Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification
Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the micro...
Saved in:
| Published in | IEEE access Vol. 8; pp. 127462 - 127476 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3006197 |
Cover
| Abstract | Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC). |
|---|---|
| AbstractList | Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC). Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used to nourish and transport the sperm. One of the most common types of cancer in men is prostate cancer. A microarray dataset contains the microarray gene expression information. On a genome wide scale, gene expression profiles make it easy to analyze the patterns between genes and cancers, however the analysis of gene expression data is very difficult as it has a high dimensionality and low Signal to Noise Ratio (SNR). In this paper, a transformation-based Tri-level feature selection using wavelets for prostate cancer classification has been proposed. For the input microarray data, initially wavelets are applied and then the essential features are selected. Then the standardized gene selection techniques are implemented such as Relief-F, Fishers Score, Information Gain and SNR for a second level feature selection stage. Finally, before proceeding to classification, a third level feature selection by means of optimization techniques are implemented. The optimization techniques incorporated in this work are Marriage in Honey Bee Optimization Algorithm (MHBOA), Migrating Birds Optimization Algorithm (MBOA), Salp Swarm Optimization Algorithm (SSOA) and Whale Optimization Algorithm (WOA). This kind of an approach is totally new, and the best results show when SNR with WOA is classified with Artificial Neural Network (ANN) giving a classification accuracy of 99.48%. The second highest classification accuracy of 99.22% is obtained when Relief-F test with MBOA is classified with Naïve Bayesian Classifier (NBC). |
| Author | Prabhakar, Sunil Kumar Lee, Seong-Whan |
| Author_xml | – sequence: 1 givenname: Sunil Kumar orcidid: 0000-0003-4019-2345 surname: Prabhakar fullname: Prabhakar, Sunil Kumar organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Seong-Whan orcidid: 0000-0002-6249-4996 surname: Lee fullname: Lee, Seong-Whan email: sw.lee@korea.ac.kr organization: Department of Artificial Intelligence, Korea University, Seoul, South Korea |
| BookMark | eNptUV1r2zAUNaODdV1_QV8Ee06mD8u2HjPTdoXACsnYo7iWrjoFx_YkeaVP--tz4hJGqF4krs6HdM7H7KLrO8yyG0aXjFH1ZVXXt5vNklNOl4LSgqnyXXbJWaEWQori4r_zh-w6xh2dVjWNZHmZ_d0G6KLrwx6S7zvyFSJasg1-scY_2JI7hDQGJBts0RwRq2EIPZhf5Ef03RP5CRMMUyTQWbJ5hrAndb8fxnS4nHTJY-hjgoSkhs5gIHULMXrnzdHwU_beQRvx-nW_yrZ3t9v622L9_f6hXq0XJqdVWqARorGuqrgyTpSsYQy4osxyCZg7KSXIRlqKDsEJbqwzjcKqMIZbVQhxlT3MsraHnR6C30N40T14fRz04UlDSN60qB2XWNmmEpa5XCgBzlpVVYfMpEBTTFr5rDV2A7w8Q9ueBBnVh0o0GIMx6kMl-rWSifZ5pk3x_R4xJr3rx9BNn9Y8l3mR87LMJ5SaUWaKLQZ02vh0TCoF8O3JYS793EGccc_f9TbrZmZ5RDwxFBO0UFT8A6iAuy8 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s12652_025_04953_9 crossref_primary_10_1016_j_jddst_2023_104593 crossref_primary_10_1016_j_jep_2021_114751 crossref_primary_10_1016_j_measurement_2022_111048 crossref_primary_10_1016_j_bspc_2024_106654 crossref_primary_10_3389_fnhum_2022_895761 crossref_primary_10_3390_diagnostics10100763 crossref_primary_10_3390_s21165571 crossref_primary_10_1007_s10142_024_01415_x crossref_primary_10_1016_j_eij_2023_100416 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1016_j_compmedimag_2022_102125 crossref_primary_10_1007_s10462_022_10179_4 crossref_primary_10_1007_s11227_024_06036_6 crossref_primary_10_3390_agriculture12081075 crossref_primary_10_1007_s42044_024_00174_z |
| Cites_doi | 10.1109/TPAMI.2012.69 10.1073/pnas.211566398 10.1016/j.jbi.2013.03.009 10.1097/01.ju.0000062548.28015.f6 10.1186/1471-2105-5-136 10.1016/j.neucom.2008.04.010 10.1109/ACCESS.2020.2975848 10.1016/S1535-6108(02)00030-2 10.1038/35090585 10.11113/jt.v72.2949 10.1155/2015/198363 10.1109/IWW-BCI.2013.6506643 10.1007/3-540-45665-1_17 10.30699/ijp.2017.27990 10.1126/science.286.5439.531 10.1007/s00521-018-3764-y 10.1080/01446190600851033 10.1109/ICASSP.2009.4959944 10.1093/bioinformatics/bti647 10.1007/s10898-005-5608-4 10.1016/S0933-3657(00)00053-1 10.1142/S0219720010005130 10.1073/pnas.1117029108 10.1016/S0090-4295(00)00672-5 10.1109/CSO.2009.389 10.1016/S0090-4295(03)00409-6 10.1093/clinchem/48.8.1279 10.1158/0008-5472.CAN-10-2585 10.1073/pnas.191502998 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3006197 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 127476 |
| ExternalDocumentID | oai_doaj_org_article_f25e8db83d1f4393afdd988000853ec6 10.1109/access.2020.3006197 10_1109_ACCESS_2020_3006197 9130690 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) – fundername: Korean Government (MSIT), Department of Artificial Intelligence, Korea University grantid: 2019-0-00079 funderid: 10.13039/501100002642 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-ec33bdf8829cf371b11a2901d25ae4f555a5b5d0efeaf32cdfcb9e86cc2d9633 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:05 EDT 2025 Tue Aug 19 16:38:29 EDT 2025 Mon Jun 30 06:34:19 EDT 2025 Wed Oct 01 03:37:19 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed Aug 27 02:32:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-ec33bdf8829cf371b11a2901d25ae4f555a5b5d0efeaf32cdfcb9e86cc2d9633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4019-2345 0000-0002-6249-4996 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9130690 |
| PQID | 2454642774 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f25e8db83d1f4393afdd988000853ec6 ieee_primary_9130690 crossref_primary_10_1109_ACCESS_2020_3006197 crossref_citationtrail_10_1109_ACCESS_2020_3006197 unpaywall_primary_10_1109_access_2020_3006197 proquest_journals_2454642774 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 peng (ref26) 2007; 2 ref36 ref14 ref30 ref33 ref11 ref32 ref2 ref1 ref17 wang (ref9) 2004 ref16 ref19 ref18 wang (ref28) 2005 ref24 ref25 ref20 ref21 xing (ref27) 0; 1 ref29 bouazza (ref23) 2018; 6 ref8 ref7 ref4 ref3 dangliyan (ref22) 2011; 6 ref6 ref5 ibrahim (ref31) 2017; 17 revathy (ref10) 2012; 40 |
| References_xml | – volume: 6 year: 2011 ident: ref22 article-title: Optimization based tumor classification from microarray gene expression data publication-title: PLoS ONE – ident: ref35 doi: 10.1109/TPAMI.2012.69 – ident: ref5 doi: 10.1073/pnas.211566398 – ident: ref21 doi: 10.1016/j.jbi.2013.03.009 – ident: ref1 doi: 10.1097/01.ju.0000062548.28015.f6 – ident: ref19 doi: 10.1186/1471-2105-5-136 – ident: ref25 doi: 10.1016/j.neucom.2008.04.010 – ident: ref37 doi: 10.1109/ACCESS.2020.2975848 – ident: ref24 doi: 10.1016/S1535-6108(02)00030-2 – ident: ref20 doi: 10.1038/35090585 – ident: ref30 doi: 10.11113/jt.v72.2949 – ident: ref8 doi: 10.1155/2015/198363 – ident: ref34 doi: 10.1109/IWW-BCI.2013.6506643 – ident: ref36 doi: 10.1007/3-540-45665-1_17 – ident: ref15 doi: 10.30699/ijp.2017.27990 – year: 2005 ident: ref28 publication-title: Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data – ident: ref7 doi: 10.1126/science.286.5439.531 – ident: ref32 doi: 10.1007/s00521-018-3764-y – volume: 2 start-page: 301 year: 2007 ident: ref26 article-title: A hybrid approach for biomarker discovery from microarray gene expression data for cancer classification publication-title: Cancer Inf – ident: ref33 doi: 10.1080/01446190600851033 – volume: 6 start-page: 282 year: 2018 ident: ref23 article-title: Prostate cancer diagnosis based on Microarray gene expression profiles publication-title: Engineering and Technology Journal – ident: ref11 doi: 10.1109/ICASSP.2009.4959944 – ident: ref17 doi: 10.1093/bioinformatics/bti647 – volume: 17 start-page: 13 year: 2017 ident: ref31 article-title: Feature selection using salp swarm algorithm for real biomedical datasets publication-title: Int J Comput Sci Netw Secur – ident: ref29 doi: 10.1007/s10898-005-5608-4 – ident: ref18 doi: 10.1016/S0933-3657(00)00053-1 – ident: ref12 doi: 10.1142/S0219720010005130 – ident: ref13 doi: 10.1073/pnas.1117029108 – volume: 40 start-page: 113 year: 2012 ident: ref10 article-title: GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes publication-title: J Theor Appl Inf Technol – ident: ref3 doi: 10.1016/S0090-4295(00)00672-5 – start-page: 497 year: 2004 ident: ref9 article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data publication-title: Proc IEEE Comput Syst Bioinf Conf (CSB) – ident: ref16 doi: 10.1109/CSO.2009.389 – ident: ref2 doi: 10.1016/S0090-4295(03)00409-6 – ident: ref4 doi: 10.1093/clinchem/48.8.1279 – ident: ref14 doi: 10.1158/0008-5472.CAN-10-2585 – volume: 1 start-page: 601 year: 0 ident: ref27 article-title: Feature selection for high-dimensional genomic microarray data publication-title: Proc ICML – ident: ref6 doi: 10.1073/pnas.191502998 |
| SSID | ssj0000816957 |
| Score | 2.2839277 |
| Snippet | Prostate Cancer is a cancer that occurs in the prostate- a small walnut shaped gland in men. This gland helps in the production of seminal fluid which is used... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127462 |
| SubjectTerms | Algorithms Artificial neural networks Classification Feature extraction Feature selection Gene expression Optimization Optimization algorithms Optimization techniques Prostate cancer Signal to noise ratio Walnuts Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kF_Ug2ipGa9mDR0Ozv5Ls8fVhKWJF6BN7W_YnCM-0pO9RPPmvO7PZPlKEevGabDabzEzmm2TyfYS8b5XiwbautjaKWgbXQsxxiKvgmJehizr_t3b-pT37Jj9dqsuZ1Bf2hE30wNONO05cxT64XgSWIHkKm0LQ4HSIFUT0mWy76fWsmMrP4J61WnWFZog1-nixXMIVQUHIoU7FxI00T7NUlBn7i8TKPbT5eDtc21-3dr2eJZ7T5-RZQYx0Ma30BXkUh33ydMYjeEB-r2bw82qgJ5CaAl2NP-rP2BNEEedtx0gvsugNjlgUKnGaWwbod4v6E5sbaodAL27t-JNOcg-4E-alX_HnEICldIleMtKspYldRvmEL8nq9ONqeVYXZYXay6bf1NEL4UICdK19Eh1zjFn8oBq4slEmpZRVToUmpmiT4D4k73Tsscc6QMSKV2RvuBria0K5ZyzIngeXuLTO6S5oH5nsnNeQ-WNF-N09Nr6wjqP4xdrk6qPRZjKMQcOYYpiKfNgddD2Rbjw8_ASNtxuKjNl5A_iRKX5k_uVHFTlA0-8m0ZDcW91U5PDOFUyJ7hvDpZJQtwFyrki9c4-_lmqz5OW9pb75H0t9S57gnNOLoEOytxm38R1Ao407ylHwB0WbCoU priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJLdjR9JfNyuqCoEVaVuRTlFfkoVS7pKsypw4a8z43hXW5CQ4BYlTuJoxuNv4vH3EfKmlJI5XZpca89z4UwJY47BuHKmsMJVXsV9ax9PyuNz8f5CXqQfbnEvjPc-Fp_5MR7GtfxLv_xWTUqG5GlqUisBERVyeQXhF3K78cqFu2SvlIDFR2Tv_OR09hkV5YpS5TyuTb5MxJoTHTUIISlkkKvi5I1UTzvTUWTtTzIrtxDnvXW70t9v9HK5M_kcPSTNpttDzcmX8bo3Y_vjN0bH__-uR-RBwqV0NjjSY3LHt0_I_R22wn3yc7EDcq9aeggToKOL7jL_gJVHFNHkuvP0LErrYItZIiynsTCBftKoctFfU906enaju690EJXAi_BceopbUAD80jn6YkejYifWMsUXPiWLo3eL-XGe9BtyK6Z1n3vLuXEBMLyygVeFKQqNy7aOSe1FkFJqaaSb-uB14My6YI3yNVZyO4gL_BkZtVetf04os0XhRM2cCUxoY1TllPWFqIxVgC98RtjGio1N3OYosbFsYo4zVc1sPgeHbtD0TTJ9Rt5ub1oN1B5_b36I7rFtirzc8QSYsknDvAlM-tqZmrsiANTjOjinIEQisuXelhnZR_NvH5JsnZGDjbM1KYZcN0xIAdkh4POM5FsH_KOrg1Pf6uqLf2x_QEZ9t_avAF715nUaQ78AsVwh9g priority: 102 providerName: Unpaywall |
| Title | Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification |
| URI | https://ieeexplore.ieee.org/document/9130690 https://www.proquest.com/docview/2454642774 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09130690.pdf https://doaj.org/article/f25e8db83d1f4393afdd988000853ec6 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QA98FUQgbLygWOz3Th2Eh-3K6oK0apSt6KcIn9KFUu2SrOqyoW_jsfxRltAiFuUOImjmbHfOOP3AD4UnFMjC5VKafOUGVX4mKM-rozKNDOlFWHf2ulZcXLJPl3xqy04GPbCWGtD8Zkd42H4l2-WeoVLZYfCD7g-m9uG7bIq-r1aw3oKCkgIXkZioWwiDqezmf8GnwJSn5niVI3EThuTT-Doj6IqD_Dl41VzI-_v5GKxMdUcP4PTdSf7CpNv41WnxvrHb_yN__sVz-FpxJxk2jvJC9iyzUvY3WAi3IOf8w0Au2zIkZ_cDJm31-lnrCoiiBRXrSUXQTYHW0wjGTkJRQfki0QFi-6WyMaQizvZfie9YARe9M8l57i9xANbMkM_a0lQ48Q6pfDCVzA__jifnaRRmyHVbFJ1qdV5rozz-Fxol5eZyjKJv2QN5dIyxzmXXHEzsc5Kl1NtnFbCVlilbXzM569hp1k29g0QqrPMsIoa5SiTSonSCG0zViotPHawCdC1zWodectRPmNRh_xlIure0DUauo6GTuBguOmmp-34d_MjdIahKXJuhxPecHUM4dpRbiujqtxkzsO4XDpjhB_-ELXmVhcJ7KGxh4dEOyewv3atOo4PtzVlnPnMz2PvBNLB3f7oqgyimQ-6-vbvb3kHT7BVvzi0Dztdu7LvPVzq1CgsM4xCtIzg0eXZ-fTrL8JXFmI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQe-CqIQAEfODbbjWMn8XG7olpgt0JqEL1Z_pQqlmyVZlWVC38dj-ONtoAQtyhxEkczY79xxu8h9K5gjBhZqFRKm6fUqMLHHPFxZVSmqSktD_vWFmfF7Av9eMEudtDRsBfGWhuKz-wIDsO_fLPSa1gqO-Z-wPXZ3D10n1FKWb9ba1hRAQkJzspILZSN-fFkOvVf4ZNA4nNTmKyB2mlr-gks_VFW5Q7C3Fs3V_L2Ri6XW5PN6SO02HSzrzH5Nlp3aqR__Mbg-L_f8Rg9jKgTT3o3eYJ2bPMU7W9xER6gn_UWhF01-MRPbwbX7WU6h7oiDFhx3Vp8HoRzoMUk0pHjUHaAv0rQsOiusWwMPr-R7XfcS0bARf9c_Bk2mHhoi6fgaS0OepxQqRRe-AzVp-_r6SyN6gyppuOqS63Oc2WcR-hcu7zMVJZJ-ClrCJOWOsaYZIqZsXVWupxo47TitoI6beOjPn-OdptVY18gTHSWGVoRoxyhUileGq5tRkuluUcPNkFkYzOhI3M5CGgsRchgxlz0hhZgaBENnaCj4aarnrjj381PwBmGpsC6HU54w4kYxMIRZiujqtxkzgO5XDpjuB8AAbfmVhcJOgBjDw-Jdk7Q4ca1RBwhrgWhjPrcz6PvBKWDu_3RVRlkM-909eXf3_IW7c3qxVzMP5x9eoUewB39UtEh2u3atX3twVOn3oSY-QUmTRcK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJLdjR9JfNyuqCoEVaVuRTlFfkoVS7pKsypw4a8z43hXW5CQ4BYlTuJoxuNv4vH3EfKmlJI5XZpca89z4UwJY47BuHKmsMJVXsV9ax9PyuNz8f5CXqQfbnEvjPc-Fp_5MR7GtfxLv_xWTUqG5GlqUisBERVyeQXhF3K78cqFu2SvlIDFR2Tv_OR09hkV5YpS5TyuTb5MxJoTHTUIISlkkKvi5I1UTzvTUWTtTzIrtxDnvXW70t9v9HK5M_kcPSTNpttDzcmX8bo3Y_vjN0bH__-uR-RBwqV0NjjSY3LHt0_I_R22wn3yc7EDcq9aeggToKOL7jL_gJVHFNHkuvP0LErrYItZIiynsTCBftKoctFfU906enaju690EJXAi_BceopbUAD80jn6YkejYifWMsUXPiWLo3eL-XGe9BtyK6Z1n3vLuXEBMLyygVeFKQqNy7aOSe1FkFJqaaSb-uB14My6YI3yNVZyO4gL_BkZtVetf04os0XhRM2cCUxoY1TllPWFqIxVgC98RtjGio1N3OYosbFsYo4zVc1sPgeHbtD0TTJ9Rt5ub1oN1B5_b36I7rFtirzc8QSYsknDvAlM-tqZmrsiANTjOjinIEQisuXelhnZR_NvH5JsnZGDjbM1KYZcN0xIAdkh4POM5FsH_KOrg1Pf6uqLf2x_QEZ9t_avAF715nUaQ78AsVwh9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+Based+Tri-Level+Feature+Selection+Approach+Using+Wavelets+and+Swarm+Computing+for+Prostate+Cancer+Classification&rft.jtitle=IEEE+access&rft.au=Prabhakar%2C+Sunil+Kumar&rft.au=Lee%2C+Seong-Whan&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=127462&rft.epage=127476&rft_id=info:doi/10.1109%2FACCESS.2020.3006197&rft.externalDocID=9130690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |