An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field

Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 186638 - 186652
Main Authors Elgamal, Zenab Mohamed, Yasin, Norizan Binti Mohd, Tubishat, Mohammad, Alswaitti, Mohammed, Mirjalili, Seyedali
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3029728

Cover

Abstract Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.
AbstractList Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris’ Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon’s statistical test ([Formula Omitted]-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.
Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test (<inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula>-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.
Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test ($P$ -value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.
Author Elgamal, Zenab Mohamed
Tubishat, Mohammad
Yasin, Norizan Binti Mohd
Alswaitti, Mohammed
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Zenab Mohamed
  orcidid: 0000-0002-9927-5893
  surname: Elgamal
  fullname: Elgamal, Zenab Mohamed
  organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Norizan Binti Mohd
  surname: Yasin
  fullname: Yasin, Norizan Binti Mohd
  email: norizan@um.edu.my
  organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0003-1464-8345
  surname: Tubishat
  fullname: Tubishat, Mohammad
  organization: School of Technology and Computing, Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Mohammed
  orcidid: 0000-0003-0580-6954
  surname: Alswaitti
  fullname: Alswaitti, Mohammed
  organization: School of Electrical and Computer Engineering (ICT), Xiamen University Malaysia, Sepang, Malaysia
– sequence: 5
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, QLD, Australia
BookMark eNqFkc1uEzEURkeoSJTSJ-jGEusE_47Hy1HU0EhFXQTE0vLYd1IHz0ywHary9LiZqkJlgRe2dXXPubK_99XZOI1QVVcELwnB6lO7Wl1vt0uKKV4yTJWkzZvqnJJaLZhg9dlf93fVZUp7XFZTSkKeV6kd0WY4xOkXOHRjYvSpHA8_Ero7ZD_43yb7aURt2E3R5_sBfS872vrhGEwuSDuOYIIfd6ifIlqDyccIaAsB7An0I8r3gL6A89YEtPYQ3IfqbW9Cgsvn86L6tr7-urpZ3N593qza24XluMkLYIpRRjgnNRYUcwKd6pRrBK-5la5vlMBMmZ5iKUljMHedFSBB9c5Zozp2UW1mr5vMXh-iH0x81JPx-lSY4k6bmL0NoCUl1EouawGEO8UbYfuOckZpGa04KS4-u47jwTw-mBBehATrpxy0sRZS0k856OccCvZxxsoP_zxCyno_HeNYXq0pF6whDZW4dLG5y8YppQj9P-4549du9YqyPp_iytH48B_2amY9ALxMU5RIQWr2B4_js6o
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123299
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1109_ACCESS_2021_3066622
crossref_primary_10_1007_s00521_022_08015_5
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_3390_s23136224
crossref_primary_10_1007_s00521_021_06448_y
crossref_primary_10_3390_computation9060068
crossref_primary_10_3389_fenrg_2023_1178521
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_3390_en15103815
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_1007_s00477_025_02911_7
crossref_primary_10_1016_j_knosys_2023_111218
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_1109_ACCESS_2024_3480834
crossref_primary_10_1016_j_chaos_2023_114154
crossref_primary_10_1016_j_cmpb_2024_108373
crossref_primary_10_1007_s13198_024_02508_3
crossref_primary_10_1007_s10257_022_00615_x
crossref_primary_10_1002_dac_6140
crossref_primary_10_38016_jista_1427938
crossref_primary_10_3390_math10213976
crossref_primary_10_1007_s00521_022_07852_8
crossref_primary_10_1002_cta_3152
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1615_IntJMultCompEng_2024052181
crossref_primary_10_1177_24056456251320119
crossref_primary_10_1177_24056456251320118
crossref_primary_10_3390_diagnostics14192244
crossref_primary_10_1007_s10614_023_10361_y
crossref_primary_10_1007_s10489_022_03704_z
crossref_primary_10_1007_s10586_024_04348_z
crossref_primary_10_3390_a14100282
crossref_primary_10_3390_s23104583
crossref_primary_10_1016_j_knosys_2024_111578
crossref_primary_10_3390_en16010251
crossref_primary_10_1109_ACCESS_2022_3204039
crossref_primary_10_1002_cpe_7239
crossref_primary_10_1007_s10115_024_02146_y
crossref_primary_10_3390_su14094913
crossref_primary_10_3724_2096_7004_di_2024_0002
crossref_primary_10_1016_j_heliyon_2023_e23012
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1007_s12652_021_03621_y
crossref_primary_10_1007_s40745_024_00571_y
crossref_primary_10_1007_s42979_021_00687_5
crossref_primary_10_1109_ACCESS_2022_3174854
crossref_primary_10_1002_ett_4921
crossref_primary_10_1016_j_conbuildmat_2024_136550
crossref_primary_10_1002_widm_1568
crossref_primary_10_1016_j_knosys_2022_108771
crossref_primary_10_34248_bsengineering_1490063
crossref_primary_10_1142_S0218127424502055
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_1016_j_oceaneng_2024_118306
crossref_primary_10_1080_1448837X_2024_2326272
crossref_primary_10_1109_ACCESS_2023_3262600
crossref_primary_10_3390_s22145444
crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1016_j_eswa_2024_124973
crossref_primary_10_1016_j_ijepes_2021_107893
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1007_s11761_023_00382_8
crossref_primary_10_1016_j_bspc_2022_103791
crossref_primary_10_3390_math11061525
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_1080_01969722_2023_2166259
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_3390_technologies11020055
crossref_primary_10_1016_j_eswa_2022_116834
crossref_primary_10_1007_s10586_024_04873_x
crossref_primary_10_1016_j_rico_2023_100315
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_1016_j_est_2022_104154
crossref_primary_10_3390_agriculture13040768
crossref_primary_10_3233_JIFS_213422
crossref_primary_10_1007_s10489_022_03251_7
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1007_s10479_024_05992_9
crossref_primary_10_1007_s11831_022_09717_8
crossref_primary_10_3390_jmse12061024
crossref_primary_10_1002_ett_4839
crossref_primary_10_3233_IDT_230163
crossref_primary_10_1007_s11042_024_18914_5
crossref_primary_10_1016_j_asoc_2021_107698
crossref_primary_10_1109_JIOT_2024_3391024
crossref_primary_10_1109_ACCESS_2022_3189476
crossref_primary_10_1007_s00477_022_02178_2
crossref_primary_10_3390_axioms12030245
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_1002_er_7806
crossref_primary_10_1002_oca_3144
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_1016_j_aej_2025_02_083
crossref_primary_10_1007_s11042_022_11949_6
crossref_primary_10_1177_21582440241257681
crossref_primary_10_3390_sym13122364
crossref_primary_10_3390_electronics12061404
crossref_primary_10_59782_sidr_v3i1_140
crossref_primary_10_1016_j_patrec_2023_05_007
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1038_s41598_024_84549_z
crossref_primary_10_1007_s00521_022_07398_9
crossref_primary_10_1007_s10115_022_01825_y
Cites_doi 10.1016/j.asoc.2017.11.006
10.1016/j.asoc.2018.11.001
10.1016/j.neucom.2017.04.053
10.1016/j.future.2019.02.028
10.1515/jisys-2019-0062
10.1016/j.jcde.2017.02.005
10.1109/ACCESS.2020.3006473
10.1016/j.eswa.2018.08.051
10.1007/s00500-018-3102-4
10.1007/s10489-017-1019-8
10.1016/j.clinph.2018.10.010
10.1155/2016/2959370
10.1109/ACCESS.2019.2921545
10.1007/s00500-019-03988-3
10.1016/j.compchemeng.2019.106656
10.1007/s00521-018-3343-2
10.1016/j.asoc.2019.03.013
10.1016/j.artmed.2017.10.002
10.1631/jzus.2006.A0539
10.1109/ACCESS.2019.2922987
10.1109/ACCESS.2019.2906757
10.1109/LGRS.2014.2337320
10.1016/j.eswa.2019.113122
10.1109/ACCESS.2019.2961811
10.1126/science.220.4598.671
10.1007/s00366-019-00816-y
10.1155/2015/198363
10.1007/s10489-018-1334-8
10.1016/j.neucom.2015.06.083
10.1016/j.asoc.2019.04.037
10.1007/s00521-020-04951-2
10.1016/j.ins.2019.05.038
10.1016/j.asoc.2016.01.044
10.1016/j.compag.2017.02.026
10.1007/s00500-020-04881-0
10.1016/j.neucom.2016.03.101
10.1016/j.future.2019.05.035
10.1007/978-3-030-12127-3_1
10.1007/s00521-020-05210-0
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2016.01.041
10.1109/ACCESS.2019.2919956
10.1016/j.jcde.2017.12.006
10.1007/s00521-017-2988-6
10.1109/ACCESS.2019.2953298
10.1016/j.engappai.2019.103370
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3029728
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) - IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 186652
ExternalDocumentID oai_doaj_org_article_7212c74765e14d9485cfb24322052941
10.1109/access.2020.3029728
10_1109_ACCESS_2020_3029728
9217516
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-e3932314416052041eb9b9d85464c7df895039af207718a04dbc5e7e9fddca9b3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:39 EDT 2025
Sun Oct 26 02:50:48 EDT 2025
Mon Jun 30 05:11:49 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Oct 01 03:37:38 EDT 2025
Wed Aug 27 02:31:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e3932314416052041eb9b9d85464c7df895039af207718a04dbc5e7e9fddca9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9927-5893
0000-0003-0580-6954
0000-0003-1464-8345
0000-0002-1443-9458
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09217516.pdf
PQID 2453818270
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7212c74765e14d9485cfb24322052941
proquest_journals_2453818270
crossref_citationtrail_10_1109_ACCESS_2020_3029728
ieee_primary_9217516
unpaywall_primary_10_1109_access_2020_3029728
crossref_primary_10_1109_ACCESS_2020_3029728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
kirkpatrick (ref24) 1983; 220
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref46
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
altman (ref43) 1992; 46
ref40
References_xml – ident: ref1
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref6
  doi: 10.1016/j.asoc.2018.11.001
– ident: ref25
  doi: 10.1016/j.neucom.2017.04.053
– volume: 46
  start-page: 175
  year: 1992
  ident: ref43
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer Statistician
– ident: ref35
  doi: 10.1016/j.future.2019.02.028
– ident: ref28
  doi: 10.1515/jisys-2019-0062
– ident: ref22
  doi: 10.1016/j.jcde.2017.02.005
– ident: ref39
  doi: 10.1109/ACCESS.2020.3006473
– ident: ref10
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref14
  doi: 10.1007/s00500-018-3102-4
– ident: ref15
  doi: 10.1007/s10489-017-1019-8
– ident: ref31
  doi: 10.1016/j.clinph.2018.10.010
– ident: ref26
  doi: 10.1155/2016/2959370
– ident: ref36
  doi: 10.1109/ACCESS.2019.2921545
– ident: ref5
  doi: 10.1007/s00500-019-03988-3
– ident: ref38
  doi: 10.1016/j.compchemeng.2019.106656
– ident: ref23
  doi: 10.1007/s00521-018-3343-2
– ident: ref17
  doi: 10.1016/j.asoc.2019.03.013
– ident: ref21
  doi: 10.1016/j.artmed.2017.10.002
– ident: ref18
  doi: 10.1631/jzus.2006.A0539
– ident: ref4
  doi: 10.1109/ACCESS.2019.2922987
– ident: ref9
  doi: 10.1109/ACCESS.2019.2906757
– ident: ref29
  doi: 10.1109/LGRS.2014.2337320
– ident: ref7
  doi: 10.1016/j.eswa.2019.113122
– ident: ref42
  doi: 10.1109/ACCESS.2019.2961811
– volume: 220
  start-page: 671
  year: 1983
  ident: ref24
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref32
  doi: 10.1007/s00366-019-00816-y
– ident: ref3
  doi: 10.1155/2015/198363
– ident: ref16
  doi: 10.1007/s10489-018-1334-8
– ident: ref12
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref33
  doi: 10.1016/j.asoc.2019.04.037
– ident: ref40
  doi: 10.1007/s00521-020-04951-2
– ident: ref13
  doi: 10.1016/j.ins.2019.05.038
– ident: ref8
  doi: 10.1016/j.asoc.2016.01.044
– ident: ref34
  doi: 10.1016/j.compag.2017.02.026
– ident: ref47
  doi: 10.1007/s00500-020-04881-0
– ident: ref11
  doi: 10.1016/j.neucom.2016.03.101
– ident: ref30
  doi: 10.1016/j.future.2019.05.035
– ident: ref45
  doi: 10.1007/978-3-030-12127-3_1
– ident: ref46
  doi: 10.1007/s00521-020-05210-0
– ident: ref44
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: ref37
  doi: 10.1016/j.asoc.2016.01.041
– ident: ref2
  doi: 10.1109/ACCESS.2019.2919956
– ident: ref20
  doi: 10.1016/j.jcde.2017.12.006
– ident: ref19
  doi: 10.1007/s00521-017-2988-6
– ident: ref27
  doi: 10.1109/ACCESS.2019.2953298
– ident: ref41
  doi: 10.1016/j.engappai.2019.103370
SSID ssj0000816957
Score 2.5352123
Snippet Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature...
Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris’ Hawks in nature...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 186638
SubjectTerms Chaos
chaos theory
Classification algorithms
Datasets
Feature extraction
Feature selection
Genetic algorithms
Harris Hawks optimization~(HHO) algorithm
Heuristic methods
Machine learning
Machine learning algorithms
Optimization
Optimization algorithms
Particle swarm optimization
Simulated annealing
simulated annealing (SA)
Sociology
Statistical tests
Statistics
wrapper method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSH0jQtdR5Fhx5rIkvyQ0dnybIU2h7S0NyEXk6X7jphH4T--8zIyuJQaC-92GAkI2tG0jfy6PsI-aiEd2D2Kkfy9FwCBEfK2yL3VghhmVVNTB7_8rWaXcvPN-XNSOoLc8IGeuCh484hQuEOMG9VhkJ65DJxneVS4AFRruKRdc4aNQqm4hzcFJUq60QzVDB13k4m8EUQEHKIU1GxCfXXR0tRZOxPEivP0Ob-tr83vx_MYjFaeKavyauEGGk7tPSQvAj9G3Iw4hE8Iuu2p8PuQPB0ZlYwcOH28GtNv8GMsExHLWm7uL1bzTc_l_QHXOnVfInaXVClhcnW4Ll0ChCWIircrgK9ihI5WHHeU8CJNP3UoVPMentLrqeX3yezPKkp5E6yZpMHAVBNYPxUYe6LLIJVVvmmlJV0te8aVTKhTMdZDeuVYdJbV4Y6qM57Z5QV78hef9eH94R2VQ1AwAH68ABfeGggzPBKdU4ZKUyoM8KfOla7RDWOihcLHUMOpvRgDY3W0MkaGfm0q3Q_MG38vfgFWmxXFGmy4wNwHp2cR__LeTJyhPbevURBgFYWVUZOn-yv05Beay5LRDe8ZhnJdz7xR1NN1Ll81tTj_9HUE_IS3zns_pySvc1qG84AD23sh-j6j8wV_qg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vVAOPFpQUwrygWOzTWLn4WNYsVohFQ6lorfIr8Cqu9lqd6OK_npmEm-0BYS4JFFkJ47Gsb-xZ74P4L3k1qDZs5DI00OBEJwob-PQas65jrQsuuDxy8_Z9Fp8uklv9uB8yIVxznXBZ25El91evl2alpbKLiTi5zTO9mE_L7I-V2tYTyEBCZnmnlgojuRFOR7jN6ALmKBnShpNpLi-M_l0HP1eVOURvnzSNnfq572az3emmslzuNw2so8wuR21Gz0yD7_xN_7vV7yAZx5zsrLvJC9hzzVH8HSHifAIDgl09pzNx7AuG9YvNjjLpmqF4wCe7m_X7AsOMAufucnK-fflarb5sWDf8MiuZguSAsMqJY7ditLcGSJiRiCzXTl21SnuUMVZwxB2Mr9HxCYURPcKricfv46noRdnCI2Iik3oOCI_Tu5YRqE0InZaammLVGTC5LYuZBpxqeokynH6U5Gw2qQud7K21iip-Ws4aJaNOwFWZzniCoNgxiIaSlyBXouVsjZSCa5cHkCytVplPHM5CWjMq86DiWTVm7oiU1fe1AGcD5XueuKOfxf_QN1hKEqs290NNF3lf-IKveXEoP-VpS4Wlnh1TK0TwSlZOZEiDuCYzD08xFs6gLNt56r8CLGuEpESWEryKIBw6HB_NFV1spmPmnr697e8gUMq1S8PncHBZtW6twiYNvpd96f8AshZDpw
  priority: 102
  providerName: IEEE
Title An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field
URI https://ieeexplore.ieee.org/document/9217516
https://www.proquest.com/docview/2453818270
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09217516.pdf
https://doaj.org/article/7212c74765e14d9485cfb24322052941
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A88GsgAqPyA4-kTWzHiR9DRVUhMZBGxXiKEtth1dKsalON7a_nznGrDiQkeGmryq5c3eX8nX33fYS8VdxoMLsMkTw9FADBkfI2Dk3FOa-iSmWuePzTqZzNxcfz5NwfuLleGGutKz6zI_zo7vIXtvmZjiVD8jQ1zpSAiAq5vAI0ncRytDL1fXIkE8DiA3I0P_2Sf0dFuViqkLu7ydeeWHNcOg1CSAoZ5Kqo2oQa7AfbkWPt9zIrdxDng227Km-uy6Y52Hymj0mxW3Zfc3I52nbVSN_-xuj4___rCXnkcSnNe0d6Su7Z9hl5eMBWeEw2eUv7Mwhr6KxcQ3iAt-vLDf0McWfpGzpp3vy4Wi-6iyX9Bq_0bLFEhTCYkkNIL7H7nQJQpog9t2tLz5wQD05ctBTQKPVXR3SKtXXPyXz64etkFnrNhlCLKOtCywEQcszSJFbYiNhWqlImS4QUOjV1ppKIq7JmUQq7YhkJU-nEplbVxuhSVfwFGbRXrX1JaC1TgBsaMI4BkMRsBsmMUarWqhS8tGlA2M50hfaE5qir0RQusYlUkU8m4MUF2rvw9g7Iu_2kVc_n8ffh79En9kORjNt9AfYr_LNdQBLNNKRlMrGxMEi3o-uKCY49zEyJOCDHaPP9j3gDB-Rk52GFDxybgokEMRRLo4CEe6_7Y6m9J99Z6qt_HH9CBt16a98ApuqqoTuLGLr2x6F_iH4BpEAahQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a47Bx4McGIjDAB45Ll8TODx9DRVVgHYdtYrfIsZ1RrU2nNtUEfz3vJW7UAUJckiiKE1vPsb9nv_d9AO8lNxrNnvhEnu4LhOBEeRv6puScl0EpszZ4fHKWjC_F56v4ageO-1wYa20bfGYHdNnu5ZuFXtNS2YlE_ByHyQN4GAsh4i5bq19RIQkJGaeOWigM5Ek-HGIr0AmM0DcllSbSXN-aflqWfiercg9h7q3rW_XjTs1mW5PN6AlMNtXsYkxuBuumHOifvzE4_m87nsJjhzpZ3nWTZ7Bj6wN4tMVFeAD7BDs71uZDWOU165YbrGFjtcSRAE93Nyv2FYeYucvdZPnserGcNt_n7Bse2fl0TmJgWCTH0VtRojtDTMwIZq6Xlp23mjtUcFozBJ7M7RKxEYXRPYfL0ceL4dh38gy-FkHW-JYj9uPkkCUUTCNCW8pSmiwWidCpqTIZB1yqKgpSnABVIEypY5taWRmjlSz5C9itF7V9CaxKUkQWGuGMQTwU2Qz9FiNlpaUSXNnUg2hjtUI77nKS0JgVrQ8TyKIzdUGmLpypPTjuC9121B3_fvwDdYf-UeLdbm-g6Qr3GxfoL0caPbAktqEwxKyjqzISnNKVIylCDw7J3P1LnKU9ONp0rsKNEasiEjHBpSgNPPD7DvdHVVUrnHmvqq_-_pV3sDe-mJwWp5_OvryGfSrRLRYdwW6zXNs3CJ-a8m371_wCEPER6Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0ie048TFUVBUSC9JSsZysxHag2jRb9UO7y69nxnGrLkhIcEmiyI4czWT8Jh6_R8gbxa0Bs8sYydNjARAcKW_T2Nac8zqpVeGLxz-eyulMfDjPzsMPN78Xxjnni8_cEC_9Wv7ctdf5SDIkT1OjQgmIqJDLK0DTWSqHS9vcJUcyAyw-IEez08_lN1SUS6WKuV-bfBmINUeV1yCEpJBBroqqTajBfjAdedb-ILNyC3He23bL6uaqatuDyWfykOjdsPuak4vhdlMPzc_fGB3__70ekQcBl9Kyd6TH5I7rnpD7B2yFx2RddrT_B-EsnVYrCA9wurpY008QdxZhQyct2--Xq_nmx4J-hSM9my9QIQy6lBDSK9z9TgEoU8Se25WjZ16IBzvOOwpolIalIzrB2rqnZDZ5_2U8jYNmQ2xEUmxixwEQcszSJFbYiNTVqla2yIQUJrdNobKEq6phSQ6zYpUIW5vM5U411ppK1fwZGXSXnXtOaCNzgBsGMI4FkMRcAcmMVaoxqhK8cnlE2M502gRCc9TVaLVPbBKly_EYvFijvXWwd0Te7jstez6Pvzd_hz6xb4pk3P4G2E-Hb1tDEs0MpGUyc6mwSLdjmpoJjnuYmRJpRI7R5vuHBANH5GTnYToEjrVmIkMMxfIkIvHe6_4Yau_Jt4b64h_bn5DBZrV1rwBTberX4cP5BXdXGI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Harris+Hawks+Optimization+Algorithm+With+Simulated+Annealing+for+Feature+Selection+in+the+Medical+Field&rft.jtitle=IEEE+access&rft.au=Elgamal%2C+Zenab+Mohamed&rft.au=Yasin%2C+Norizan+Binti+Mohd&rft.au=Tubishat%2C+Mohammad&rft.au=Alswaitti%2C+Mohammed&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=186638&rft.epage=186652&rft_id=info:doi/10.1109%2FACCESS.2020.3029728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon