An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field
Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima...
        Saved in:
      
    
          | Published in | IEEE access Vol. 8; pp. 186638 - 186652 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2020.3029728 | 
Cover
| Abstract | Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets. | 
    
|---|---|
| AbstractList | Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris’ Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon’s statistical test ([Formula Omitted]-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets. Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets. Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test ($P$ -value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.  | 
    
| Author | Elgamal, Zenab Mohamed Tubishat, Mohammad Yasin, Norizan Binti Mohd Alswaitti, Mohammed Mirjalili, Seyedali  | 
    
| Author_xml | – sequence: 1 givenname: Zenab Mohamed orcidid: 0000-0002-9927-5893 surname: Elgamal fullname: Elgamal, Zenab Mohamed organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia – sequence: 2 givenname: Norizan Binti Mohd surname: Yasin fullname: Yasin, Norizan Binti Mohd email: norizan@um.edu.my organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia – sequence: 3 givenname: Mohammad orcidid: 0000-0003-1464-8345 surname: Tubishat fullname: Tubishat, Mohammad organization: School of Technology and Computing, Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia – sequence: 4 givenname: Mohammed orcidid: 0000-0003-0580-6954 surname: Alswaitti fullname: Alswaitti, Mohammed organization: School of Electrical and Computer Engineering (ICT), Xiamen University Malaysia, Sepang, Malaysia – sequence: 5 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, QLD, Australia  | 
    
| BookMark | eNqFkc1uEzEURkeoSJTSJ-jGEusE_47Hy1HU0EhFXQTE0vLYd1IHz0ywHary9LiZqkJlgRe2dXXPubK_99XZOI1QVVcELwnB6lO7Wl1vt0uKKV4yTJWkzZvqnJJaLZhg9dlf93fVZUp7XFZTSkKeV6kd0WY4xOkXOHRjYvSpHA8_Ero7ZD_43yb7aURt2E3R5_sBfS872vrhGEwuSDuOYIIfd6ifIlqDyccIaAsB7An0I8r3gL6A89YEtPYQ3IfqbW9Cgsvn86L6tr7-urpZ3N593qza24XluMkLYIpRRjgnNRYUcwKd6pRrBK-5la5vlMBMmZ5iKUljMHedFSBB9c5Zozp2UW1mr5vMXh-iH0x81JPx-lSY4k6bmL0NoCUl1EouawGEO8UbYfuOckZpGa04KS4-u47jwTw-mBBehATrpxy0sRZS0k856OccCvZxxsoP_zxCyno_HeNYXq0pF6whDZW4dLG5y8YppQj9P-4549du9YqyPp_iytH48B_2amY9ALxMU5RIQWr2B4_js6o | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123299 crossref_primary_10_1109_ACCESS_2022_3221194 crossref_primary_10_1109_ACCESS_2021_3066622 crossref_primary_10_1007_s00521_022_08015_5 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_3390_s23136224 crossref_primary_10_1007_s00521_021_06448_y crossref_primary_10_3390_computation9060068 crossref_primary_10_3389_fenrg_2023_1178521 crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_3390_en15103815 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_1007_s00477_025_02911_7 crossref_primary_10_1016_j_knosys_2023_111218 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1016_j_chemolab_2023_104989 crossref_primary_10_1109_ACCESS_2024_3480834 crossref_primary_10_1016_j_chaos_2023_114154 crossref_primary_10_1016_j_cmpb_2024_108373 crossref_primary_10_1007_s13198_024_02508_3 crossref_primary_10_1007_s10257_022_00615_x crossref_primary_10_1002_dac_6140 crossref_primary_10_38016_jista_1427938 crossref_primary_10_3390_math10213976 crossref_primary_10_1007_s00521_022_07852_8 crossref_primary_10_1002_cta_3152 crossref_primary_10_1093_jcde_qwab082 crossref_primary_10_1615_IntJMultCompEng_2024052181 crossref_primary_10_1177_24056456251320119 crossref_primary_10_1177_24056456251320118 crossref_primary_10_3390_diagnostics14192244 crossref_primary_10_1007_s10614_023_10361_y crossref_primary_10_1007_s10489_022_03704_z crossref_primary_10_1007_s10586_024_04348_z crossref_primary_10_3390_a14100282 crossref_primary_10_3390_s23104583 crossref_primary_10_1016_j_knosys_2024_111578 crossref_primary_10_3390_en16010251 crossref_primary_10_1109_ACCESS_2022_3204039 crossref_primary_10_1002_cpe_7239 crossref_primary_10_1007_s10115_024_02146_y crossref_primary_10_3390_su14094913 crossref_primary_10_3724_2096_7004_di_2024_0002 crossref_primary_10_1016_j_heliyon_2023_e23012 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1007_s12652_021_03621_y crossref_primary_10_1007_s40745_024_00571_y crossref_primary_10_1007_s42979_021_00687_5 crossref_primary_10_1109_ACCESS_2022_3174854 crossref_primary_10_1002_ett_4921 crossref_primary_10_1016_j_conbuildmat_2024_136550 crossref_primary_10_1002_widm_1568 crossref_primary_10_1016_j_knosys_2022_108771 crossref_primary_10_34248_bsengineering_1490063 crossref_primary_10_1142_S0218127424502055 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_1016_j_oceaneng_2024_118306 crossref_primary_10_1080_1448837X_2024_2326272 crossref_primary_10_1109_ACCESS_2023_3262600 crossref_primary_10_3390_s22145444 crossref_primary_10_1109_ACCESS_2022_3205618 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1016_j_eswa_2024_124973 crossref_primary_10_1016_j_ijepes_2021_107893 crossref_primary_10_1007_s00521_024_10621_4 crossref_primary_10_1007_s11761_023_00382_8 crossref_primary_10_1016_j_bspc_2022_103791 crossref_primary_10_3390_math11061525 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_1080_01969722_2023_2166259 crossref_primary_10_1109_ACCESS_2022_3153038 crossref_primary_10_3390_technologies11020055 crossref_primary_10_1016_j_eswa_2022_116834 crossref_primary_10_1007_s10586_024_04873_x crossref_primary_10_1016_j_rico_2023_100315 crossref_primary_10_1109_ACCESS_2021_3108097 crossref_primary_10_1016_j_est_2022_104154 crossref_primary_10_3390_agriculture13040768 crossref_primary_10_3233_JIFS_213422 crossref_primary_10_1007_s10489_022_03251_7 crossref_primary_10_1038_s41598_022_18993_0 crossref_primary_10_1007_s10479_024_05992_9 crossref_primary_10_1007_s11831_022_09717_8 crossref_primary_10_3390_jmse12061024 crossref_primary_10_1002_ett_4839 crossref_primary_10_3233_IDT_230163 crossref_primary_10_1007_s11042_024_18914_5 crossref_primary_10_1016_j_asoc_2021_107698 crossref_primary_10_1109_JIOT_2024_3391024 crossref_primary_10_1109_ACCESS_2022_3189476 crossref_primary_10_1007_s00477_022_02178_2 crossref_primary_10_3390_axioms12030245 crossref_primary_10_1093_jcde_qwac085 crossref_primary_10_1002_er_7806 crossref_primary_10_1002_oca_3144 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_1016_j_aej_2025_02_083 crossref_primary_10_1007_s11042_022_11949_6 crossref_primary_10_1177_21582440241257681 crossref_primary_10_3390_sym13122364 crossref_primary_10_3390_electronics12061404 crossref_primary_10_59782_sidr_v3i1_140 crossref_primary_10_1016_j_patrec_2023_05_007 crossref_primary_10_1007_s00500_023_07928_0 crossref_primary_10_1038_s41598_024_84549_z crossref_primary_10_1007_s00521_022_07398_9 crossref_primary_10_1007_s10115_022_01825_y  | 
    
| Cites_doi | 10.1016/j.asoc.2017.11.006 10.1016/j.asoc.2018.11.001 10.1016/j.neucom.2017.04.053 10.1016/j.future.2019.02.028 10.1515/jisys-2019-0062 10.1016/j.jcde.2017.02.005 10.1109/ACCESS.2020.3006473 10.1016/j.eswa.2018.08.051 10.1007/s00500-018-3102-4 10.1007/s10489-017-1019-8 10.1016/j.clinph.2018.10.010 10.1155/2016/2959370 10.1109/ACCESS.2019.2921545 10.1007/s00500-019-03988-3 10.1016/j.compchemeng.2019.106656 10.1007/s00521-018-3343-2 10.1016/j.asoc.2019.03.013 10.1016/j.artmed.2017.10.002 10.1631/jzus.2006.A0539 10.1109/ACCESS.2019.2922987 10.1109/ACCESS.2019.2906757 10.1109/LGRS.2014.2337320 10.1016/j.eswa.2019.113122 10.1109/ACCESS.2019.2961811 10.1126/science.220.4598.671 10.1007/s00366-019-00816-y 10.1155/2015/198363 10.1007/s10489-018-1334-8 10.1016/j.neucom.2015.06.083 10.1016/j.asoc.2019.04.037 10.1007/s00521-020-04951-2 10.1016/j.ins.2019.05.038 10.1016/j.asoc.2016.01.044 10.1016/j.compag.2017.02.026 10.1007/s00500-020-04881-0 10.1016/j.neucom.2016.03.101 10.1016/j.future.2019.05.035 10.1007/978-3-030-12127-3_1 10.1007/s00521-020-05210-0 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2016.01.041 10.1109/ACCESS.2019.2919956 10.1016/j.jcde.2017.12.006 10.1007/s00521-017-2988-6 10.1109/ACCESS.2019.2953298 10.1016/j.engappai.2019.103370  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2020.3029728 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) - IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Statistics  | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 186652 | 
    
| ExternalDocumentID | oai_doaj_org_article_7212c74765e14d9485cfb24322052941 10.1109/access.2020.3029728 10_1109_ACCESS_2020_3029728 9217516  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-e3932314416052041eb9b9d85464c7df895039af207718a04dbc5e7e9fddca9b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:52:39 EDT 2025 Sun Oct 26 02:50:48 EDT 2025 Mon Jun 30 05:11:49 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Oct 01 03:37:38 EDT 2025 Wed Aug 27 02:31:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-e3932314416052041eb9b9d85464c7df895039af207718a04dbc5e7e9fddca9b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9927-5893 0000-0003-0580-6954 0000-0003-1464-8345 0000-0002-1443-9458  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09217516.pdf | 
    
| PQID | 2453818270 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7212c74765e14d9485cfb24322052941 proquest_journals_2453818270 crossref_citationtrail_10_1109_ACCESS_2020_3029728 ieee_primary_9217516 unpaywall_primary_10_1109_access_2020_3029728 crossref_primary_10_1109_ACCESS_2020_3029728  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 20200000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 kirkpatrick (ref24) 1983; 220 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref46 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 altman (ref43) 1992; 46 ref40  | 
    
| References_xml | – ident: ref1 doi: 10.1016/j.asoc.2017.11.006 – ident: ref6 doi: 10.1016/j.asoc.2018.11.001 – ident: ref25 doi: 10.1016/j.neucom.2017.04.053 – volume: 46 start-page: 175 year: 1992 ident: ref43 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer Statistician – ident: ref35 doi: 10.1016/j.future.2019.02.028 – ident: ref28 doi: 10.1515/jisys-2019-0062 – ident: ref22 doi: 10.1016/j.jcde.2017.02.005 – ident: ref39 doi: 10.1109/ACCESS.2020.3006473 – ident: ref10 doi: 10.1016/j.eswa.2018.08.051 – ident: ref14 doi: 10.1007/s00500-018-3102-4 – ident: ref15 doi: 10.1007/s10489-017-1019-8 – ident: ref31 doi: 10.1016/j.clinph.2018.10.010 – ident: ref26 doi: 10.1155/2016/2959370 – ident: ref36 doi: 10.1109/ACCESS.2019.2921545 – ident: ref5 doi: 10.1007/s00500-019-03988-3 – ident: ref38 doi: 10.1016/j.compchemeng.2019.106656 – ident: ref23 doi: 10.1007/s00521-018-3343-2 – ident: ref17 doi: 10.1016/j.asoc.2019.03.013 – ident: ref21 doi: 10.1016/j.artmed.2017.10.002 – ident: ref18 doi: 10.1631/jzus.2006.A0539 – ident: ref4 doi: 10.1109/ACCESS.2019.2922987 – ident: ref9 doi: 10.1109/ACCESS.2019.2906757 – ident: ref29 doi: 10.1109/LGRS.2014.2337320 – ident: ref7 doi: 10.1016/j.eswa.2019.113122 – ident: ref42 doi: 10.1109/ACCESS.2019.2961811 – volume: 220 start-page: 671 year: 1983 ident: ref24 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref32 doi: 10.1007/s00366-019-00816-y – ident: ref3 doi: 10.1155/2015/198363 – ident: ref16 doi: 10.1007/s10489-018-1334-8 – ident: ref12 doi: 10.1016/j.neucom.2015.06.083 – ident: ref33 doi: 10.1016/j.asoc.2019.04.037 – ident: ref40 doi: 10.1007/s00521-020-04951-2 – ident: ref13 doi: 10.1016/j.ins.2019.05.038 – ident: ref8 doi: 10.1016/j.asoc.2016.01.044 – ident: ref34 doi: 10.1016/j.compag.2017.02.026 – ident: ref47 doi: 10.1007/s00500-020-04881-0 – ident: ref11 doi: 10.1016/j.neucom.2016.03.101 – ident: ref30 doi: 10.1016/j.future.2019.05.035 – ident: ref45 doi: 10.1007/978-3-030-12127-3_1 – ident: ref46 doi: 10.1007/s00521-020-05210-0 – ident: ref44 doi: 10.1016/j.advengsoft.2017.01.004 – ident: ref37 doi: 10.1016/j.asoc.2016.01.041 – ident: ref2 doi: 10.1109/ACCESS.2019.2919956 – ident: ref20 doi: 10.1016/j.jcde.2017.12.006 – ident: ref19 doi: 10.1007/s00521-017-2988-6 – ident: ref27 doi: 10.1109/ACCESS.2019.2953298 – ident: ref41 doi: 10.1016/j.engappai.2019.103370  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.5352123 | 
    
| Snippet | Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature... Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris’ Hawks in nature...  | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 186638 | 
    
| SubjectTerms | Chaos chaos theory Classification algorithms Datasets Feature extraction Feature selection Genetic algorithms Harris Hawks optimization~(HHO) algorithm Heuristic methods Machine learning Machine learning algorithms Optimization Optimization algorithms Particle swarm optimization Simulated annealing simulated annealing (SA) Sociology Statistical tests Statistics wrapper method  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSH0jQtdR5Fhx5rIkvyQ0dnybIU2h7S0NyEXk6X7jphH4T--8zIyuJQaC-92GAkI2tG0jfy6PsI-aiEd2D2Kkfy9FwCBEfK2yL3VghhmVVNTB7_8rWaXcvPN-XNSOoLc8IGeuCh484hQuEOMG9VhkJ65DJxneVS4AFRruKRdc4aNQqm4hzcFJUq60QzVDB13k4m8EUQEHKIU1GxCfXXR0tRZOxPEivP0Ob-tr83vx_MYjFaeKavyauEGGk7tPSQvAj9G3Iw4hE8Iuu2p8PuQPB0ZlYwcOH28GtNv8GMsExHLWm7uL1bzTc_l_QHXOnVfInaXVClhcnW4Ll0ChCWIircrgK9ihI5WHHeU8CJNP3UoVPMentLrqeX3yezPKkp5E6yZpMHAVBNYPxUYe6LLIJVVvmmlJV0te8aVTKhTMdZDeuVYdJbV4Y6qM57Z5QV78hef9eH94R2VQ1AwAH68ABfeGggzPBKdU4ZKUyoM8KfOla7RDWOihcLHUMOpvRgDY3W0MkaGfm0q3Q_MG38vfgFWmxXFGmy4wNwHp2cR__LeTJyhPbevURBgFYWVUZOn-yv05Beay5LRDe8ZhnJdz7xR1NN1Ll81tTj_9HUE_IS3zns_pySvc1qG84AD23sh-j6j8wV_qg priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vVAOPFpQUwrygWOzTWLn4WNYsVohFQ6lorfIr8Cqu9lqd6OK_npmEm-0BYS4JFFkJ47Gsb-xZ74P4L3k1qDZs5DI00OBEJwob-PQas65jrQsuuDxy8_Z9Fp8uklv9uB8yIVxznXBZ25El91evl2alpbKLiTi5zTO9mE_L7I-V2tYTyEBCZnmnlgojuRFOR7jN6ALmKBnShpNpLi-M_l0HP1eVOURvnzSNnfq572az3emmslzuNw2so8wuR21Gz0yD7_xN_7vV7yAZx5zsrLvJC9hzzVH8HSHifAIDgl09pzNx7AuG9YvNjjLpmqF4wCe7m_X7AsOMAufucnK-fflarb5sWDf8MiuZguSAsMqJY7ditLcGSJiRiCzXTl21SnuUMVZwxB2Mr9HxCYURPcKricfv46noRdnCI2Iik3oOCI_Tu5YRqE0InZaammLVGTC5LYuZBpxqeokynH6U5Gw2qQud7K21iip-Ws4aJaNOwFWZzniCoNgxiIaSlyBXouVsjZSCa5cHkCytVplPHM5CWjMq86DiWTVm7oiU1fe1AGcD5XueuKOfxf_QN1hKEqs290NNF3lf-IKveXEoP-VpS4Wlnh1TK0TwSlZOZEiDuCYzD08xFs6gLNt56r8CLGuEpESWEryKIBw6HB_NFV1spmPmnr697e8gUMq1S8PncHBZtW6twiYNvpd96f8AshZDpw priority: 102 providerName: IEEE  | 
    
| Title | An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field | 
    
| URI | https://ieeexplore.ieee.org/document/9217516 https://www.proquest.com/docview/2453818270 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09217516.pdf https://doaj.org/article/7212c74765e14d9485cfb24322052941  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A88GsgAqPyA4-kTWzHiR9DRVUhMZBGxXiKEtth1dKsalON7a_nznGrDiQkeGmryq5c3eX8nX33fYS8VdxoMLsMkTw9FADBkfI2Dk3FOa-iSmWuePzTqZzNxcfz5NwfuLleGGutKz6zI_zo7vIXtvmZjiVD8jQ1zpSAiAq5vAI0ncRytDL1fXIkE8DiA3I0P_2Sf0dFuViqkLu7ydeeWHNcOg1CSAoZ5Kqo2oQa7AfbkWPt9zIrdxDng227Km-uy6Y52Hymj0mxW3Zfc3I52nbVSN_-xuj4___rCXnkcSnNe0d6Su7Z9hl5eMBWeEw2eUv7Mwhr6KxcQ3iAt-vLDf0McWfpGzpp3vy4Wi-6iyX9Bq_0bLFEhTCYkkNIL7H7nQJQpog9t2tLz5wQD05ctBTQKPVXR3SKtXXPyXz64etkFnrNhlCLKOtCywEQcszSJFbYiNhWqlImS4QUOjV1ppKIq7JmUQq7YhkJU-nEplbVxuhSVfwFGbRXrX1JaC1TgBsaMI4BkMRsBsmMUarWqhS8tGlA2M50hfaE5qir0RQusYlUkU8m4MUF2rvw9g7Iu_2kVc_n8ffh79En9kORjNt9AfYr_LNdQBLNNKRlMrGxMEi3o-uKCY49zEyJOCDHaPP9j3gDB-Rk52GFDxybgokEMRRLo4CEe6_7Y6m9J99Z6qt_HH9CBt16a98ApuqqoTuLGLr2x6F_iH4BpEAahQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a47Bx4McGIjDAB45Ll8TODx9DRVVgHYdtYrfIsZ1RrU2nNtUEfz3vJW7UAUJckiiKE1vPsb9nv_d9AO8lNxrNnvhEnu4LhOBEeRv6puScl0EpszZ4fHKWjC_F56v4ageO-1wYa20bfGYHdNnu5ZuFXtNS2YlE_ByHyQN4GAsh4i5bq19RIQkJGaeOWigM5Ek-HGIr0AmM0DcllSbSXN-aflqWfiercg9h7q3rW_XjTs1mW5PN6AlMNtXsYkxuBuumHOifvzE4_m87nsJjhzpZ3nWTZ7Bj6wN4tMVFeAD7BDs71uZDWOU165YbrGFjtcSRAE93Nyv2FYeYucvdZPnserGcNt_n7Bse2fl0TmJgWCTH0VtRojtDTMwIZq6Xlp23mjtUcFozBJ7M7RKxEYXRPYfL0ceL4dh38gy-FkHW-JYj9uPkkCUUTCNCW8pSmiwWidCpqTIZB1yqKgpSnABVIEypY5taWRmjlSz5C9itF7V9CaxKUkQWGuGMQTwU2Qz9FiNlpaUSXNnUg2hjtUI77nKS0JgVrQ8TyKIzdUGmLpypPTjuC9121B3_fvwDdYf-UeLdbm-g6Qr3GxfoL0caPbAktqEwxKyjqzISnNKVIylCDw7J3P1LnKU9ONp0rsKNEasiEjHBpSgNPPD7DvdHVVUrnHmvqq_-_pV3sDe-mJwWp5_OvryGfSrRLRYdwW6zXNs3CJ-a8m371_wCEPER6Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0ie048TFUVBUSC9JSsZysxHag2jRb9UO7y69nxnGrLkhIcEmiyI4czWT8Jh6_R8gbxa0Bs8sYydNjARAcKW_T2Nac8zqpVeGLxz-eyulMfDjPzsMPN78Xxjnni8_cEC_9Wv7ctdf5SDIkT1OjQgmIqJDLK0DTWSqHS9vcJUcyAyw-IEez08_lN1SUS6WKuV-bfBmINUeV1yCEpJBBroqqTajBfjAdedb-ILNyC3He23bL6uaqatuDyWfykOjdsPuak4vhdlMPzc_fGB3__70ekQcBl9Kyd6TH5I7rnpD7B2yFx2RddrT_B-EsnVYrCA9wurpY008QdxZhQyct2--Xq_nmx4J-hSM9my9QIQy6lBDSK9z9TgEoU8Se25WjZ16IBzvOOwpolIalIzrB2rqnZDZ5_2U8jYNmQ2xEUmxixwEQcszSJFbYiNTVqla2yIQUJrdNobKEq6phSQ6zYpUIW5vM5U411ppK1fwZGXSXnXtOaCNzgBsGMI4FkMRcAcmMVaoxqhK8cnlE2M502gRCc9TVaLVPbBKly_EYvFijvXWwd0Te7jstez6Pvzd_hz6xb4pk3P4G2E-Hb1tDEs0MpGUyc6mwSLdjmpoJjnuYmRJpRI7R5vuHBANH5GTnYToEjrVmIkMMxfIkIvHe6_4Yau_Jt4b64h_bn5DBZrV1rwBTberX4cP5BXdXGI8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Harris+Hawks+Optimization+Algorithm+With+Simulated+Annealing+for+Feature+Selection+in+the+Medical+Field&rft.jtitle=IEEE+access&rft.au=Elgamal%2C+Zenab+Mohamed&rft.au=Yasin%2C+Norizan+Binti+Mohd&rft.au=Tubishat%2C+Mohammad&rft.au=Alswaitti%2C+Mohammed&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=186638&rft.epage=186652&rft_id=info:doi/10.1109%2FACCESS.2020.3029728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029728 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |