Combined Prediction of Short-term Travel Time of Expressway Based on CEEMDAN Decomposition
Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the...
        Saved in:
      
    
          | Published in | IEEE access Vol. 10; p. 1 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2022.3205736 | 
Cover
| Abstract | Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series is extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm is used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models are used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%. | 
    
|---|---|
| AbstractList | Travel time is the basis for intelligent emergency control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses a combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series was extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm was used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models were used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of the root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%. Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series is extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm is used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models are used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%.  | 
    
| Author | Zhou, Wuxiao Li, Shuangqing Chen, Xingpeng Jia, Xingli  | 
    
| Author_xml | – sequence: 1 givenname: Xingli orcidid: 0000-0003-3987-4584 surname: Jia fullname: Jia, Xingli organization: School of Highway, Chang'an University, Xi'an, China – sequence: 2 givenname: Wuxiao surname: Zhou fullname: Zhou, Wuxiao organization: Jiangsu Shagang Group Co., Ltd, Suzhou, China – sequence: 3 givenname: Shuangqing surname: Li fullname: Li, Shuangqing organization: School of Highway, Chang'an University, Xi'an, China – sequence: 4 givenname: Xingpeng surname: Chen fullname: Chen, Xingpeng organization: School of Highway, Chang'an University, Xi'an, China  | 
    
| BookMark | eNptkk1v3CAQhq0qlZqm-QW5WOrZWwzm67h1tk2k9EPa7aUXhPHQsrKNC94m---L62hVrYqQQMM87zAvvM4uBj9Alt2UaFWWSL5b1_Vmu11hhPGKYEQ5YS-yS1wyWRBK2MU_-1fZdYx7lIZIIcovs--17xs3QJt_DdA6Mzk_5N7m258-TMUEoc93Qf-GLt-5HuaTzdMYIMZHfczf65jABNSbzafb9ef8FozvRx_dLPMme2l1F-H6eb3Kvn3Y7Oq74uHLx_t6_VCYCompsBXWJWVct4RRoQ1DJTG6waJlWCIjrBRM2EZwVlnJKU1TlhanVVgQjSVX2f2i23q9V2NwvQ5H5bVTfwM-_FA6TM50oDRFrGnAGsyhSkWFIJxXgkrMSMXAJK1q0ToMoz4-6q47CZZIzXYrbUxqX812q2e7E_Z2wcbgfx0gTmrvD2FIXSvMy6TNEZUpSy5ZJvgYA1hl3KRnq6agXXeqsDzoeQVyxp7f6__UzUI5ADgRUgiK0nf4A-5xqko | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126535 crossref_primary_10_1016_j_treng_2024_100272  | 
    
| Cites_doi | 10.1142/S1793536909000047 10.1109/TITS.2020.3011700 10.1109/ICASSP.2011.5947265 10.1016/j.neucom.2021.02.046 10.1142/S0217984921502122 10.1109/TITS.2019.2950416 10.1162/neco.1997.9.8.1735 10.1109/TITS.2004.837813 10.1016/j.sbspro.2013.08.076 10.1049/iet-its.2016.0208 10.1109/BDICN55575.2022.00023 10.1007/s10489-020-02152-x 10.1016/j.trc.2015.03.014 10.3141/1645-21 10.1109/ACCESS.2020.2970250 10.1109/ICCWorkshops50388.2021.9473822 10.1109/ICNC.2007.661 10.1016/j.enconman.2017.01.022 10.1109/ICNC.2013.6817980 10.1007/978-981-16-5963-8_100 10.1016/j.comnet.2020.107530 10.1098/rspa.1998.0193 10.1109/CAC.2017.8243253 10.1109/ACCESS.2020.2990738 10.1016/0191-2615(84)90002-X 10.1109/ACCESS.2021.3068652 10.1007/s11063-019-09994-8 10.3390/app7060476 10.1016/j.physa.2019.03.007 10.1109/ACCESS.2020.2977219 10.1109/IAEAC.2017.8054485  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2022.3205736 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | oai_doaj_org_article_a506bbefc27e415688377485926346ec 10.1109/access.2022.3205736 10_1109_ACCESS_2022_3205736 9885035  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: CHD [300102212203] – fundername: National Key Research and Development Program of China grantid: 2020YFC1512003 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2020JM-260 funderid: 10.13039/501100007128  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-f42a1567ad3658ac6013cab28d6290c8f9868fb8764f975575591f25758fe8bf3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:39:11 EDT 2025 Wed Oct 01 15:40:38 EDT 2025 Mon Jun 30 07:48:33 EDT 2025 Wed Oct 01 04:58:22 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Wed Aug 27 02:18:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-f42a1567ad3658ac6013cab28d6290c8f9868fb8764f975575591f25758fe8bf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-3987-4584 | 
    
| OpenAccessLink | https://doaj.org/article/a506bbefc27e415688377485926346ec | 
    
| PQID | 2716347059 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3205736 ieee_primary_9885035 crossref_primary_10_1109_ACCESS_2022_3205736 doaj_primary_oai_doaj_org_article_a506bbefc27e415688377485926346ec proquest_journals_2716347059 unpaywall_primary_10_1109_access_2022_3205736  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref34 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Luo (ref6) 2017; 17 ref2 ref1 ref39 ref16 ref38 Guo (ref35); 1617 ref24 ref23 ref26 ref25 ref20 Disbro (ref18) 1989; 1225 ref22 ref21 ref28 An (ref17) 2018; 57 ref27 ref29 ref8 ref7 Liu (ref13) 2008; 8 ref9 Wang (ref19) 2005; 1 ref4 Li (ref15) 2020; 44 ref3 ref5 Ahmed (ref14) 1979; 773  | 
    
| References_xml | – ident: ref31 doi: 10.1142/S1793536909000047 – volume: 57 start-page: 565 issue: 4 year: 2018 ident: ref17 article-title: Short-term bus arrival time prediction based on chaos theory publication-title: J. Xiamen Univ. – ident: ref33 doi: 10.1109/TITS.2020.3011700 – ident: ref34 doi: 10.1109/ICASSP.2011.5947265 – ident: ref23 doi: 10.1016/j.neucom.2021.02.046 – ident: ref9 doi: 10.1142/S0217984921502122 – ident: ref5 doi: 10.1109/TITS.2019.2950416 – ident: ref25 doi: 10.1162/neco.1997.9.8.1735 – ident: ref20 doi: 10.1109/TITS.2004.837813 – ident: ref16 doi: 10.1016/j.sbspro.2013.08.076 – ident: ref2 doi: 10.1049/iet-its.2016.0208 – volume: 1617 volume-title: J. Phys., Conf. Ser. ident: ref35 article-title: Chaotic time series prediction using LSTM with CEEMDAN – ident: ref37 doi: 10.1109/BDICN55575.2022.00023 – ident: ref1 doi: 10.1007/s10489-020-02152-x – volume: 1 start-page: 92 year: 2005 ident: ref19 article-title: The summery of the short-term traffic flow predicts model publication-title: China Public Secur. – ident: ref26 doi: 10.1016/j.trc.2015.03.014 – volume: 773 start-page: 1 issue: 722 year: 1979 ident: ref14 article-title: Analysis of freeway traffic time-series data by using Box–Jenkins techniques publication-title: Transp. Res. Rec. – ident: ref10 doi: 10.3141/1645-21 – ident: ref11 doi: 10.1109/ACCESS.2020.2970250 – volume: 17 start-page: 68 issue: 5 year: 2017 ident: ref6 article-title: Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model publication-title: J. Transp. Syst. Eng. Inf. Technol. – ident: ref30 doi: 10.1109/ICCWorkshops50388.2021.9473822 – volume: 8 start-page: 65 year: 2008 ident: ref13 article-title: Application of ARMA time series model publication-title: Techn. Autom. Appl. – volume: 44 start-page: 974 issue: 6 year: 2020 ident: ref15 article-title: Improved ARIMA model traffic flow prediction method based on box-cox exponential transformation publication-title: J. Wuhan Univ. Technol. – ident: ref21 doi: 10.1109/ICNC.2007.661 – ident: ref28 doi: 10.1016/j.enconman.2017.01.022 – ident: ref38 doi: 10.1109/ICNC.2013.6817980 – ident: ref4 doi: 10.1007/978-981-16-5963-8_100 – ident: ref7 doi: 10.1016/j.comnet.2020.107530 – ident: ref27 doi: 10.1098/rspa.1998.0193 – ident: ref39 doi: 10.1109/CAC.2017.8243253 – ident: ref3 doi: 10.1109/ACCESS.2020.2990738 – ident: ref12 doi: 10.1016/0191-2615(84)90002-X – ident: ref8 doi: 10.1109/ACCESS.2021.3068652 – ident: ref22 doi: 10.1007/s11063-019-09994-8 – ident: ref24 doi: 10.3390/app7060476 – ident: ref32 doi: 10.1016/j.physa.2019.03.007 – volume: 1225 start-page: 109 year: 1989 ident: ref18 article-title: Traffic flow theory and chaotic behavior publication-title: Transp. Res. Rec. J. Transp. Res. Board – ident: ref36 doi: 10.1109/ACCESS.2020.2977219 – ident: ref29 doi: 10.1109/IAEAC.2017.8054485  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.265249 | 
    
| Snippet | Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway... Travel time is the basis for intelligent emergency control and guidance in expressway networks. To realize its accurate prediction and improve the expressway...  | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Autoregressive processes CEEMDAN Data models Deep learning Empirical analysis Expressway Feature extraction Prediction algorithms Prediction models Predictive models Recurrent neural network Recurrent neural networks Road traffic control Roads & highways Root-mean-square errors Short term Time series analysis Travel time Travel time prediction  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UJAPHJutY8ev43a7VYW0FRKtVHGxHMcWEqvdquyqlF_POPFGXUCIU6LETmx9fnyfPZ4B-KA8TuJai9IIJ8oaVW3pkCaUWnIV66qKrIt1OLuQ51f1x2txvQNHw1mYEEJnfBZG6bbby2-Xfp2Wyo4NfpRysQu7Ssv-rNawnpICSBihsmOhiprj8WSCdUAJyNiIs-T4T25NPp2P_hxUZYtfPlovbtz9nZvPH0w1Z89gtilkb2HybbReNSP_8zf_jf9bi-fwNHNOMu4byQvYCYuX8OSBJ8J9-ILjAmrk0JJPt2nrJsFFlpF8_or0vEzDN7lMgYrmJJ0ZSW-mPzoT2jt3T05wJmwJZphMp7PT8QU5DclSPZuDvYKrs-nl5LzMYRdKX1O9KmPNHKo65VqO9MR5lGzcu4bpVjJDvY5GSx0bHEbraJRAvicMYopXHYNuIn8Ne4vlIhwAcdrTyL0KtInI1HgTvY_U87aqXEByWQDb4GF99kmeQmPMbadNqLE9iDaBaDOIBRwNmW56lxz_Tn6SgB6SJn_a3QMExebuaZ2gsmlC9EyFJGk16nZVa2GY5LUMvoD9BOTwkYxhAYebZmNz3_9uGUpQXivkrQWUQ1P6o6iuC4i5VdQ3f__LW3icUvULP4ewt7pdh3dIhVbN-64P_AI0cgHY priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdehg7bOu6MXdd0WHHybElS5aOaZpSBg2FJdDtImRZYmUmDV1Cf_z1e1KU0Gww6E4JiRzLfM963xc9fw-hT7WFJC4lJ4obTipQtcQATSBSsNpXZelp7HV4PhZn0-rLJb9Mf7jFZ2Gcc7H4zOXhbdzLv3LdXd0XNJinqb6AFA8ioV8oOEXBeD5v_TO0Kzhw8R7anY4vBt9CR7lSKMLi3uSHZKzZN7EHIYhCSnNGgxWg2EpH0bU_tVnZYpzPl7O5ub81Xfco-Zy-Qno97VXNyc98uWhy-_CHo-P_X9dr9DLxUjxYBdIe2nGzN-jFI7fCffQd1g7Q0a7FFzdheydAiq89_voDKDyZwBKPJ6GZUYfDcyXhm9FdLLO9Nff4GLJli-GA4Wh0fjIY4xMXqtlTydhbND0dTYZnJLVmILYq5IL4ihpQfrVpGVAYY0HWMWsaKltBVWGlV1JI38CVVV7VHDghV4A7vErvZOPZO9SbXc_ce4SNtIVntnZF44HNscZb6wvL2rI0DghohugaIW2Tb3lon9HpqF8KpQfDIQSrDrDqBGuGPm8Omq9sO_49_DhAvxkaPLfjBwCTTrewNrwQTeO8pbULsleCtq8ryRUVrBLOZmg_QLv5kYRjhg7XgaTT-vBLU5CprKqB22aIbILrr6muAnZrqgdPHH-IeoubpfsI1GnRHKX74zfYwQ_r priority: 102 providerName: Unpaywall  | 
    
| Title | Combined Prediction of Short-term Travel Time of Expressway Based on CEEMDAN Decomposition | 
    
| URI | https://ieeexplore.ieee.org/document/9885035 https://www.proquest.com/docview/2716347059 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09885035.pdf https://doaj.org/article/a506bbefc27e415688377485926346ec  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SD-pB1CqOrUsOHo3N5HeO2-2WInQpuAvVS8hkEjws21K31P73fcmkyy6CXjwNzCQh897Ly_fNvLyH0CcdYBM3RhIrvSQCWC3xABOIUVwn0baJlVqH5zN1thBfL-XlVqmvHBM2pAceBHfkJVVdF1NgOmayYYBRaWGkZYoLFUP2vtTYLTJVfLBplZW6phlqqT0aTybwRkAIGfvCWU4DqHa2opKxv5ZY2UGbz25X1_7-zi-XWxvP6Sv0siJGPB5m-ho9ias36MVWHsF99ANWNTDc2OOLm_zjJQsbXyX87SeAazIH54vnuczQEucTH_nJ9HcJgL3z9_gY9rEeQ4fJdHp-Mp7hk5jjzGsw11u0OJ3OJ2ekFk0gQVCzJkkwD2LSvucALnwAwsWD75jpFbM0mGSNMqkDJyiS1RLQmrSgEbiaFE2X-Du0t7paxfcIexNo4kFH2iXAWbxLISQaeN-2PgI0bBB7lJ8LNaN4LmyxdIVZUOsGobssdFeF3qDPm07XQ0KNvzc_zorZNM3ZsMsNsBFXbcT9y0YatJ_VuhnEgnFSLht0-KhmV1fuL8eAQHKhAXU2iGxU_8dUfSlnuTPVD_9jqgfoeR5z-MhziPbWN7fxI8CedTcqFj4qJxRH6OlidjH-_gDq5_nu | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a42HwwG0gAhv4gcelS3xJ7Meu61RgrZDopIkXy3FsTaJqp9FqjF_PceJG65gmnhIldmLr8-X77ONzAD6VFidxKUWqhBEpR1WbGqQJqSxY6Xmee9rEOhxPitEZ_3IuzrfgoDsL45xrjM9cL9w2e_n1wq7CUtmhwo9mTDyCx4JzLtrTWt2KSgghoUQZXQvlmTrsDwZYCxSBlPYYDa7_io3pp_HSH8OqbDDMndX80txcm9ns1mRz8hzG62K2NiY_e6tl1bN_7nhw_N96vIBnkXWSfttMXsKWm7-Cp7d8Ee7CDxwZUCW7mny7Cps3ATCy8OT7BRL0NAzgZBpCFc1IODUS3gx_N0a01-aGHOFcWBPMMBgOx8f9CTl2wVY9GoS9hrOT4XQwSmPghdTyTC5Tz6lBXVeamiFBMRZFG7OmorIuqMqs9EoW0lc4kHKvSoGMTyhEFa_SO1l59ga254u5ewvESJt5ZkuXVR65Gqu8tT6zrM5z45BeJkDXeGgbvZKH4Bgz3aiTTOkWRB1A1BHEBA66TJetU46Hkx8FoLukwaN28wBB0bGDaiOyoqqct7R0QdRKVO4ll0LRgvHC2QR2A5DdRyKGCeytm42Ovf-XpihCGS-RuSaQdk3pn6KaJiTmRlHf3f-Xj7Azmo5P9ennydf38CTkaJeB9mB7ebVy-0iMltWHpj_8BdSqBSU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdehg7bOu6MXdd0WHHybElS5aOaZpSBg2FJdDtImRZYmUmDV1Cf_z1e1KU0Gww6E4JiRzLfM963xc9fw-hT7WFJC4lJ4obTipQtcQATSBSsNpXZelp7HV4PhZn0-rLJb9Mf7jFZ2Gcc7H4zOXhbdzLv3LdXd0XNJinqb6AFA8ioV8oOEXBeD5v_TO0Kzhw8R7anY4vBt9CR7lSKMLi3uSHZKzZN7EHIYhCSnNGgxWg2EpH0bU_tVnZYpzPl7O5ub81Xfco-Zy-Qno97VXNyc98uWhy-_CHo-P_X9dr9DLxUjxYBdIe2nGzN-jFI7fCffQd1g7Q0a7FFzdheydAiq89_voDKDyZwBKPJ6GZUYfDcyXhm9FdLLO9Nff4GLJli-GA4Wh0fjIY4xMXqtlTydhbND0dTYZnJLVmILYq5IL4ihpQfrVpGVAYY0HWMWsaKltBVWGlV1JI38CVVV7VHDghV4A7vErvZOPZO9SbXc_ce4SNtIVntnZF44HNscZb6wvL2rI0DghohugaIW2Tb3lon9HpqF8KpQfDIQSrDrDqBGuGPm8Omq9sO_49_DhAvxkaPLfjBwCTTrewNrwQTeO8pbULsleCtq8ryRUVrBLOZmg_QLv5kYRjhg7XgaTT-vBLU5CprKqB22aIbILrr6muAnZrqgdPHH-IeoubpfsI1GnRHKX74zfYwQ_r | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Prediction+of+Short-term+Travel+Time+of+Expressway+Based+on+CEEMDAN+Decomposition&rft.jtitle=IEEE+access&rft.au=Jia%2C+Xingli&rft.au=Zhou%2C+Wuxiao&rft.au=Li%2C+Shuangqing&rft.au=Chen%2C+Xingpeng&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3205736&rft.externalDocID=9885035 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |