Deep Transfer Learning-Based Feature Extraction: An Approach to Improve Nonintrusive Load Monitoring

The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, m...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 139328 - 139335
Main Authors Cavalca, Diego L., Fernandes, Ricardo A. S.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3118947

Cover

Abstract The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, mainly the models based on convolutional neural networks. However, the efficient training of these models is strongly dependent on the quantity and balance of the data, i.e., characteristics that are not normally found in nonintrusive load monitoring datasets. To deal with these challenges, this paper proposes an approach based on three stages, that are: (i) time series transformation into 2D images; (ii) feature extraction using deep transfer learning; and (iii) classification/labelling of loads. Moreover, it was analyzed and defined the better window size per load in relation to the f1-score reached by the classifiers. In this sense, it was considered five loads present in the Reference Energy Disaggregation Dataset, where the proposed approach was able to obtain an average f1-score of 83.2%. From the results analysis, it was demonstrated the greater capacity of the proposed approach to infer and generalize its responses.
AbstractList The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical implementation of demand response programs. Recently, in terms of nonintrusive load monitoring, the use of deep learning has gained attention, mainly the models based on convolutional neural networks. However, the efficient training of these models is strongly dependent on the quantity and balance of the data, i.e., characteristics that are not normally found in nonintrusive load monitoring datasets. To deal with these challenges, this paper proposes an approach based on three stages, that are: (i) time series transformation into 2D images; (ii) feature extraction using deep transfer learning; and (iii) classification/labelling of loads. Moreover, it was analyzed and defined the better window size per load in relation to the f1-score reached by the classifiers. In this sense, it was considered five loads present in the Reference Energy Disaggregation Dataset, where the proposed approach was able to obtain an average f1-score of 83.2%. From the results analysis, it was demonstrated the greater capacity of the proposed approach to infer and generalize its responses.
Author Cavalca, Diego L.
Fernandes, Ricardo A. S.
Author_xml – sequence: 1
  givenname: Diego L.
  orcidid: 0000-0002-7793-9425
  surname: Cavalca
  fullname: Cavalca, Diego L.
  organization: Graduate Program in Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
– sequence: 2
  givenname: Ricardo A. S.
  orcidid: 0000-0003-2361-6505
  surname: Fernandes
  fullname: Fernandes, Ricardo A. S.
  email: ricardo.asf@ufscar.br
  organization: Graduate Program in Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
BookMark eNp9UcFuEzEQtVArtZR-QS-WOG-w117byy2ElEYK9ND2bE3s2eIoXQfbQfD3ON2CEAd88czTvKc3816TkzGOSMgVZzPOWf9uvlgs7-5mLWv5THBueqlfkfOWq74RnVAnf9Vn5DLnLavPVKjT58R_RNzT-wRjHjDRNUIaw_jYfICMnl4jlENCuvxRErgS4viezkc63-9TBPeVlkhXT7X-jvRLrLySDjnUZh3B088VKTFVtTfkdIBdxsuX_4I8XC_vFzfN-vbTajFfN04yU5rBSONAg8MegW-k5v1Gq070XmspGLZsUz1L2QlvNp4L9KozxhnotHdSaXFBVpOuj7C1-xSeIP20EYJ9BmJ6tJBKcDu0VRekUJJ5JSXnEgYtBwHopEZUDqrW20mrrvftgLnYbTyksdq3bWfaViqjTJ3qpymXYs4JB-tCgeOh6sHCznJmjxnZKSN7zMi-ZFS54h_ub8f_Z11NrICIfxh9V1eRUvwCyPiesw
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_egyai_2024_100384
crossref_primary_10_3390_jsan14020025
crossref_primary_10_1016_j_scs_2022_104059
crossref_primary_10_1002_int_22876
crossref_primary_10_1016_j_epsr_2021_107734
crossref_primary_10_1016_j_egyai_2021_100126
crossref_primary_10_1186_s40537_023_00727_2
Cites_doi 10.1016/0378-7788(95)00958-2
10.1109/5.192069
10.1109/TII.2012.2234469
10.1109/TSG.2018.2826844
10.1109/TSG.2012.2185522
10.1109/TSG.2016.2631238
10.1109/TPWRD.2009.2033799
10.1109/TSG.2013.2271282
10.3390/en12142641
10.1016/j.apenergy.2019.03.014
10.1016/j.epsr.2017.12.012
10.1016/j.scs.2020.102399
10.3390/su12083158
10.1109/TSG.2018.2871620
10.1016/j.apenergy.2011.11.027
10.1016/j.enbuild.2019.06.046
10.1109/TSG.2017.2666220
10.1109/67.75875
10.1109/ACCESS.2018.2850707
10.1016/j.epsr.2020.106887
10.1016/S0378-7788(99)00007-9
10.1109/ACCESS.2021.3078340
10.1109/TCE.2007.381742
10.1109/TSG.2017.2743763
10.1109/61.97667
10.1016/j.rser.2017.05.096
10.1155/2017/4216281
10.1109/TSG.2015.2494592
10.1109/TCE.2012.6170051
10.1016/j.jobe.2020.101601
10.1209/0295-5075/114/38003
10.1109/TSG.2011.2163950
10.1049/iet-gtd.2016.1615
10.1109/TSG.2018.2865702
10.1007/s12053-017-9561-0
10.3390/en11092460
10.1109/TPWRD.2005.852370
10.1109/61.400897
10.1109/TSG.2016.2584581
10.1109/ACCESS.2016.2557460
10.1016/j.rser.2021.110847
10.1016/j.enbuild.2017.09.087
10.1109/ACCESS.2019.2913469
10.1209/0295-5075/4/9/004
10.1016/j.physrep.2006.11.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3118947
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 139335
ExternalDocumentID oai_doaj_org_article_765a43640d644114af74f3aec47ee6ca
10_1109_ACCESS_2021_3118947
9564044
Genre orig-research
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001
  funderid: 10.13039/501100002322
– fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2019/15192-9
  funderid: 10.13039/501100001807
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f848ca7ace9ea1b4719b76539d77430e20b9574453d8bd13ed6588c8a57dc4673
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:19 EDT 2025
Mon Jun 30 04:39:23 EDT 2025
Tue Jul 01 04:20:40 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Wed Aug 27 02:26:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f848ca7ace9ea1b4719b76539d77430e20b9574453d8bd13ed6588c8a57dc4673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2361-6505
0000-0002-7793-9425
OpenAccessLink https://doaj.org/article/765a43640d644114af74f3aec47ee6ca
PQID 2582246868
PQPubID 4845423
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_765a43640d644114af74f3aec47ee6ca
proquest_journals_2582246868
crossref_citationtrail_10_1109_ACCESS_2021_3118947
crossref_primary_10_1109_ACCESS_2021_3118947
ieee_primary_9564044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
johnson (ref36) 2013; 14
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
simonyan (ref50) 2014
ref37
ref31
ref30
ref33
ref2
ref1
ref39
ref38
krizhevsky (ref49) 2012
ref24
ref23
ref26
kolter (ref35) 2011; 25
ref25
ref20
ref22
ref21
cavalca (ref34) 2020
ref28
ref27
ref29
baptista (ref32) 2018; 11
References_xml – ident: ref9
  doi: 10.1016/0378-7788(95)00958-2
– ident: ref7
  doi: 10.1109/5.192069
– ident: ref12
  doi: 10.1109/TII.2012.2234469
– ident: ref28
  doi: 10.1109/TSG.2018.2826844
– ident: ref23
  doi: 10.1109/TSG.2012.2185522
– ident: ref45
  doi: 10.1109/TSG.2016.2631238
– ident: ref14
  doi: 10.1109/TPWRD.2009.2033799
– ident: ref17
  doi: 10.1109/TSG.2013.2271282
– ident: ref21
  doi: 10.3390/en12142641
– volume: 14
  start-page: 673
  year: 2013
  ident: ref36
  article-title: Bayesian nonparametric hidden semi-Markov models
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1016/j.apenergy.2019.03.014
– ident: ref18
  doi: 10.1016/j.epsr.2017.12.012
– ident: ref30
  doi: 10.1016/j.scs.2020.102399
– ident: ref29
  doi: 10.3390/su12083158
– ident: ref27
  doi: 10.1109/TSG.2018.2871620
– ident: ref16
  doi: 10.1016/j.apenergy.2011.11.027
– ident: ref26
  doi: 10.1016/j.enbuild.2019.06.046
– ident: ref43
  doi: 10.1109/TSG.2017.2666220
– volume: 25
  start-page: 59
  year: 2011
  ident: ref35
  article-title: REDD: A public data set for energy disaggregation research
  publication-title: Proc Workshop Data Mining Appl Sustainability (SIGKDD)
– ident: ref5
  doi: 10.1109/67.75875
– ident: ref42
  doi: 10.1109/ACCESS.2018.2850707
– ident: ref31
  doi: 10.1016/j.epsr.2020.106887
– ident: ref10
  doi: 10.1016/S0378-7788(99)00007-9
– ident: ref3
  doi: 10.1109/ACCESS.2021.3078340
– ident: ref15
  doi: 10.1109/TCE.2007.381742
– ident: ref22
  doi: 10.1109/TSG.2017.2743763
– ident: ref6
  doi: 10.1109/61.97667
– start-page: 1097
  year: 2012
  ident: ref49
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1016/j.rser.2017.05.096
– ident: ref41
  doi: 10.1155/2017/4216281
– ident: ref37
  doi: 10.1109/TSG.2015.2494592
– ident: ref25
  doi: 10.1109/TCE.2012.6170051
– ident: ref4
  doi: 10.1016/j.jobe.2020.101601
– ident: ref46
  doi: 10.1209/0295-5075/114/38003
– ident: ref24
  doi: 10.1109/TSG.2011.2163950
– ident: ref38
  doi: 10.1049/iet-gtd.2016.1615
– ident: ref44
  doi: 10.1109/TSG.2018.2865702
– start-page: 1
  year: 2014
  ident: ref50
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref13
  doi: 10.1007/s12053-017-9561-0
– volume: 11
  start-page: 1
  year: 2018
  ident: ref32
  article-title: Implementation strategy of convolution neural networks on field programmable gate arrays for appliance classification using the voltage and current (VI) trajectory
  publication-title: Energies
  doi: 10.3390/en11092460
– ident: ref11
  doi: 10.1109/TPWRD.2005.852370
– ident: ref8
  doi: 10.1109/61.400897
– ident: ref40
  doi: 10.1109/TSG.2016.2584581
– ident: ref19
  doi: 10.1109/ACCESS.2016.2557460
– start-page: 1
  year: 2020
  ident: ref34
  article-title: Recurrence plots and convolutional neural networks applied to nonintrusive load monitoring
  publication-title: Proc Power Energy Soc Gen Meet (PESGM)
– ident: ref1
  doi: 10.1016/j.rser.2021.110847
– ident: ref33
  doi: 10.1016/j.enbuild.2017.09.087
– ident: ref39
  doi: 10.1109/ACCESS.2019.2913469
– ident: ref47
  doi: 10.1209/0295-5075/4/9/004
– ident: ref48
  doi: 10.1016/j.physrep.2006.11.001
SSID ssj0000816957
Score 2.256329
Snippet The development of techniques that allow the efficient identification of residential loads (nonintrusive load monitoring) is a key factor for the practical...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139328
SubjectTerms Artificial neural networks
Convolutional neural network
Convolutional neural networks
Datasets
Deep learning
deep transfer learning
Feature extraction
Hidden Markov models
Image classification
Load
Machine learning
Meters
Monitoring
nonintrusive load monitoring
recurrence plots
Time series analysis
Training
Transfer learning
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQ2kLFthT50CNZ8mEnTm_LAkJV4QQSN8sfkx5Au2iblar-emZib4TaCvUWRU7i5NmeNxPPG4AvtStRk5ucOfKRM-kkZrbMQ2adQ-U05i5wNvLVdX15K7_dqbstOB5zYRBx2HyGUz4c_uWHpV9zqOyEuLzMpdyGbRpmMVdrjKdwAYlWNUlYqMjbk9l8Tu9ALmBZkGda6JZLqDwzPoNGfyqq8tdKPJiXi1242nQs7iq5n657N_W__9Bs_N-ev4U3iWeKWRwY72ALF-_h9TP1wT0IZ4iPYjBWHa5EUlr9kZ2SYQuCueF6heL8V7-KyQ9fxWwhZkmDXPRLEQMSKK45pMvJG7Ryiu9LG0RcKfgx-3B7cX4zv8xS0YXMy1z3Wael9raxHlu0hSPb1RKMqmoDEcUqxzJ39JmlVFXQLhQVBuIw2murmuBp1a0-wM5iucADEJ64jFPWEyWysvHedcSOgleFI3spy2IC5QYN45MiORfGeDCDZ5K3JkJoGEKTIJzA8XjRYxTkeLn5KcM8NmU17eEEwWPS5DT0flZWhFBgdlhI2zWyqyx62SDW3k5gjyEdb5LQnMDhZtCYNPN_mlLxvtxa1_rjv6_6BK-4gzGMcwg7BA9-JmLTu6NhRD8BJMb1Ig
  priority: 102
  providerName: IEEE
Title Deep Transfer Learning-Based Feature Extraction: An Approach to Improve Nonintrusive Load Monitoring
URI https://ieeexplore.ieee.org/document/9564044
https://www.proquest.com/docview/2582246868
https://doaj.org/article/765a43640d644114af74f3aec47ee6ca
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7iaT2ITxwdJYc9bmPSXelOextHRZZdTwreQh7VXmRGxhH252_l4TAg6MVrk-50qipVX4XUV4z9bF2NmtLkylGOXIEDrGwtQmWdQ-U0ChdiNfLfu_b2AX4_qse1Vl_xTlimB86CO-9aZaFpQYQYuSXYoYOhseihQ2x9gkaiF2vJVPLBWra96grNkBT9-WQ6pRVRQlhLylOl7mNDlbVQlBj7S4uVD345BZubHbZdUCKf5L_bZRs422Nba9yB-yxcIb7wFGoGXPDCk_pUXVJYCjwiu7cF8ut_y0UuXbjgkxmfFAZxvpzzfJyA_C4eyMbSC_J7_M_cBp73eZzmgD3cXN9Pb6vSMqHyIPSyGjRobzvrsUcrHUWenpSgmj4QzGsE1sKRWABUE7QLssFACER7bVUXPPnM5pBtzuYzPGLcExJxynoCNBY6791A2CZ4JR1FO6jliNXv0jO-8InHthbPJuUVojdZ5CaK3BSRj9iv1UsvmU7j8-GXUS2roZELOz0gCzHFQsxXFjJi-1Gpq49QRggCYMTG70o2Zd--mlrFW7WtbvXxd0x9wn7E5eQjmzHbJGXiKYGYpTtL9nqW6g3_A52p7LY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLQ9tBSKuoVSHziSJR924nBbtqCl3d0TSNwsf0x6KNpF26xU9dd3HHsjBFXVWxQ5iZNne95MPG8ATkqToyQ3OTHkIyfccEx0nrpEG4PCSEyN89nIs3k5ueVf78TdFpz2uTCI2G0-w6E_7P7lu6Vd-1DZGXF5nnL-AnYEeRUyZGv1ERVfQqIWVZQWytL6bDQe01uQE5hn5JtmsvZFVB6Zn06lP5ZVebYWdwbm6i3MNl0L-0p-DNetGdrfT1Qb_7fvu_AmMk02CkPjHWzhYg9eP9If3Af3BfGBdeaqwRWLWqvfkwsybY55drheIbv81a5C-sM5Gy3YKKqQs3bJQkgC2dwHdX36Bq2dbLrUjoW1wj_mPdxeXd6MJ0ksu5BYnso2aSSXVlfaYo06M2S9agJSFLUjqlikmKeGPjPnonDSuKxARyxGWqlF5Sytu8UBbC-WC_wAzBKbMUJbIkWaV9aahviRsyIzZDF5ng0g36ChbNQk96Ux7lXnm6S1ChAqD6GKEA7gtL_oIUhy_Lv5hYe5b-r1tLsTBI-K01PR-2leEELO88OM66biTaHR8gqxtHoA-x7S_iYRzQEcbQaNinP_p8qF35lbylJ-_PtVn-Hl5GY2VdPr-bdDeOU7G4I6R7BNUOEnojmtOe5G9x8vAvh1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning-Based+Feature+Extraction%3A+An+Approach+to+Improve+Nonintrusive+Load+Monitoring&rft.jtitle=IEEE+access&rft.au=Cavalca%2C+Diego+L.&rft.au=Fernandes%2C+Ricardo+A.+S.&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=139328&rft.epage=139335&rft_id=info:doi/10.1109%2FACCESS.2021.3118947&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3118947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon