Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification

Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the micro...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 127462 - 127476
Main Authors Prabhakar, Sunil Kumar, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3006197

Cover

Abstract Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC).
AbstractList Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC).
Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC).
Author Prabhakar, Sunil Kumar
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Sunil Kumar
  orcidid: 0000-0003-4019-2345
  surname: Prabhakar
  fullname: Prabhakar, Sunil Kumar
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 2
  givenname: Seong-Whan
  orcidid: 0000-0002-6249-4996
  surname: Lee
  fullname: Lee, Seong-Whan
  email: sw.lee@korea.ac.kr
  organization: Department of Artificial Intelligence, Korea University, Seoul, South Korea
BookMark eNptUV1r2zAUNaODdV1_QV8Ee06mD8u2HjPTdoXACsnYo7iWrjoFx_YkeaVP--tz4hJGqF4krs6HdM7H7KLrO8yyG0aXjFH1ZVXXt5vNklNOl4LSgqnyXXbJWaEWQori4r_zh-w6xh2dVjWNZHmZ_d0G6KLrwx6S7zvyFSJasg1-scY_2JI7hDQGJBts0RwRq2EIPZhf5Ef03RP5CRMMUyTQWbJ5hrAndb8fxnS4nHTJY-hjgoSkhs5gIHULMXrnzdHwU_beQRvx-nW_yrZ3t9v622L9_f6hXq0XJqdVWqARorGuqrgyTpSsYQy4osxyCZg7KSXIRlqKDsEJbqwzjcKqMIZbVQhxlT3MsraHnR6C30N40T14fRz04UlDSN60qB2XWNmmEpa5XCgBzlpVVYfMpEBTTFr5rDV2A7w8Q9ueBBnVh0o0GIMx6kMl-rWSifZ5pk3x_R4xJr3rx9BNn9Y8l3mR87LMJ5SaUWaKLQZ02vh0TCoF8O3JYS793EGccc_f9TbrZmZ5RDwxFBO0UFT8A6iAuy8
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s12652_025_04953_9
crossref_primary_10_1016_j_jddst_2023_104593
crossref_primary_10_1016_j_jep_2021_114751
crossref_primary_10_1016_j_measurement_2022_111048
crossref_primary_10_1016_j_bspc_2024_106654
crossref_primary_10_3389_fnhum_2022_895761
crossref_primary_10_3390_diagnostics10100763
crossref_primary_10_3390_s21165571
crossref_primary_10_1007_s10142_024_01415_x
crossref_primary_10_1016_j_eij_2023_100416
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1016_j_compmedimag_2022_102125
crossref_primary_10_1007_s10462_022_10179_4
crossref_primary_10_1007_s11227_024_06036_6
crossref_primary_10_3390_agriculture12081075
crossref_primary_10_1007_s42044_024_00174_z
Cites_doi 10.1109/TPAMI.2012.69
10.1073/pnas.211566398
10.1016/j.jbi.2013.03.009
10.1097/01.ju.0000062548.28015.f6
10.1186/1471-2105-5-136
10.1016/j.neucom.2008.04.010
10.1109/ACCESS.2020.2975848
10.1016/S1535-6108(02)00030-2
10.1038/35090585
10.11113/jt.v72.2949
10.1155/2015/198363
10.1109/IWW-BCI.2013.6506643
10.1007/3-540-45665-1_17
10.30699/ijp.2017.27990
10.1126/science.286.5439.531
10.1007/s00521-018-3764-y
10.1080/01446190600851033
10.1109/ICASSP.2009.4959944
10.1093/bioinformatics/bti647
10.1007/s10898-005-5608-4
10.1016/S0933-3657(00)00053-1
10.1142/S0219720010005130
10.1073/pnas.1117029108
10.1016/S0090-4295(00)00672-5
10.1109/CSO.2009.389
10.1016/S0090-4295(03)00409-6
10.1093/clinchem/48.8.1279
10.1158/0008-5472.CAN-10-2585
10.1073/pnas.191502998
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3006197
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 127476
ExternalDocumentID oai_doaj_org_article_f25e8db83d1f4393afdd988000853ec6
10.1109/access.2020.3006197
10_1109_ACCESS_2020_3006197
9130690
Genre orig-research
GrantInformation_xml – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP)
– fundername: Korean Government (MSIT), Department of Artificial Intelligence, Korea University
  grantid: 2019-0-00079
  funderid: 10.13039/501100002642
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-ec33bdf8829cf371b11a2901d25ae4f555a5b5d0efeaf32cdfcb9e86cc2d9633
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:05 EDT 2025
Tue Aug 19 16:38:29 EDT 2025
Mon Jun 30 06:34:19 EDT 2025
Wed Oct 01 03:37:19 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed Aug 27 02:32:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ec33bdf8829cf371b11a2901d25ae4f555a5b5d0efeaf32cdfcb9e86cc2d9633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4019-2345
0000-0002-6249-4996
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9130690
PQID 2454642774
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f25e8db83d1f4393afdd988000853ec6
ieee_primary_9130690
crossref_primary_10_1109_ACCESS_2020_3006197
crossref_citationtrail_10_1109_ACCESS_2020_3006197
unpaywall_primary_10_1109_access_2020_3006197
proquest_journals_2454642774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
peng (ref26) 2007; 2
ref36
ref14
ref30
ref33
ref11
ref32
ref2
ref1
ref17
wang (ref9) 2004
ref16
ref19
ref18
wang (ref28) 2005
ref24
ref25
ref20
ref21
xing (ref27) 0; 1
ref29
bouazza (ref23) 2018; 6
ref8
ref7
ref4
ref3
dangliyan (ref22) 2011; 6
ref6
ref5
ibrahim (ref31) 2017; 17
revathy (ref10) 2012; 40
References_xml – volume: 6
  year: 2011
  ident: ref22
  article-title: Optimization based tumor classification from microarray gene expression data
  publication-title: PLoS ONE
– ident: ref35
  doi: 10.1109/TPAMI.2012.69
– ident: ref5
  doi: 10.1073/pnas.211566398
– ident: ref21
  doi: 10.1016/j.jbi.2013.03.009
– ident: ref1
  doi: 10.1097/01.ju.0000062548.28015.f6
– ident: ref19
  doi: 10.1186/1471-2105-5-136
– ident: ref25
  doi: 10.1016/j.neucom.2008.04.010
– ident: ref37
  doi: 10.1109/ACCESS.2020.2975848
– ident: ref24
  doi: 10.1016/S1535-6108(02)00030-2
– ident: ref20
  doi: 10.1038/35090585
– ident: ref30
  doi: 10.11113/jt.v72.2949
– ident: ref8
  doi: 10.1155/2015/198363
– ident: ref34
  doi: 10.1109/IWW-BCI.2013.6506643
– ident: ref36
  doi: 10.1007/3-540-45665-1_17
– ident: ref15
  doi: 10.30699/ijp.2017.27990
– year: 2005
  ident: ref28
  publication-title: Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data
– ident: ref7
  doi: 10.1126/science.286.5439.531
– ident: ref32
  doi: 10.1007/s00521-018-3764-y
– volume: 2
  start-page: 301
  year: 2007
  ident: ref26
  article-title: A hybrid approach for biomarker discovery from microarray gene expression data for cancer classification
  publication-title: Cancer Inf
– ident: ref33
  doi: 10.1080/01446190600851033
– volume: 6
  start-page: 282
  year: 2018
  ident: ref23
  article-title: Prostate cancer diagnosis based on Microarray gene expression profiles
  publication-title: Engineering and Technology Journal
– ident: ref11
  doi: 10.1109/ICASSP.2009.4959944
– ident: ref17
  doi: 10.1093/bioinformatics/bti647
– volume: 17
  start-page: 13
  year: 2017
  ident: ref31
  article-title: Feature selection using salp swarm algorithm for real biomedical datasets
  publication-title: Int J Comput Sci Netw Secur
– ident: ref29
  doi: 10.1007/s10898-005-5608-4
– ident: ref18
  doi: 10.1016/S0933-3657(00)00053-1
– ident: ref12
  doi: 10.1142/S0219720010005130
– ident: ref13
  doi: 10.1073/pnas.1117029108
– volume: 40
  start-page: 113
  year: 2012
  ident: ref10
  article-title: GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes
  publication-title: J Theor Appl Inf Technol
– ident: ref3
  doi: 10.1016/S0090-4295(00)00672-5
– start-page: 497
  year: 2004
  ident: ref9
  article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data
  publication-title: Proc IEEE Comput Syst Bioinf Conf (CSB)
– ident: ref16
  doi: 10.1109/CSO.2009.389
– ident: ref2
  doi: 10.1016/S0090-4295(03)00409-6
– ident: ref4
  doi: 10.1093/clinchem/48.8.1279
– ident: ref14
  doi: 10.1158/0008-5472.CAN-10-2585
– volume: 1
  start-page: 601
  year: 0
  ident: ref27
  article-title: Feature selection for high-dimensional genomic microarray data
  publication-title: Proc ICML
– ident: ref6
  doi: 10.1073/pnas.191502998
SSID ssj0000816957
Score 2.2839277
Snippet Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127462
SubjectTerms Algorithms
Artificial neural networks
Classification
Feature extraction
Feature selection
Gene expression
Optimization
Optimization algorithms
Optimization techniques
Prostate cancer
Signal to noise ratio
Walnuts
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kF_Ug2ipGa9mDR0Ozv5Ls8fVhKWJF6BN7W_YnCM-0pO9RPPmvO7PZPlKEevGabDabzEzmm2TyfYS8b5XiwbautjaKWgbXQsxxiKvgmJehizr_t3b-pT37Jj9dqsuZ1Bf2hE30wNONO05cxT64XgSWIHkKm0LQ4HSIFUT0mWy76fWsmMrP4J61WnWFZog1-nixXMIVQUHIoU7FxI00T7NUlBn7i8TKPbT5eDtc21-3dr2eJZ7T5-RZQYx0Ma30BXkUh33ydMYjeEB-r2bw82qgJ5CaAl2NP-rP2BNEEedtx0gvsugNjlgUKnGaWwbod4v6E5sbaodAL27t-JNOcg-4E-alX_HnEICldIleMtKspYldRvmEL8nq9ONqeVYXZYXay6bf1NEL4UICdK19Eh1zjFn8oBq4slEmpZRVToUmpmiT4D4k73Tsscc6QMSKV2RvuBria0K5ZyzIngeXuLTO6S5oH5nsnNeQ-WNF-N09Nr6wjqP4xdrk6qPRZjKMQcOYYpiKfNgddD2Rbjw8_ASNtxuKjNl5A_iRKX5k_uVHFTlA0-8m0ZDcW91U5PDOFUyJ7hvDpZJQtwFyrki9c4-_lmqz5OW9pb75H0t9S57gnNOLoEOytxm38R1Ao407ylHwB0WbCoU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJLdjR9JfNyuqCoEVaVuRTlFfkoVS7pKsypw4a8z43hXW5CQ4BYlTuJoxuNv4vH3EfKmlJI5XZpca89z4UwJY47BuHKmsMJVXsV9ax9PyuNz8f5CXqQfbnEvjPc-Fp_5MR7GtfxLv_xWTUqG5GlqUisBERVyeQXhF3K78cqFu2SvlIDFR2Tv_OR09hkV5YpS5TyuTb5MxJoTHTUIISlkkKvi5I1UTzvTUWTtTzIrtxDnvXW70t9v9HK5M_kcPSTNpttDzcmX8bo3Y_vjN0bH__-uR-RBwqV0NjjSY3LHt0_I_R22wn3yc7EDcq9aeggToKOL7jL_gJVHFNHkuvP0LErrYItZIiynsTCBftKoctFfU906enaju690EJXAi_BceopbUAD80jn6YkejYifWMsUXPiWLo3eL-XGe9BtyK6Z1n3vLuXEBMLyygVeFKQqNy7aOSe1FkFJqaaSb-uB14My6YI3yNVZyO4gL_BkZtVetf04os0XhRM2cCUxoY1TllPWFqIxVgC98RtjGio1N3OYosbFsYo4zVc1sPgeHbtD0TTJ9Rt5ub1oN1B5_b36I7rFtirzc8QSYsknDvAlM-tqZmrsiANTjOjinIEQisuXelhnZR_NvH5JsnZGDjbM1KYZcN0xIAdkh4POM5FsH_KOrg1Pf6uqLf2x_QEZ9t_avAF715nUaQ78AsVwh9g
  priority: 102
  providerName: Unpaywall
Title Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification
URI https://ieeexplore.ieee.org/document/9130690
https://www.proquest.com/docview/2454642774
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09130690.pdf
https://doaj.org/article/f25e8db83d1f4393afdd988000853ec6
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QA98FUQgbLygWOz3Th2Eh-3K6oK0apSt6KcIn9KFUu2SrOqyoW_jsfxRltAiFuUOImjmbHfOOP3AD4UnFMjC5VKafOUGVX4mKM-rozKNDOlFWHf2ulZcXLJPl3xqy04GPbCWGtD8Zkd42H4l2-WeoVLZYfCD7g-m9uG7bIq-r1aw3oKCkgIXkZioWwiDqezmf8GnwJSn5niVI3EThuTT-Doj6IqD_Dl41VzI-_v5GKxMdUcP4PTdSf7CpNv41WnxvrHb_yN__sVz-FpxJxk2jvJC9iyzUvY3WAi3IOf8w0Au2zIkZ_cDJm31-lnrCoiiBRXrSUXQTYHW0wjGTkJRQfki0QFi-6WyMaQizvZfie9YARe9M8l57i9xANbMkM_a0lQ48Q6pfDCVzA__jifnaRRmyHVbFJ1qdV5rozz-Fxol5eZyjKJv2QN5dIyxzmXXHEzsc5Kl1NtnFbCVlilbXzM569hp1k29g0QqrPMsIoa5SiTSonSCG0zViotPHawCdC1zWodectRPmNRh_xlIure0DUauo6GTuBguOmmp-34d_MjdIahKXJuhxPecHUM4dpRbiujqtxkzsO4XDpjhB_-ELXmVhcJ7KGxh4dEOyewv3atOo4PtzVlnPnMz2PvBNLB3f7oqgyimQ-6-vbvb3kHT7BVvzi0Dztdu7LvPVzq1CgsM4xCtIzg0eXZ-fTrL8JXFmI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQe-CqIQAEfODbbjWMn8XG7olpgt0JqEL1Z_pQqlmyVZlWVC38dj-ONtoAQtyhxEkczY79xxu8h9K5gjBhZqFRKm6fUqMLHHPFxZVSmqSktD_vWFmfF7Av9eMEudtDRsBfGWhuKz-wIDsO_fLPSa1gqO-Z-wPXZ3D10n1FKWb9ba1hRAQkJzspILZSN-fFkOvVf4ZNA4nNTmKyB2mlr-gks_VFW5Q7C3Fs3V_L2Ri6XW5PN6SO02HSzrzH5Nlp3aqR__Mbg-L_f8Rg9jKgTT3o3eYJ2bPMU7W9xER6gn_UWhF01-MRPbwbX7WU6h7oiDFhx3Vp8HoRzoMUk0pHjUHaAv0rQsOiusWwMPr-R7XfcS0bARf9c_Bk2mHhoi6fgaS0OepxQqRRe-AzVp-_r6SyN6gyppuOqS63Oc2WcR-hcu7zMVJZJ-ClrCJOWOsaYZIqZsXVWupxo47TitoI6beOjPn-OdptVY18gTHSWGVoRoxyhUileGq5tRkuluUcPNkFkYzOhI3M5CGgsRchgxlz0hhZgaBENnaCj4aarnrjj381PwBmGpsC6HU54w4kYxMIRZiujqtxkzgO5XDpjuB8AAbfmVhcJOgBjDw-Jdk7Q4ca1RBwhrgWhjPrcz6PvBKWDu_3RVRlkM-909eXf3_IW7c3qxVzMP5x9eoUewB39UtEh2u3atX3twVOn3oSY-QUmTRcK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJLdjR9JfNyuqCoEVaVuRTlFfkoVS7pKsypw4a8z43hXW5CQ4BYlTuJoxuNv4vH3EfKmlJI5XZpca89z4UwJY47BuHKmsMJVXsV9ax9PyuNz8f5CXqQfbnEvjPc-Fp_5MR7GtfxLv_xWTUqG5GlqUisBERVyeQXhF3K78cqFu2SvlIDFR2Tv_OR09hkV5YpS5TyuTb5MxJoTHTUIISlkkKvi5I1UTzvTUWTtTzIrtxDnvXW70t9v9HK5M_kcPSTNpttDzcmX8bo3Y_vjN0bH__-uR-RBwqV0NjjSY3LHt0_I_R22wn3yc7EDcq9aeggToKOL7jL_gJVHFNHkuvP0LErrYItZIiynsTCBftKoctFfU906enaju690EJXAi_BceopbUAD80jn6YkejYifWMsUXPiWLo3eL-XGe9BtyK6Z1n3vLuXEBMLyygVeFKQqNy7aOSe1FkFJqaaSb-uB14My6YI3yNVZyO4gL_BkZtVetf04os0XhRM2cCUxoY1TllPWFqIxVgC98RtjGio1N3OYosbFsYo4zVc1sPgeHbtD0TTJ9Rt5ub1oN1B5_b36I7rFtirzc8QSYsknDvAlM-tqZmrsiANTjOjinIEQisuXelhnZR_NvH5JsnZGDjbM1KYZcN0xIAdkh4POM5FsH_KOrg1Pf6uqLf2x_QEZ9t_avAF715nUaQ78AsVwh9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+Based+Tri-Level+Feature+Selection+Approach+Using+Wavelets+and+Swarm+Computing+for+Prostate+Cancer+Classification&rft.jtitle=IEEE+access&rft.au=Prabhakar%2C+Sunil+Kumar&rft.au=Lee%2C+Seong-Whan&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=127462&rft.epage=127476&rft_id=info:doi/10.1109%2FACCESS.2020.3006197&rft.externalDocID=9130690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon