Combined Prediction of Short-term Travel Time of Expressway Based on CEEMDAN Decomposition

Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Jia, Xingli, Zhou, Wuxiao, Li, Shuangqing, Chen, Xingpeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3205736

Cover

Abstract Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series is extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm is used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models are used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%.
AbstractList Travel time is the basis for intelligent emergency control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses a combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series was extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm was used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models were used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of the root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%.
Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway service level during emergencies, this study uses the combined model to predict the short-term travel time of expressway sections based on the expressway gantry data of Sichuan Province. First, the travel time series is extracted using a data matching algorithm, and the double standard deviation-cyclic elimination (2SD-CE) algorithm is used to clean the data. Then, combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM), long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models are used to construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently, the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different highway sections, the combined model can integrate the advantages of all prediction models and has higher prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value of root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%.
Author Zhou, Wuxiao
Li, Shuangqing
Chen, Xingpeng
Jia, Xingli
Author_xml – sequence: 1
  givenname: Xingli
  orcidid: 0000-0003-3987-4584
  surname: Jia
  fullname: Jia, Xingli
  organization: School of Highway, Chang'an University, Xi'an, China
– sequence: 2
  givenname: Wuxiao
  surname: Zhou
  fullname: Zhou, Wuxiao
  organization: Jiangsu Shagang Group Co., Ltd, Suzhou, China
– sequence: 3
  givenname: Shuangqing
  surname: Li
  fullname: Li, Shuangqing
  organization: School of Highway, Chang'an University, Xi'an, China
– sequence: 4
  givenname: Xingpeng
  surname: Chen
  fullname: Chen, Xingpeng
  organization: School of Highway, Chang'an University, Xi'an, China
BookMark eNptkk1v3CAQhq0qlZqm-QW5WOrZWwzm67h1tk2k9EPa7aUXhPHQsrKNC94m---L62hVrYqQQMM87zAvvM4uBj9Alt2UaFWWSL5b1_Vmu11hhPGKYEQ5YS-yS1wyWRBK2MU_-1fZdYx7lIZIIcovs--17xs3QJt_DdA6Mzk_5N7m258-TMUEoc93Qf-GLt-5HuaTzdMYIMZHfczf65jABNSbzafb9ef8FozvRx_dLPMme2l1F-H6eb3Kvn3Y7Oq74uHLx_t6_VCYCompsBXWJWVct4RRoQ1DJTG6waJlWCIjrBRM2EZwVlnJKU1TlhanVVgQjSVX2f2i23q9V2NwvQ5H5bVTfwM-_FA6TM50oDRFrGnAGsyhSkWFIJxXgkrMSMXAJK1q0ToMoz4-6q47CZZIzXYrbUxqX812q2e7E_Z2wcbgfx0gTmrvD2FIXSvMy6TNEZUpSy5ZJvgYA1hl3KRnq6agXXeqsDzoeQVyxp7f6__UzUI5ADgRUgiK0nf4A-5xqko
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126535
crossref_primary_10_1016_j_treng_2024_100272
Cites_doi 10.1142/S1793536909000047
10.1109/TITS.2020.3011700
10.1109/ICASSP.2011.5947265
10.1016/j.neucom.2021.02.046
10.1142/S0217984921502122
10.1109/TITS.2019.2950416
10.1162/neco.1997.9.8.1735
10.1109/TITS.2004.837813
10.1016/j.sbspro.2013.08.076
10.1049/iet-its.2016.0208
10.1109/BDICN55575.2022.00023
10.1007/s10489-020-02152-x
10.1016/j.trc.2015.03.014
10.3141/1645-21
10.1109/ACCESS.2020.2970250
10.1109/ICCWorkshops50388.2021.9473822
10.1109/ICNC.2007.661
10.1016/j.enconman.2017.01.022
10.1109/ICNC.2013.6817980
10.1007/978-981-16-5963-8_100
10.1016/j.comnet.2020.107530
10.1098/rspa.1998.0193
10.1109/CAC.2017.8243253
10.1109/ACCESS.2020.2990738
10.1016/0191-2615(84)90002-X
10.1109/ACCESS.2021.3068652
10.1007/s11063-019-09994-8
10.3390/app7060476
10.1016/j.physa.2019.03.007
10.1109/ACCESS.2020.2977219
10.1109/IAEAC.2017.8054485
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3205736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a506bbefc27e415688377485926346ec
10.1109/access.2022.3205736
10_1109_ACCESS_2022_3205736
9885035
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: CHD [300102212203]
– fundername: National Key Research and Development Program of China
  grantid: 2020YFC1512003
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2020JM-260
  funderid: 10.13039/501100007128
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-f42a1567ad3658ac6013cab28d6290c8f9868fb8764f975575591f25758fe8bf3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:39:11 EDT 2025
Wed Oct 01 15:40:38 EDT 2025
Mon Jun 30 07:48:33 EDT 2025
Wed Oct 01 04:58:22 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Wed Aug 27 02:18:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f42a1567ad3658ac6013cab28d6290c8f9868fb8764f975575591f25758fe8bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3987-4584
OpenAccessLink https://doaj.org/article/a506bbefc27e415688377485926346ec
PQID 2716347059
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3205736
ieee_primary_9885035
crossref_primary_10_1109_ACCESS_2022_3205736
doaj_primary_oai_doaj_org_article_a506bbefc27e415688377485926346ec
proquest_journals_2716347059
unpaywall_primary_10_1109_access_2022_3205736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Luo (ref6) 2017; 17
ref2
ref1
ref39
ref16
ref38
Guo (ref35); 1617
ref24
ref23
ref26
ref25
ref20
Disbro (ref18) 1989; 1225
ref22
ref21
ref28
An (ref17) 2018; 57
ref27
ref29
ref8
ref7
Liu (ref13) 2008; 8
ref9
Wang (ref19) 2005; 1
ref4
Li (ref15) 2020; 44
ref3
ref5
Ahmed (ref14) 1979; 773
References_xml – ident: ref31
  doi: 10.1142/S1793536909000047
– volume: 57
  start-page: 565
  issue: 4
  year: 2018
  ident: ref17
  article-title: Short-term bus arrival time prediction based on chaos theory
  publication-title: J. Xiamen Univ.
– ident: ref33
  doi: 10.1109/TITS.2020.3011700
– ident: ref34
  doi: 10.1109/ICASSP.2011.5947265
– ident: ref23
  doi: 10.1016/j.neucom.2021.02.046
– ident: ref9
  doi: 10.1142/S0217984921502122
– ident: ref5
  doi: 10.1109/TITS.2019.2950416
– ident: ref25
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref20
  doi: 10.1109/TITS.2004.837813
– ident: ref16
  doi: 10.1016/j.sbspro.2013.08.076
– ident: ref2
  doi: 10.1049/iet-its.2016.0208
– volume: 1617
  volume-title: J. Phys., Conf. Ser.
  ident: ref35
  article-title: Chaotic time series prediction using LSTM with CEEMDAN
– ident: ref37
  doi: 10.1109/BDICN55575.2022.00023
– ident: ref1
  doi: 10.1007/s10489-020-02152-x
– volume: 1
  start-page: 92
  year: 2005
  ident: ref19
  article-title: The summery of the short-term traffic flow predicts model
  publication-title: China Public Secur.
– ident: ref26
  doi: 10.1016/j.trc.2015.03.014
– volume: 773
  start-page: 1
  issue: 722
  year: 1979
  ident: ref14
  article-title: Analysis of freeway traffic time-series data by using Box–Jenkins techniques
  publication-title: Transp. Res. Rec.
– ident: ref10
  doi: 10.3141/1645-21
– ident: ref11
  doi: 10.1109/ACCESS.2020.2970250
– volume: 17
  start-page: 68
  issue: 5
  year: 2017
  ident: ref6
  article-title: Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– ident: ref30
  doi: 10.1109/ICCWorkshops50388.2021.9473822
– volume: 8
  start-page: 65
  year: 2008
  ident: ref13
  article-title: Application of ARMA time series model
  publication-title: Techn. Autom. Appl.
– volume: 44
  start-page: 974
  issue: 6
  year: 2020
  ident: ref15
  article-title: Improved ARIMA model traffic flow prediction method based on box-cox exponential transformation
  publication-title: J. Wuhan Univ. Technol.
– ident: ref21
  doi: 10.1109/ICNC.2007.661
– ident: ref28
  doi: 10.1016/j.enconman.2017.01.022
– ident: ref38
  doi: 10.1109/ICNC.2013.6817980
– ident: ref4
  doi: 10.1007/978-981-16-5963-8_100
– ident: ref7
  doi: 10.1016/j.comnet.2020.107530
– ident: ref27
  doi: 10.1098/rspa.1998.0193
– ident: ref39
  doi: 10.1109/CAC.2017.8243253
– ident: ref3
  doi: 10.1109/ACCESS.2020.2990738
– ident: ref12
  doi: 10.1016/0191-2615(84)90002-X
– ident: ref8
  doi: 10.1109/ACCESS.2021.3068652
– ident: ref22
  doi: 10.1007/s11063-019-09994-8
– ident: ref24
  doi: 10.3390/app7060476
– ident: ref32
  doi: 10.1016/j.physa.2019.03.007
– volume: 1225
  start-page: 109
  year: 1989
  ident: ref18
  article-title: Traffic flow theory and chaotic behavior
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– ident: ref36
  doi: 10.1109/ACCESS.2020.2977219
– ident: ref29
  doi: 10.1109/IAEAC.2017.8054485
SSID ssj0000816957
Score 2.265249
Snippet Travel time is the basis for emergency intelligent control and guidance in expressway networks. To realize its accurate prediction and improve the expressway...
Travel time is the basis for intelligent emergency control and guidance in expressway networks. To realize its accurate prediction and improve the expressway...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Algorithms
Autoregressive processes
CEEMDAN
Data models
Deep learning
Empirical analysis
Expressway
Feature extraction
Prediction algorithms
Prediction models
Predictive models
Recurrent neural network
Recurrent neural networks
Road traffic control
Roads & highways
Root-mean-square errors
Short term
Time series analysis
Travel time
Travel time prediction
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UJAPHJutY8ev43a7VYW0FRKtVHGxHMcWEqvdquyqlF_POPFGXUCIU6LETmx9fnyfPZ4B-KA8TuJai9IIJ8oaVW3pkCaUWnIV66qKrIt1OLuQ51f1x2txvQNHw1mYEEJnfBZG6bbby2-Xfp2Wyo4NfpRysQu7Ssv-rNawnpICSBihsmOhiprj8WSCdUAJyNiIs-T4T25NPp2P_hxUZYtfPlovbtz9nZvPH0w1Z89gtilkb2HybbReNSP_8zf_jf9bi-fwNHNOMu4byQvYCYuX8OSBJ8J9-ILjAmrk0JJPt2nrJsFFlpF8_or0vEzDN7lMgYrmJJ0ZSW-mPzoT2jt3T05wJmwJZphMp7PT8QU5DclSPZuDvYKrs-nl5LzMYRdKX1O9KmPNHKo65VqO9MR5lGzcu4bpVjJDvY5GSx0bHEbraJRAvicMYopXHYNuIn8Ne4vlIhwAcdrTyL0KtInI1HgTvY_U87aqXEByWQDb4GF99kmeQmPMbadNqLE9iDaBaDOIBRwNmW56lxz_Tn6SgB6SJn_a3QMExebuaZ2gsmlC9EyFJGk16nZVa2GY5LUMvoD9BOTwkYxhAYebZmNz3_9uGUpQXivkrQWUQ1P6o6iuC4i5VdQ3f__LW3icUvULP4ewt7pdh3dIhVbN-64P_AI0cgHY
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdehg7bOu6MXdd0WHHybElS5aOaZpSBg2FJdDtImRZYmUmDV1Cf_z1e1KU0Gww6E4JiRzLfM963xc9fw-hT7WFJC4lJ4obTipQtcQATSBSsNpXZelp7HV4PhZn0-rLJb9Mf7jFZ2Gcc7H4zOXhbdzLv3LdXd0XNJinqb6AFA8ioV8oOEXBeD5v_TO0Kzhw8R7anY4vBt9CR7lSKMLi3uSHZKzZN7EHIYhCSnNGgxWg2EpH0bU_tVnZYpzPl7O5ub81Xfco-Zy-Qno97VXNyc98uWhy-_CHo-P_X9dr9DLxUjxYBdIe2nGzN-jFI7fCffQd1g7Q0a7FFzdheydAiq89_voDKDyZwBKPJ6GZUYfDcyXhm9FdLLO9Nff4GLJli-GA4Wh0fjIY4xMXqtlTydhbND0dTYZnJLVmILYq5IL4ihpQfrVpGVAYY0HWMWsaKltBVWGlV1JI38CVVV7VHDghV4A7vErvZOPZO9SbXc_ce4SNtIVntnZF44HNscZb6wvL2rI0DghohugaIW2Tb3lon9HpqF8KpQfDIQSrDrDqBGuGPm8Omq9sO_49_DhAvxkaPLfjBwCTTrewNrwQTeO8pbULsleCtq8ryRUVrBLOZmg_QLv5kYRjhg7XgaTT-vBLU5CprKqB22aIbILrr6muAnZrqgdPHH-IeoubpfsI1GnRHKX74zfYwQ_r
  priority: 102
  providerName: Unpaywall
Title Combined Prediction of Short-term Travel Time of Expressway Based on CEEMDAN Decomposition
URI https://ieeexplore.ieee.org/document/9885035
https://www.proquest.com/docview/2716347059
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09885035.pdf
https://doaj.org/article/a506bbefc27e415688377485926346ec
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SD-pB1CqOrUsOHo3N5HeO2-2WInQpuAvVS8hkEjws21K31P73fcmkyy6CXjwNzCQh897Ly_fNvLyH0CcdYBM3RhIrvSQCWC3xABOIUVwn0baJlVqH5zN1thBfL-XlVqmvHBM2pAceBHfkJVVdF1NgOmayYYBRaWGkZYoLFUP2vtTYLTJVfLBplZW6phlqqT0aTybwRkAIGfvCWU4DqHa2opKxv5ZY2UGbz25X1_7-zi-XWxvP6Sv0siJGPB5m-ho9ias36MVWHsF99ANWNTDc2OOLm_zjJQsbXyX87SeAazIH54vnuczQEucTH_nJ9HcJgL3z9_gY9rEeQ4fJdHp-Mp7hk5jjzGsw11u0OJ3OJ2ekFk0gQVCzJkkwD2LSvucALnwAwsWD75jpFbM0mGSNMqkDJyiS1RLQmrSgEbiaFE2X-Du0t7paxfcIexNo4kFH2iXAWbxLISQaeN-2PgI0bBB7lJ8LNaN4LmyxdIVZUOsGobssdFeF3qDPm07XQ0KNvzc_zorZNM3ZsMsNsBFXbcT9y0YatJ_VuhnEgnFSLht0-KhmV1fuL8eAQHKhAXU2iGxU_8dUfSlnuTPVD_9jqgfoeR5z-MhziPbWN7fxI8CedTcqFj4qJxRH6OlidjH-_gDq5_nu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a42HwwG0gAhv4gcelS3xJ7Meu61RgrZDopIkXy3FsTaJqp9FqjF_PceJG65gmnhIldmLr8-X77ONzAD6VFidxKUWqhBEpR1WbGqQJqSxY6Xmee9rEOhxPitEZ_3IuzrfgoDsL45xrjM9cL9w2e_n1wq7CUtmhwo9mTDyCx4JzLtrTWt2KSgghoUQZXQvlmTrsDwZYCxSBlPYYDa7_io3pp_HSH8OqbDDMndX80txcm9ns1mRz8hzG62K2NiY_e6tl1bN_7nhw_N96vIBnkXWSfttMXsKWm7-Cp7d8Ee7CDxwZUCW7mny7Cps3ATCy8OT7BRL0NAzgZBpCFc1IODUS3gx_N0a01-aGHOFcWBPMMBgOx8f9CTl2wVY9GoS9hrOT4XQwSmPghdTyTC5Tz6lBXVeamiFBMRZFG7OmorIuqMqs9EoW0lc4kHKvSoGMTyhEFa_SO1l59ga254u5ewvESJt5ZkuXVR65Gqu8tT6zrM5z45BeJkDXeGgbvZKH4Bgz3aiTTOkWRB1A1BHEBA66TJetU46Hkx8FoLukwaN28wBB0bGDaiOyoqqct7R0QdRKVO4ll0LRgvHC2QR2A5DdRyKGCeytm42Ovf-XpihCGS-RuSaQdk3pn6KaJiTmRlHf3f-Xj7Azmo5P9ennydf38CTkaJeB9mB7ebVy-0iMltWHpj_8BdSqBSU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdehg7bOu6MXdd0WHHybElS5aOaZpSBg2FJdDtImRZYmUmDV1Cf_z1e1KU0Gww6E4JiRzLfM963xc9fw-hT7WFJC4lJ4obTipQtcQATSBSsNpXZelp7HV4PhZn0-rLJb9Mf7jFZ2Gcc7H4zOXhbdzLv3LdXd0XNJinqb6AFA8ioV8oOEXBeD5v_TO0Kzhw8R7anY4vBt9CR7lSKMLi3uSHZKzZN7EHIYhCSnNGgxWg2EpH0bU_tVnZYpzPl7O5ub81Xfco-Zy-Qno97VXNyc98uWhy-_CHo-P_X9dr9DLxUjxYBdIe2nGzN-jFI7fCffQd1g7Q0a7FFzdheydAiq89_voDKDyZwBKPJ6GZUYfDcyXhm9FdLLO9Nff4GLJli-GA4Wh0fjIY4xMXqtlTydhbND0dTYZnJLVmILYq5IL4ihpQfrVpGVAYY0HWMWsaKltBVWGlV1JI38CVVV7VHDghV4A7vErvZOPZO9SbXc_ce4SNtIVntnZF44HNscZb6wvL2rI0DghohugaIW2Tb3lon9HpqF8KpQfDIQSrDrDqBGuGPm8Omq9sO_49_DhAvxkaPLfjBwCTTrewNrwQTeO8pbULsleCtq8ryRUVrBLOZmg_QLv5kYRjhg7XgaTT-vBLU5CprKqB22aIbILrr6muAnZrqgdPHH-IeoubpfsI1GnRHKX74zfYwQ_r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Prediction+of+Short-term+Travel+Time+of+Expressway+Based+on+CEEMDAN+Decomposition&rft.jtitle=IEEE+access&rft.au=Jia%2C+Xingli&rft.au=Zhou%2C+Wuxiao&rft.au=Li%2C+Shuangqing&rft.au=Chen%2C+Xingpeng&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3205736&rft.externalDocID=9885035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon