Kinetic Study of Levulinic Acid from Spirulina platensis Residue
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid re...
Saved in:
Published in | Applied biochemistry and biotechnology Vol. 194; no. 6; pp. 2684 - 2699 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0273-2289 1559-0291 1559-0291 |
DOI | 10.1007/s12010-022-03806-x |
Cover
Abstract | Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of
Spirulina platensis
residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study,
Spirulina platensis
residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the
Spirulina platensis
residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of
Spirulina platensis
residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1
st
order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that
Spirulina platensis
residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the
Spirulina platensis
residue to levulinic acid hydrolysis reaction. |
---|---|
AbstractList | Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1ˢᵗ order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction. Abstract Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction. Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1 order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction. Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction. Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1 st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction. |
Author | Ringgani, Retno Rochmadi Azis, Muhammad Mufti Budiman, Arief |
Author_xml | – sequence: 1 givenname: Retno surname: Ringgani fullname: Ringgani, Retno organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Chemical Engineering Department, Faculty of Industrial Engineering, UPN Veteran Yogyakarta – sequence: 2 givenname: Muhammad Mufti surname: Azis fullname: Azis, Muhammad Mufti organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada – sequence: 3 surname: Rochmadi fullname: Rochmadi organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada – sequence: 4 givenname: Arief surname: Budiman fullname: Budiman, Arief email: abudiman@ugm.ac.id organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35243560$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLHDEUx0Ox1HXbL9CDDHjpZex7ySST3BSpVVwo1PYcspk3JTKbWZMZ0W9v7NoWPNjTgz-_X5KX_wHbi2Mkxj4iHCNA-zkjB4QaOK9BaFD1_Ru2QClNiQzusQXwVtSca7PPDnK-AUCuZfuO7QvJGyEVLNjJVYg0BV9dT3P3UI19taK7eQixRKc-dFWfxk11vQ3pKXTVdnATxRxy9Z1y6GZ6z972bsj04Xku2c_zLz_OLurVt6-XZ6er2jegp5qgdV2vPeqGekGiaYz0nVeEUqPmLToSHfQgSZRV_HoNSJzadUNCedNwsWSfdudu03g7U57sJmRPw-AijXO23GiplTFg_o8qobBBVeaSHb1Ab8Y5xbJIoZRC0RrEQh0-U_N6Q53dprBx6cH--cYC8B3g05hzov4vgmCfurK7rmzpyv7uyt4XSb-QfJjcFMY4JReG11WxU3O5J_6i9O_Zr1iPVkmmag |
CitedBy_id | crossref_primary_10_3390_catal12080909 crossref_primary_10_1016_j_biombioe_2025_107768 crossref_primary_10_9767_bcrec_17_2_14032_451_465 crossref_primary_10_1016_j_algal_2023_103133 crossref_primary_10_1016_j_cattod_2024_115100 crossref_primary_10_1007_s12649_024_02500_9 |
Cites_doi | 10.3390/catal6120196 10.1201/9781482272970 10.1021/ie061186z 10.1016/S1004-9541(08)60284-0 10.1016/j.fuel.2016.09.019 10.1016/S0960-8524(01)00144-4 10.1021/ie50421a009 10.1016/j.biortech.2017.04.026 10.1016/j.algal.2015.12.013 10.1016/j.jclepro.2019.119770 10.9767/bcrec.16.4.12197.904-915 10.1016/j.biortech.2018.11.013 10.1016/j.rser.2017.02.042 10.1016/j.renene.2012.08.028 10.1007/s42452-018-0055-2 10.1016/j.jchromb.2013.04.037 10.1007/s00449-014-1259-5 10.1016/j.apenergy.2011.08.048 10.22146/ajche.60015 10.1016/j.jcat.2012.08.002 10.14710/ijred.8.2.133-140 10.1186/s12934-018-0879-x 10.1016/j.apcata.2017.03.016 10.1016/j.cej.2012.11.094 10.1016/j.fuel.2020.118907 10.14716/ijtech.v11i3.2967 10.1016/j.rser.2015.06.032 10.1016/j.fuel.2014.06.063 10.3390/molecules24152760 10.1016/j.cherd.2011.06.005 10.1016/j.biteb.2020.100514 10.3390/challe3020212 10.1002/biot.201400344 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7ST 7T7 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1007/s12010-022-03806-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1559-0291 |
EndPage | 2699 |
ExternalDocumentID | 35243560 10_1007_s12010_022_03806_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Kementerian Riset, Teknologi dan Pendidikan Tinggi funderid: http://dx.doi.org/10.13039/501100010447 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VX 0VY 199 1N0 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3SX 3V. 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 78A 7X7 88A 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2P M4Y M7P MA- ML0 N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P P9N PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNS ROL RPX RSV S16 S1Z S26 S27 S28 S3A S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK6 WK8 YLTOR Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z91 Z92 ZMTXR ZXP ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7ST 7T7 7TM 7XB 8FD 8FK C1K FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-e07adf8c184ef3e34495cdc6e15818271ae3d0f05e3380cbb01e2e7b4e36c9423 |
IEDL.DBID | 7X7 |
ISSN | 0273-2289 1559-0291 |
IngestDate | Sat Sep 27 20:29:27 EDT 2025 Sun Sep 28 12:06:25 EDT 2025 Fri Jul 25 19:07:13 EDT 2025 Tue Sep 30 00:37:10 EDT 2025 Wed Oct 01 04:57:44 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 21 02:45:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Hydrolisis Kinetics Levulinic acid residue Spirulina platensis residue |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e07adf8c184ef3e34495cdc6e15818271ae3d0f05e3380cbb01e2e7b4e36c9423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 35243560 |
PQID | 2666137911 |
PQPubID | 54110 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2985869909 proquest_miscellaneous_2636141626 proquest_journals_2666137911 pubmed_primary_35243560 crossref_primary_10_1007_s12010_022_03806_x crossref_citationtrail_10_1007_s12010_022_03806_x springer_journals_10_1007_s12010_022_03806_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220600 2022-06-00 2022-Jun 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationTitle | Applied biochemistry and biotechnology |
PublicationTitleAbbrev | Appl Biochem Biotechnol |
PublicationTitleAlternate | Appl Biochem Biotechnol |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Rackemann, D.W. (2014), PhD Disertasi, Queensland University of Technology. Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., and Lu, X. (2017) Fuel 187, 261-268 Fang, Q. and Hanna, M.A. (2002) Bioresource. Technology., 81, 187–192 Girisuta B., Dussan K., Haverty D., Leahy J., and Hayes M. (2013) Chemical Engineering Journal 217, 61-70 Cao, L., Yu, I.K.M., Cho, D.W., Wang, D., Tsang, D.C.W., Zhang, S., Ding, S., Wang, L., and Ok, Y.S. (2019) Bioresource Technology 273, 251-259 Lee, S.B., Kim, S.K., Hong, Y.K., and Jeong, G.T. (2016) Algal Research 13, 303-310 Galletti, A.M.R., Antonetti, C., Licursi, D., Mussi, L., Balestri, E., and Lardicci, C. (2019) AIDIC, 74, 103-108 Kim, D.H., Lee, S.B., Kim, S.K., Park, D.H., and Jeong, G.T. (2016) Bioenerg.Res. Yang G, Pidko EA, and Hensen EJM (2012) Journal of Catalysis 295, 122–32 Halim, R., Harun, R., Danquah M. K and Webley, P.A. (2012) Applied Energy 91, 116-121 Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., & Kim, J.S. (2013) Renewable Energy, 54, 173-180 Aikawa, S., Hsin Ho, S., Nakanishi, A., Shu Chang, J., Hasunuma, T., and Kondo, A., (2015) Biotechnology Journal. 10, 886-898 Jeong, G.T. and Kim, S.K. (2021) Fuel 283, 118907. Ahlkvist, J. (2014), VMC-KBC Umeå , Umeå, Sweden, ISBN: 978-91-7459-798-1 Listyaningrum, N. B., Azis, M.M., Sarto, Rosdi, A. N., and Harun, M. R. (2021) AJChE 21(1), 11–18. Latham, K. G., Ferguson, A., and Donne, S. (2018) SN Applied Science, 2019, 1:54 Morone, A., Apte, M., and Pandey, R.A. (2015) Renewable and Sustainable Energy Rev., 51, 548-565 Saeman, J. F. (1945) Industrial and Engineering Chemistry, 37, 43-53 Vernes, L., Abert-Vian, M., El Maataoui, M., Tao, Y., Bornard, I. and Chemat, F. (2019) Ultrason. Sonochem. Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., and Park, D.H. (2015) Bioprocess and Biosystems. Engineering 38, 207–218 Hu L, Lin L, Wu Z, Zhou S, and Liu S. (2017) Renewable and Sustainable Energy Reviews 74, 230–57 FoglerHSElement Of Chemical Reaction Engineering20165Prentice Hall L. Kupiainen, J. Ahola, J. Tanskanen (2011) Chemical Engineering Research and Design 89 (2011) 2706-2713 De Souza, R. L., Yu, H., Rataboul, F., and Essayem, N., (2012) Challenges 3, 212-232 Aharonovich, E.B., Zandany, A., Saady, A., Tahan, Y.K., Yehoshua, Y., and Gedanken, A. (2020) Bioresour. Technol. Rep. 11, 100514. Nautiyal, P., Subramanian, K.A., and Dastidar, M.G. (2014) Fuel 135, 228-234 Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A., & Pugazhendhi, A., (2020) J. Cleaner Prod., 253, 119770 Vonshak A. (1997) Spirulina: growth, physiology & biochemistry. In: Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology, Taylor and Francis, London Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., and Galetti, A.M.R. (2016) Catalyst, 6, 196 Yu, I. K. M., and Tsang, D. C.W. (2017) Biosource Technology 238, 716-732 Chun, C., Xiaojian, M., and Peilin, C. (2009) Chinese. Journal of Chemical Engineering 17(5), 835-839 Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2020) AIP Conf. Proc. 2296, 020064, 1-6 Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H. and Budiman, A. (2019) IJRED 8 (2), 133–140. Khan, M. I., Shin J. H., and Kim, J. D. (2018) Microb. Cell Fact., 17–36. Lopes, E.S., Dominicesa, K.M.C., Lopes, M.S., and Tovar, L.P., Filhoa, R.M. (2017) Chem. Eng. Transact., AIDIC, 57 Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2021) BCREC 16 (4), 904–915. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J.I., and Budiman, A. (2020) IJTech 11(3), 522–531. Girisuta, B., Janssen, L. P. B. M., and Heeres, H.J. (2007) Industrial and Engineering Chemistry Research 46, 1696-1708 Signoretto, M., Taghavi, S., Ghedini, E., and Menegazzo, F. (2019) Molecules 24, 1-20 Izumi, Y., Aikawa, S., Matsuda, F., and Hasunima, T. (2013) Journal of Chromatography. B. 930, 90-97 Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., and Giorgi, J.B. (2017) Applied Catalysis, A, 539, 70-79 3806_CR29 3806_CR28 3806_CR27 3806_CR1 3806_CR26 3806_CR2 3806_CR25 3806_CR24 3806_CR23 3806_CR22 3806_CR21 3806_CR20 3806_CR41 3806_CR9 3806_CR7 3806_CR8 3806_CR5 3806_CR6 3806_CR3 3806_CR4 3806_CR19 3806_CR18 3806_CR17 3806_CR39 3806_CR16 3806_CR38 3806_CR15 3806_CR37 3806_CR14 3806_CR36 3806_CR13 3806_CR35 3806_CR12 3806_CR34 3806_CR11 3806_CR10 3806_CR32 3806_CR31 3806_CR30 3806_CR40 HS Fogler (3806_CR33) 2016 |
References_xml | – reference: Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., and Galetti, A.M.R. (2016) Catalyst, 6, 196 – reference: Kim, D.H., Lee, S.B., Kim, S.K., Park, D.H., and Jeong, G.T. (2016) Bioenerg.Res. – reference: Girisuta B., Dussan K., Haverty D., Leahy J., and Hayes M. (2013) Chemical Engineering Journal 217, 61-70 – reference: Nautiyal, P., Subramanian, K.A., and Dastidar, M.G. (2014) Fuel 135, 228-234 – reference: Signoretto, M., Taghavi, S., Ghedini, E., and Menegazzo, F. (2019) Molecules 24, 1-20 – reference: Lee, S.B., Kim, S.K., Hong, Y.K., and Jeong, G.T. (2016) Algal Research 13, 303-310 – reference: Hu L, Lin L, Wu Z, Zhou S, and Liu S. (2017) Renewable and Sustainable Energy Reviews 74, 230–57 – reference: Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2021) BCREC 16 (4), 904–915. – reference: Ahlkvist, J. (2014), VMC-KBC Umeå , Umeå, Sweden, ISBN: 978-91-7459-798-1 – reference: Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2020) AIP Conf. Proc. 2296, 020064, 1-6 – reference: Rackemann, D.W. (2014), PhD Disertasi, Queensland University of Technology. – reference: Izumi, Y., Aikawa, S., Matsuda, F., and Hasunima, T. (2013) Journal of Chromatography. B. 930, 90-97 – reference: Vernes, L., Abert-Vian, M., El Maataoui, M., Tao, Y., Bornard, I. and Chemat, F. (2019) Ultrason. Sonochem. – reference: Vonshak A. (1997) Spirulina: growth, physiology & biochemistry. In: Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology, Taylor and Francis, London, – reference: Fang, Q. and Hanna, M.A. (2002) Bioresource. Technology., 81, 187–192 – reference: Yang G, Pidko EA, and Hensen EJM (2012) Journal of Catalysis 295, 122–32 – reference: Girisuta, B., Janssen, L. P. B. M., and Heeres, H.J. (2007) Industrial and Engineering Chemistry Research 46, 1696-1708 – reference: De Souza, R. L., Yu, H., Rataboul, F., and Essayem, N., (2012) Challenges 3, 212-232 – reference: Saeman, J. F. (1945) Industrial and Engineering Chemistry, 37, 43-53 – reference: Lopes, E.S., Dominicesa, K.M.C., Lopes, M.S., and Tovar, L.P., Filhoa, R.M. (2017) Chem. Eng. Transact., AIDIC, 57 – reference: Jeong, G.T. and Kim, S.K. (2021) Fuel 283, 118907. – reference: Cao, L., Yu, I.K.M., Cho, D.W., Wang, D., Tsang, D.C.W., Zhang, S., Ding, S., Wang, L., and Ok, Y.S. (2019) Bioresource Technology 273, 251-259 – reference: Chun, C., Xiaojian, M., and Peilin, C. (2009) Chinese. Journal of Chemical Engineering 17(5), 835-839 – reference: Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H. and Budiman, A. (2019) IJRED 8 (2), 133–140. – reference: Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A., & Pugazhendhi, A., (2020) J. Cleaner Prod., 253, 119770 – reference: Aikawa, S., Hsin Ho, S., Nakanishi, A., Shu Chang, J., Hasunuma, T., and Kondo, A., (2015) Biotechnology Journal. 10, 886-898 – reference: Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J.I., and Budiman, A. (2020) IJTech 11(3), 522–531. – reference: Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., and Giorgi, J.B. (2017) Applied Catalysis, A, 539, 70-79 – reference: Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., and Park, D.H. (2015) Bioprocess and Biosystems. Engineering 38, 207–218 – reference: Halim, R., Harun, R., Danquah M. K and Webley, P.A. (2012) Applied Energy 91, 116-121 – reference: Khan, M. I., Shin J. H., and Kim, J. D. (2018) Microb. Cell Fact., 17–36. – reference: Listyaningrum, N. B., Azis, M.M., Sarto, Rosdi, A. N., and Harun, M. R. (2021) AJChE 21(1), 11–18. – reference: Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., & Kim, J.S. (2013) Renewable Energy, 54, 173-180 – reference: Morone, A., Apte, M., and Pandey, R.A. (2015) Renewable and Sustainable Energy Rev., 51, 548-565 – reference: FoglerHSElement Of Chemical Reaction Engineering20165Prentice Hall – reference: Galletti, A.M.R., Antonetti, C., Licursi, D., Mussi, L., Balestri, E., and Lardicci, C. (2019) AIDIC, 74, 103-108 – reference: Latham, K. G., Ferguson, A., and Donne, S. (2018) SN Applied Science, 2019, 1:54 – reference: Aharonovich, E.B., Zandany, A., Saady, A., Tahan, Y.K., Yehoshua, Y., and Gedanken, A. (2020) Bioresour. Technol. Rep. 11, 100514. – reference: L. Kupiainen, J. Ahola, J. Tanskanen (2011) Chemical Engineering Research and Design 89 (2011) 2706-2713 – reference: Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., and Lu, X. (2017) Fuel 187, 261-268 – reference: Yu, I. K. M., and Tsang, D. C.W. (2017) Biosource Technology 238, 716-732 – ident: 3806_CR15 – ident: 3806_CR1 – ident: 3806_CR2 doi: 10.3390/catal6120196 – ident: 3806_CR14 doi: 10.1201/9781482272970 – ident: 3806_CR18 doi: 10.1021/ie061186z – ident: 3806_CR19 doi: 10.1016/S1004-9541(08)60284-0 – ident: 3806_CR32 doi: 10.1016/j.fuel.2016.09.019 – ident: 3806_CR24 doi: 10.1016/S0960-8524(01)00144-4 – ident: 3806_CR30 doi: 10.1021/ie50421a009 – ident: 3806_CR40 doi: 10.1016/j.biortech.2017.04.026 – ident: 3806_CR21 – ident: 3806_CR27 doi: 10.1016/j.algal.2015.12.013 – ident: 3806_CR3 doi: 10.1016/j.jclepro.2019.119770 – ident: 3806_CR35 doi: 10.9767/bcrec.16.4.12197.904-915 – ident: 3806_CR25 – ident: 3806_CR41 doi: 10.1016/j.biortech.2018.11.013 – ident: 3806_CR29 – ident: 3806_CR37 doi: 10.1016/j.rser.2017.02.042 – ident: 3806_CR26 doi: 10.1016/j.renene.2012.08.028 – ident: 3806_CR34 – ident: 3806_CR38 doi: 10.1007/s42452-018-0055-2 – ident: 3806_CR13 doi: 10.1016/j.jchromb.2013.04.037 – ident: 3806_CR28 doi: 10.1007/s00449-014-1259-5 – ident: 3806_CR16 doi: 10.1016/j.apenergy.2011.08.048 – volume-title: Element Of Chemical Reaction Engineering year: 2016 ident: 3806_CR33 – ident: 3806_CR4 doi: 10.22146/ajche.60015 – ident: 3806_CR36 doi: 10.1016/j.jcat.2012.08.002 – ident: 3806_CR11 doi: 10.14710/ijred.8.2.133-140 – ident: 3806_CR17 doi: 10.1186/s12934-018-0879-x – ident: 3806_CR23 doi: 10.1016/j.apcata.2017.03.016 – ident: 3806_CR31 doi: 10.1016/j.cej.2012.11.094 – ident: 3806_CR6 doi: 10.1016/j.fuel.2020.118907 – ident: 3806_CR10 doi: 10.14716/ijtech.v11i3.2967 – ident: 3806_CR22 doi: 10.1016/j.rser.2015.06.032 – ident: 3806_CR9 doi: 10.1016/j.fuel.2014.06.063 – ident: 3806_CR8 doi: 10.3390/molecules24152760 – ident: 3806_CR20 doi: 10.1016/j.cherd.2011.06.005 – ident: 3806_CR5 doi: 10.1016/j.biteb.2020.100514 – ident: 3806_CR7 – ident: 3806_CR39 doi: 10.3390/challe3020212 – ident: 3806_CR12 doi: 10.1002/biot.201400344 |
SSID | ssj0012857 |
Score | 2.3888197 |
Snippet | Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the... Abstract Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2684 |
SubjectTerms | acid hydrolysis Acids Ammonia Arthrospira platensis Biochemistry Biofuels Biotechnology Catalysts Chemistry Chemistry and Materials Science Cyanobacteria feedstocks glucose Hydrolysis Hydroxymethylfurfural kinetics Levulinic acid Levulinic Acids Lipids Microalgae Original Article Process parameters Residues Spirulina Spirulina platensis Sulfuric acid |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-h8sB4GNDBFr7kSXvbUjlxnDhvVKiAYNvDtkrwFDnORapWpRVtENtfzzkfLYNRibcouUSX89n3O9-HAT75mUTblsw1oUrdQMeR3WgSri9TYXjua6zaF3_7Hl4Mg8tred0Uhc3abPc2JFmt1MtitzpwS84TF4r8YEKO69I6KB1Y75_fXA0W0QNf1R0-yTS7PnkUTbHM_7_yr0F6hjKfRUgrw3O2BcOW5Trf5HevnKc98_dJN8fX_tM2vG2QKOvXqrMDa1h0YeO0PQCuC5uPehW-g5MruiZSZjMP_7BJzr7iXVnVVbK-GWXMFqqwn9PRrb2p2XSsq-T4GfuBpPEl7sLwbPDr9MJtjl9wTcDV3EUe6SxXhkSMuUARkC9lMhOiJ8nK-5GnUWQ85xLJzeUmTbmHPkZpgCI0McG0PegUkwI_APMIxytlYhqRPMik0Cb2SAm4jkMpszxwwGvHIDFNb3J7RMY4WXZVtpJKSFJJJank3oHPi3emdWeOldSH7dAmzSydJQROCM1EtN478HHxmKRsgya6wElpaQQhGI_8vhU0sZIqJLseO_C-VpsFSwRwCZGG3IEvrQosGXiZ3_3XkR_AG7_SIrs9dAid-W2JR4SW5ulxMzkeAEb8Byg priority: 102 providerName: Springer Nature |
Title | Kinetic Study of Levulinic Acid from Spirulina platensis Residue |
URI | https://link.springer.com/article/10.1007/s12010-022-03806-x https://www.ncbi.nlm.nih.gov/pubmed/35243560 https://www.proquest.com/docview/2666137911 https://www.proquest.com/docview/2636141626 https://www.proquest.com/docview/2985869909 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1559-0291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1559-0291 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1559-0291 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1559-0291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1559-0291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgHIAD4k15KUjcoCJtmj5OMNAA8RICJo1TlaauNAltg21o_HucPjYQYqdWaSpZthN_thMb4NBNJZqyZLb2w8T2VBSYQJOwXZkIzTNXYV6--P7Bv256Ny3ZKgNu_fJYZbUn5ht12tUmRn5ChoQsT0Br87T3bpuuUSa7WrbQmIU5h6CK0eqgNXa4aOstKn2SibZd8izKSzPF1bkiDUyuGBchedWj34bpD9r8kynNDdDlMiyVyJHVC1GvwAx2VmH-omrYtgqLP2oLrsHZLb3TVGZOCn6xbsbu8HOY34Nkdd1OmblYwp577Q8zqFjvTeWH2fvsCUlDh7gOzcvGy8W1XbZLsLXHw4GNPFBpFmry2TATKDzyfXSqfXQkWWU3cBSKlGdcIrmlXCcJd9DFIPFQ-DoiWLUBtU63g1vAHMLdYagj4lzmpVIoHTkkNK4iX8o08yxwKl7FuqwlblpavMWTKsiGvzHxN875G48sOBr_0ysqaUydvVuJIC5XVT-e6IAFB-PPxGWT5FAd7A7NHEGIwyE_bcqcKJShT3Y4smCzEO-YJAKkhCB9bsFxJe8JAf_Tuz2d3h1YcHNdM-GbXagNPoa4R2hmkOznKrsPc_Wr19sGPc8bD49PNNp069_3cfCz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4heqA9oJY-2JZSV6Kn1qrXj30cqoIoKJDAoQUpt63XOyshoSSQpIU_xW9kvI8EhMiNW7SZXVkzY898tucbgC1ZGPS0ZNxFSc61TWO_0aS4NLlyopQWK_rio-Ooc6oP-6a_BDdtLYy_VtmuidVCXQyd3yP_ToGEIk9Mc_Pn6IL7rlH-dLVtoVG7RRev_xNkG_84-EX2_SLl_t7Jboc3XQW40yKZcBSxLcrEEbTBUqHSBBFc4SIMDQUvGYcWVSFKYZDQm3B5LkKUGOcaVeRS7YkOaMl_ppXQnqs_7s8AHi31NbMopQRcEpJpinTqUr362Jmgn6DPRvzqfiB8kN0-OJmtAt7-S1htMlW2U7vWK1jCwRqs7LYN4tbgxR0uw9ew3aXfJMr8zcRrNixZD_9Nq7pLtuPOCuYLWdif0dmlf2jZ6NxWl-fH7DfSjJjiGzh9EkW-heXBcIDrwELK85PEpaS5UhdGWZeG5CTCppExRakDCFtdZa7hLvctNM6zOeuy129G-s0q_WZXAXydvTOqmTsWSm-0JsiaWTzO5j4XwOfZ36Rlf6hiBzicehlFGU5IuHCBTJqYJKK4nwbwrjbvbEiUAFPGGokAvrX2ng_g8fG-XzzeT7DSOTnqZb2D4-4HeC4rv_NbRxuwPLmc4kfKpCb5ZuW-DP4-9Xy5BVp2KZ0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxsxEB4hKtH2oaL0WqDFldqn1sLrY4-HiiJoBARQ1RYpb1uvd1ZCQkkgCcdf49d1vEcCQs0bb9FmdmWNZzzfeC6AT7Iw6NuScRclOdc2jf1Fk-LS5MqJUlqs2hcfHUd7J_qgZ3oLcNvWwvi0yvZMrA7qYuD8HfkmGRKyPDHp5mbZpEX83O1sDc-5nyDlI63tOI1aRLp4c0Xu2-jb_i7t9WcpOz_-7OzxZsIAd1okY44itkWZOHJzsFSoNLkLrnARhoYMmYxDi6oQpTBInpxweS5ClBjnGlXkUu2bHtDx_yRWWvl0srg3dfbo2K-7jBI84JK8mqZgpy7bq0PQ5AYK-mzEr-8bxQdI90GUtjJ-nWV40aBWtl2L2UtYwP4KPN1ph8WtwPM7fQ1fwfcu_SZS5rMUb9igZId4OalqMNm2Oy2YL2phv4enF_6hZcMzWyXSj9gvJO2Y4Gs4eRRGvoHF_qCP74CFhPmTxKXEuVIXRlmXhiQwwqaRMUWpAwhbXmWu6WPux2mcZbMOzJ6_GfE3q_ibXQfwZfrOsO7iMZd6vd2CrNHoUTaTvwA-Tv8mLvsAi-3jYOJpFKGdkHzEOTRpYpKIMEAawNt6e6dLIjBM6DUSAXxt93u2gP-vd3X-ejdgiTQlO9w_7q7BM1mJnb9FWofF8cUE3xOoGucfKull8Pex1eUffQct2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Study+of+Levulinic+Acid+from+Spirulina+platensis+Residue&rft.jtitle=Applied+biochemistry+and+biotechnology&rft.au=Ringgani%2C+Retno&rft.au=Azis%2C+Muhammad+Mufti&rft.au=Rochmadi&rft.au=Budiman%2C+Arief&rft.date=2022-06-01&rft.eissn=1559-0291&rft.volume=194&rft.issue=6&rft.spage=2684&rft_id=info:doi/10.1007%2Fs12010-022-03806-x&rft_id=info%3Apmid%2F35243560&rft.externalDocID=35243560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-2289&client=summon |