBp1a0-wM5iucADEJ64jFPWEyWysvHedcSOgleFI3spy2IC5QYN45MiORfGeDCDZ5K3JkJoGEKTIJzA8XjRYxTkeLn5KcM8NmU17eEEwWPS5DT0flZWhFBgdlhI2zWyqyx62SDW3k5gjyEdb5LQnMDhZtCYNPN_mlLxvtxa1_rjv6_6BK-4gzGMcwg7BA9-JmLTu6NhRD8BJMb1Ig priority: 102 providerName: IEEE |
Title | Deep Transfer Learning-Based Feature Extraction: An Approach to Improve Nonintrusive Load Monitoring |
URI | https://ieeexplore.ieee.org/document/9564044 https://www.proquest.com/docview/2582246868 https://doaj.org/article/765a43640d644114af74f3aec47ee6ca |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7iaT2ITxwdJYc9bmPSXelOextHRZZdTwreQh7VXmRGxhH252_l4TAg6MVrk-50qipVX4XUV4z9bF2NmtLkylGOXIEDrGwtQmWdQ-U0ChdiNfLfu_b2AX4_qse1Vl_xTlimB86CO-9aZaFpQYQYuSXYoYOhseihQ2x9gkaiF2vJVPLBWra96grNkBT9-WQ6pRVRQlhLylOl7mNDlbVQlBj7S4uVD345BZubHbZdUCKf5L_bZRs422Nba9yB-yxcIb7wFGoGXPDCk_pUXVJYCjwiu7cF8ut_y0UuXbjgkxmfFAZxvpzzfJyA_C4eyMbSC_J7_M_cBp73eZzmgD3cXN9Pb6vSMqHyIPSyGjRobzvrsUcrHUWenpSgmj4QzGsE1sKRWABUE7QLssFACER7bVUXPPnM5pBtzuYzPGLcExJxynoCNBY6791A2CZ4JR1FO6jliNXv0jO-8InHthbPJuUVojdZ5CaK3BSRj9iv1UsvmU7j8-GXUS2roZELOz0gCzHFQsxXFjJi-1Gpq49QRggCYMTG70o2Zd--mlrFW7WtbvXxd0x9wn7E5eQjmzHbJGXiKYGYpTtL9nqW6g3_A52p7LY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLQ9tBSKuoVSHziSJR924nBbtqCl3d0TSNwsf0x6KNpF26xU9dd3HHsjBFXVWxQ5iZNne95MPG8ATkqToyQ3OTHkIyfccEx0nrpEG4PCSEyN89nIs3k5ueVf78TdFpz2uTCI2G0-w6E_7P7lu6Vd-1DZGXF5nnL-AnYEeRUyZGv1ERVfQqIWVZQWytL6bDQe01uQE5hn5JtmsvZFVB6Zn06lP5ZVebYWdwbm6i3MNl0L-0p-DNetGdrfT1Qb_7fvu_AmMk02CkPjHWzhYg9eP9If3Af3BfGBdeaqwRWLWqvfkwsybY55drheIbv81a5C-sM5Gy3YKKqQs3bJQkgC2dwHdX36Bq2dbLrUjoW1wj_mPdxeXd6MJ0ksu5BYnso2aSSXVlfaYo06M2S9agJSFLUjqlikmKeGPjPnonDSuKxARyxGWqlF5Sytu8UBbC-WC_wAzBKbMUJbIkWaV9aahviRsyIzZDF5ng0g36ChbNQk96Ux7lXnm6S1ChAqD6GKEA7gtL_oIUhy_Lv5hYe5b-r1tLsTBI-K01PR-2leEELO88OM66biTaHR8gqxtHoA-x7S_iYRzQEcbQaNinP_p8qF35lbylJ-_PtVn-Hl5GY2VdPr-bdDeOU7G4I6R7BNUOEnojmtOe5G9x8vAvh1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning-Based+Feature+Extraction%3A+An+Approach+to+Improve+Nonintrusive+Load+Monitoring&rft.jtitle=IEEE+access&rft.au=Cavalca%2C+Diego+L.&rft.au=Fernandes%2C+Ricardo+A.+S.&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=139328&rft.epage=139335&rft_id=info:doi/10.1109%2FACCESS.2021.3118947&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3118947 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |