Kinetic Study of Levulinic Acid from Spirulina platensis Residue

Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid re...

Full description

Saved in:
Bibliographic Details
Published inApplied biochemistry and biotechnology Vol. 194; no. 6; pp. 2684 - 2699
Main Authors Ringgani, Retno, Azis, Muhammad Mufti, Rochmadi, Budiman, Arief
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0273-2289
1559-0291
1559-0291
DOI10.1007/s12010-022-03806-x

Cover

Abstract Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1 st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
AbstractList Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1ˢᵗ order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Abstract Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1 order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1 st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Author Ringgani, Retno
Rochmadi
Azis, Muhammad Mufti
Budiman, Arief
Author_xml – sequence: 1
  givenname: Retno
  surname: Ringgani
  fullname: Ringgani, Retno
  organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Chemical Engineering Department, Faculty of Industrial Engineering, UPN Veteran Yogyakarta
– sequence: 2
  givenname: Muhammad Mufti
  surname: Azis
  fullname: Azis, Muhammad Mufti
  organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada
– sequence: 3
  surname: Rochmadi
  fullname: Rochmadi
  organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada
– sequence: 4
  givenname: Arief
  surname: Budiman
  fullname: Budiman, Arief
  email: abudiman@ugm.ac.id
  organization: Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35243560$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLHDEUx0Ox1HXbL9CDDHjpZex7ySST3BSpVVwo1PYcspk3JTKbWZMZ0W9v7NoWPNjTgz-_X5KX_wHbi2Mkxj4iHCNA-zkjB4QaOK9BaFD1_Ru2QClNiQzusQXwVtSca7PPDnK-AUCuZfuO7QvJGyEVLNjJVYg0BV9dT3P3UI19taK7eQixRKc-dFWfxk11vQ3pKXTVdnATxRxy9Z1y6GZ6z972bsj04Xku2c_zLz_OLurVt6-XZ6er2jegp5qgdV2vPeqGekGiaYz0nVeEUqPmLToSHfQgSZRV_HoNSJzadUNCedNwsWSfdudu03g7U57sJmRPw-AijXO23GiplTFg_o8qobBBVeaSHb1Ab8Y5xbJIoZRC0RrEQh0-U_N6Q53dprBx6cH--cYC8B3g05hzov4vgmCfurK7rmzpyv7uyt4XSb-QfJjcFMY4JReG11WxU3O5J_6i9O_Zr1iPVkmmag
CitedBy_id crossref_primary_10_3390_catal12080909
crossref_primary_10_1016_j_biombioe_2025_107768
crossref_primary_10_9767_bcrec_17_2_14032_451_465
crossref_primary_10_1016_j_algal_2023_103133
crossref_primary_10_1016_j_cattod_2024_115100
crossref_primary_10_1007_s12649_024_02500_9
Cites_doi 10.3390/catal6120196
10.1201/9781482272970
10.1021/ie061186z
10.1016/S1004-9541(08)60284-0
10.1016/j.fuel.2016.09.019
10.1016/S0960-8524(01)00144-4
10.1021/ie50421a009
10.1016/j.biortech.2017.04.026
10.1016/j.algal.2015.12.013
10.1016/j.jclepro.2019.119770
10.9767/bcrec.16.4.12197.904-915
10.1016/j.biortech.2018.11.013
10.1016/j.rser.2017.02.042
10.1016/j.renene.2012.08.028
10.1007/s42452-018-0055-2
10.1016/j.jchromb.2013.04.037
10.1007/s00449-014-1259-5
10.1016/j.apenergy.2011.08.048
10.22146/ajche.60015
10.1016/j.jcat.2012.08.002
10.14710/ijred.8.2.133-140
10.1186/s12934-018-0879-x
10.1016/j.apcata.2017.03.016
10.1016/j.cej.2012.11.094
10.1016/j.fuel.2020.118907
10.14716/ijtech.v11i3.2967
10.1016/j.rser.2015.06.032
10.1016/j.fuel.2014.06.063
10.3390/molecules24152760
10.1016/j.cherd.2011.06.005
10.1016/j.biteb.2020.100514
10.3390/challe3020212
10.1002/biot.201400344
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7ST
7T7
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
SOI
7X8
7S9
L.6
DOI 10.1007/s12010-022-03806-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1559-0291
EndPage 2699
ExternalDocumentID 35243560
10_1007_s12010_022_03806_x
Genre Journal Article
GrantInformation_xml – fundername: Kementerian Riset, Teknologi dan Pendidikan Tinggi
  funderid: http://dx.doi.org/10.13039/501100010447
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VX
0VY
199
1N0
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3SX
3V.
4.4
406
408
40D
40E
53G
5GY
5VS
6NX
78A
7X7
88A
88E
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2P
M4Y
M7P
MA-
ML0
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
P9N
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK6
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z91
Z92
ZMTXR
ZXP
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7T7
7TM
7XB
8FD
8FK
C1K
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-e07adf8c184ef3e34495cdc6e15818271ae3d0f05e3380cbb01e2e7b4e36c9423
IEDL.DBID 7X7
ISSN 0273-2289
1559-0291
IngestDate Sat Sep 27 20:29:27 EDT 2025
Sun Sep 28 12:06:25 EDT 2025
Fri Jul 25 19:07:13 EDT 2025
Tue Sep 30 00:37:10 EDT 2025
Wed Oct 01 04:57:44 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Fri Feb 21 02:45:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Hydrolisis
Kinetics
Levulinic acid
residue
Spirulina platensis residue
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e07adf8c184ef3e34495cdc6e15818271ae3d0f05e3380cbb01e2e7b4e36c9423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35243560
PQID 2666137911
PQPubID 54110
PageCount 16
ParticipantIDs proquest_miscellaneous_2985869909
proquest_miscellaneous_2636141626
proquest_journals_2666137911
pubmed_primary_35243560
crossref_primary_10_1007_s12010_022_03806_x
crossref_citationtrail_10_1007_s12010_022_03806_x
springer_journals_10_1007_s12010_022_03806_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Applied biochemistry and biotechnology
PublicationTitleAbbrev Appl Biochem Biotechnol
PublicationTitleAlternate Appl Biochem Biotechnol
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rackemann, D.W. (2014), PhD Disertasi, Queensland University of Technology.
Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., and Lu, X. (2017) Fuel 187, 261-268
Fang, Q. and Hanna, M.A. (2002) Bioresource. Technology., 81, 187–192
Girisuta B., Dussan K., Haverty D., Leahy J., and Hayes M. (2013) Chemical Engineering Journal 217, 61-70
Cao, L., Yu, I.K.M., Cho, D.W., Wang, D., Tsang, D.C.W., Zhang, S., Ding, S., Wang, L., and Ok, Y.S. (2019) Bioresource Technology 273, 251-259
Lee, S.B., Kim, S.K., Hong, Y.K., and Jeong, G.T. (2016) Algal Research 13, 303-310
Galletti, A.M.R., Antonetti, C., Licursi, D., Mussi, L., Balestri, E., and Lardicci, C. (2019) AIDIC, 74, 103-108
Kim, D.H., Lee, S.B., Kim, S.K., Park, D.H., and Jeong, G.T. (2016) Bioenerg.Res.
Yang G, Pidko EA, and Hensen EJM (2012) Journal of Catalysis 295, 122–32
Halim, R., Harun, R., Danquah M. K and Webley, P.A. (2012) Applied Energy 91, 116-121
Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., & Kim, J.S. (2013) Renewable Energy, 54, 173-180
Aikawa, S., Hsin Ho, S., Nakanishi, A., Shu Chang, J., Hasunuma, T., and Kondo, A., (2015) Biotechnology Journal. 10, 886-898
Jeong, G.T. and Kim, S.K. (2021) Fuel 283, 118907.
Ahlkvist, J. (2014), VMC-KBC Umeå , Umeå, Sweden, ISBN: 978-91-7459-798-1
Listyaningrum, N. B., Azis, M.M., Sarto, Rosdi, A. N., and Harun, M. R. (2021) AJChE 21(1), 11–18.
Latham, K. G., Ferguson, A., and Donne, S. (2018) SN Applied Science, 2019, 1:54
Morone, A., Apte, M., and Pandey, R.A. (2015) Renewable and Sustainable Energy Rev., 51, 548-565
Saeman, J. F. (1945) Industrial and Engineering Chemistry, 37, 43-53
Vernes, L., Abert-Vian, M., El Maataoui, M., Tao, Y., Bornard, I. and Chemat, F. (2019) Ultrason. Sonochem.
Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., and Park, D.H. (2015) Bioprocess and Biosystems. Engineering 38, 207–218
Hu L, Lin L, Wu Z, Zhou S, and Liu S. (2017) Renewable and Sustainable Energy Reviews 74, 230–57
FoglerHSElement Of Chemical Reaction Engineering20165Prentice Hall
L. Kupiainen, J. Ahola, J. Tanskanen (2011) Chemical Engineering Research and Design 89 (2011) 2706-2713
De Souza, R. L., Yu, H., Rataboul, F., and Essayem, N., (2012) Challenges 3, 212-232
Aharonovich, E.B., Zandany, A., Saady, A., Tahan, Y.K., Yehoshua, Y., and Gedanken, A. (2020) Bioresour. Technol. Rep. 11, 100514.
Nautiyal, P., Subramanian, K.A., and Dastidar, M.G. (2014) Fuel 135, 228-234
Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A., & Pugazhendhi, A., (2020) J. Cleaner Prod., 253, 119770
Vonshak A. (1997) Spirulina: growth, physiology & biochemistry. In: Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology, Taylor and Francis, London
Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., and Galetti, A.M.R. (2016) Catalyst, 6, 196
Yu, I. K. M., and Tsang, D. C.W. (2017) Biosource Technology 238, 716-732
Chun, C., Xiaojian, M., and Peilin, C. (2009) Chinese. Journal of Chemical Engineering 17(5), 835-839
Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2020) AIP Conf. Proc. 2296, 020064, 1-6
Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H. and Budiman, A. (2019) IJRED 8 (2), 133–140.
Khan, M. I., Shin J. H., and Kim, J. D. (2018) Microb. Cell Fact., 17–36.
Lopes, E.S., Dominicesa, K.M.C., Lopes, M.S., and Tovar, L.P., Filhoa, R.M. (2017) Chem. Eng. Transact., AIDIC, 57
Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2021) BCREC 16 (4), 904–915.
Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J.I., and Budiman, A. (2020) IJTech 11(3), 522–531.
Girisuta, B., Janssen, L. P. B. M., and Heeres, H.J. (2007) Industrial and Engineering Chemistry Research 46, 1696-1708
Signoretto, M., Taghavi, S., Ghedini, E., and Menegazzo, F. (2019) Molecules 24, 1-20
Izumi, Y., Aikawa, S., Matsuda, F., and Hasunima, T. (2013) Journal of Chromatography. B. 930, 90-97
Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., and Giorgi, J.B. (2017) Applied Catalysis, A, 539, 70-79
3806_CR29
3806_CR28
3806_CR27
3806_CR1
3806_CR26
3806_CR2
3806_CR25
3806_CR24
3806_CR23
3806_CR22
3806_CR21
3806_CR20
3806_CR41
3806_CR9
3806_CR7
3806_CR8
3806_CR5
3806_CR6
3806_CR3
3806_CR4
3806_CR19
3806_CR18
3806_CR17
3806_CR39
3806_CR16
3806_CR38
3806_CR15
3806_CR37
3806_CR14
3806_CR36
3806_CR13
3806_CR35
3806_CR12
3806_CR34
3806_CR11
3806_CR10
3806_CR32
3806_CR31
3806_CR30
3806_CR40
HS Fogler (3806_CR33) 2016
References_xml – reference: Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., and Galetti, A.M.R. (2016) Catalyst, 6, 196
– reference: Kim, D.H., Lee, S.B., Kim, S.K., Park, D.H., and Jeong, G.T. (2016) Bioenerg.Res.
– reference: Girisuta B., Dussan K., Haverty D., Leahy J., and Hayes M. (2013) Chemical Engineering Journal 217, 61-70
– reference: Nautiyal, P., Subramanian, K.A., and Dastidar, M.G. (2014) Fuel 135, 228-234
– reference: Signoretto, M., Taghavi, S., Ghedini, E., and Menegazzo, F. (2019) Molecules 24, 1-20
– reference: Lee, S.B., Kim, S.K., Hong, Y.K., and Jeong, G.T. (2016) Algal Research 13, 303-310
– reference: Hu L, Lin L, Wu Z, Zhou S, and Liu S. (2017) Renewable and Sustainable Energy Reviews 74, 230–57
– reference: Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2021) BCREC 16 (4), 904–915.
– reference: Ahlkvist, J. (2014), VMC-KBC Umeå , Umeå, Sweden, ISBN: 978-91-7459-798-1
– reference: Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2020) AIP Conf. Proc. 2296, 020064, 1-6
– reference: Rackemann, D.W. (2014), PhD Disertasi, Queensland University of Technology.
– reference: Izumi, Y., Aikawa, S., Matsuda, F., and Hasunima, T. (2013) Journal of Chromatography. B. 930, 90-97
– reference: Vernes, L., Abert-Vian, M., El Maataoui, M., Tao, Y., Bornard, I. and Chemat, F. (2019) Ultrason. Sonochem.
– reference: Vonshak A. (1997) Spirulina: growth, physiology & biochemistry. In: Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology, Taylor and Francis, London,
– reference: Fang, Q. and Hanna, M.A. (2002) Bioresource. Technology., 81, 187–192
– reference: Yang G, Pidko EA, and Hensen EJM (2012) Journal of Catalysis 295, 122–32
– reference: Girisuta, B., Janssen, L. P. B. M., and Heeres, H.J. (2007) Industrial and Engineering Chemistry Research 46, 1696-1708
– reference: De Souza, R. L., Yu, H., Rataboul, F., and Essayem, N., (2012) Challenges 3, 212-232
– reference: Saeman, J. F. (1945) Industrial and Engineering Chemistry, 37, 43-53
– reference: Lopes, E.S., Dominicesa, K.M.C., Lopes, M.S., and Tovar, L.P., Filhoa, R.M. (2017) Chem. Eng. Transact., AIDIC, 57
– reference: Jeong, G.T. and Kim, S.K. (2021) Fuel 283, 118907.
– reference: Cao, L., Yu, I.K.M., Cho, D.W., Wang, D., Tsang, D.C.W., Zhang, S., Ding, S., Wang, L., and Ok, Y.S. (2019) Bioresource Technology 273, 251-259
– reference: Chun, C., Xiaojian, M., and Peilin, C. (2009) Chinese. Journal of Chemical Engineering 17(5), 835-839
– reference: Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H. and Budiman, A. (2019) IJRED 8 (2), 133–140.
– reference: Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A., & Pugazhendhi, A., (2020) J. Cleaner Prod., 253, 119770
– reference: Aikawa, S., Hsin Ho, S., Nakanishi, A., Shu Chang, J., Hasunuma, T., and Kondo, A., (2015) Biotechnology Journal. 10, 886-898
– reference: Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J.I., and Budiman, A. (2020) IJTech 11(3), 522–531.
– reference: Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., and Giorgi, J.B. (2017) Applied Catalysis, A, 539, 70-79
– reference: Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., and Park, D.H. (2015) Bioprocess and Biosystems. Engineering 38, 207–218
– reference: Halim, R., Harun, R., Danquah M. K and Webley, P.A. (2012) Applied Energy 91, 116-121
– reference: Khan, M. I., Shin J. H., and Kim, J. D. (2018) Microb. Cell Fact., 17–36.
– reference: Listyaningrum, N. B., Azis, M.M., Sarto, Rosdi, A. N., and Harun, M. R. (2021) AJChE 21(1), 11–18.
– reference: Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., & Kim, J.S. (2013) Renewable Energy, 54, 173-180
– reference: Morone, A., Apte, M., and Pandey, R.A. (2015) Renewable and Sustainable Energy Rev., 51, 548-565
– reference: FoglerHSElement Of Chemical Reaction Engineering20165Prentice Hall
– reference: Galletti, A.M.R., Antonetti, C., Licursi, D., Mussi, L., Balestri, E., and Lardicci, C. (2019) AIDIC, 74, 103-108
– reference: Latham, K. G., Ferguson, A., and Donne, S. (2018) SN Applied Science, 2019, 1:54
– reference: Aharonovich, E.B., Zandany, A., Saady, A., Tahan, Y.K., Yehoshua, Y., and Gedanken, A. (2020) Bioresour. Technol. Rep. 11, 100514.
– reference: L. Kupiainen, J. Ahola, J. Tanskanen (2011) Chemical Engineering Research and Design 89 (2011) 2706-2713
– reference: Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., and Lu, X. (2017) Fuel 187, 261-268
– reference: Yu, I. K. M., and Tsang, D. C.W. (2017) Biosource Technology 238, 716-732
– ident: 3806_CR15
– ident: 3806_CR1
– ident: 3806_CR2
  doi: 10.3390/catal6120196
– ident: 3806_CR14
  doi: 10.1201/9781482272970
– ident: 3806_CR18
  doi: 10.1021/ie061186z
– ident: 3806_CR19
  doi: 10.1016/S1004-9541(08)60284-0
– ident: 3806_CR32
  doi: 10.1016/j.fuel.2016.09.019
– ident: 3806_CR24
  doi: 10.1016/S0960-8524(01)00144-4
– ident: 3806_CR30
  doi: 10.1021/ie50421a009
– ident: 3806_CR40
  doi: 10.1016/j.biortech.2017.04.026
– ident: 3806_CR21
– ident: 3806_CR27
  doi: 10.1016/j.algal.2015.12.013
– ident: 3806_CR3
  doi: 10.1016/j.jclepro.2019.119770
– ident: 3806_CR35
  doi: 10.9767/bcrec.16.4.12197.904-915
– ident: 3806_CR25
– ident: 3806_CR41
  doi: 10.1016/j.biortech.2018.11.013
– ident: 3806_CR29
– ident: 3806_CR37
  doi: 10.1016/j.rser.2017.02.042
– ident: 3806_CR26
  doi: 10.1016/j.renene.2012.08.028
– ident: 3806_CR34
– ident: 3806_CR38
  doi: 10.1007/s42452-018-0055-2
– ident: 3806_CR13
  doi: 10.1016/j.jchromb.2013.04.037
– ident: 3806_CR28
  doi: 10.1007/s00449-014-1259-5
– ident: 3806_CR16
  doi: 10.1016/j.apenergy.2011.08.048
– volume-title: Element Of Chemical Reaction Engineering
  year: 2016
  ident: 3806_CR33
– ident: 3806_CR4
  doi: 10.22146/ajche.60015
– ident: 3806_CR36
  doi: 10.1016/j.jcat.2012.08.002
– ident: 3806_CR11
  doi: 10.14710/ijred.8.2.133-140
– ident: 3806_CR17
  doi: 10.1186/s12934-018-0879-x
– ident: 3806_CR23
  doi: 10.1016/j.apcata.2017.03.016
– ident: 3806_CR31
  doi: 10.1016/j.cej.2012.11.094
– ident: 3806_CR6
  doi: 10.1016/j.fuel.2020.118907
– ident: 3806_CR10
  doi: 10.14716/ijtech.v11i3.2967
– ident: 3806_CR22
  doi: 10.1016/j.rser.2015.06.032
– ident: 3806_CR9
  doi: 10.1016/j.fuel.2014.06.063
– ident: 3806_CR8
  doi: 10.3390/molecules24152760
– ident: 3806_CR20
  doi: 10.1016/j.cherd.2011.06.005
– ident: 3806_CR5
  doi: 10.1016/j.biteb.2020.100514
– ident: 3806_CR7
– ident: 3806_CR39
  doi: 10.3390/challe3020212
– ident: 3806_CR12
  doi: 10.1002/biot.201400344
SSID ssj0012857
Score 2.3888197
Snippet Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the...
Abstract Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2684
SubjectTerms acid hydrolysis
Acids
Ammonia
Arthrospira platensis
Biochemistry
Biofuels
Biotechnology
Catalysts
Chemistry
Chemistry and Materials Science
Cyanobacteria
feedstocks
glucose
Hydrolysis
Hydroxymethylfurfural
kinetics
Levulinic acid
Levulinic Acids
Lipids
Microalgae
Original Article
Process parameters
Residues
Spirulina
Spirulina platensis
Sulfuric acid
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-h8sB4GNDBFr7kSXvbUjlxnDhvVKiAYNvDtkrwFDnORapWpRVtENtfzzkfLYNRibcouUSX89n3O9-HAT75mUTblsw1oUrdQMeR3WgSri9TYXjua6zaF3_7Hl4Mg8tred0Uhc3abPc2JFmt1MtitzpwS84TF4r8YEKO69I6KB1Y75_fXA0W0QNf1R0-yTS7PnkUTbHM_7_yr0F6hjKfRUgrw3O2BcOW5Trf5HevnKc98_dJN8fX_tM2vG2QKOvXqrMDa1h0YeO0PQCuC5uPehW-g5MruiZSZjMP_7BJzr7iXVnVVbK-GWXMFqqwn9PRrb2p2XSsq-T4GfuBpPEl7sLwbPDr9MJtjl9wTcDV3EUe6SxXhkSMuUARkC9lMhOiJ8nK-5GnUWQ85xLJzeUmTbmHPkZpgCI0McG0PegUkwI_APMIxytlYhqRPMik0Cb2SAm4jkMpszxwwGvHIDFNb3J7RMY4WXZVtpJKSFJJJank3oHPi3emdWeOldSH7dAmzSydJQROCM1EtN478HHxmKRsgya6wElpaQQhGI_8vhU0sZIqJLseO_C-VpsFSwRwCZGG3IEvrQosGXiZ3_3XkR_AG7_SIrs9dAid-W2JR4SW5ulxMzkeAEb8Byg
  priority: 102
  providerName: Springer Nature
Title Kinetic Study of Levulinic Acid from Spirulina platensis Residue
URI https://link.springer.com/article/10.1007/s12010-022-03806-x
https://www.ncbi.nlm.nih.gov/pubmed/35243560
https://www.proquest.com/docview/2666137911
https://www.proquest.com/docview/2636141626
https://www.proquest.com/docview/2985869909
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1559-0291
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1559-0291
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgHIAD4k15KUjcoCJtmj5OMNAA8RICJo1TlaauNAltg21o_HucPjYQYqdWaSpZthN_thMb4NBNJZqyZLb2w8T2VBSYQJOwXZkIzTNXYV6--P7Bv256Ny3ZKgNu_fJYZbUn5ht12tUmRn5ChoQsT0Br87T3bpuuUSa7WrbQmIU5h6CK0eqgNXa4aOstKn2SibZd8izKSzPF1bkiDUyuGBchedWj34bpD9r8kynNDdDlMiyVyJHVC1GvwAx2VmH-omrYtgqLP2oLrsHZLb3TVGZOCn6xbsbu8HOY34Nkdd1OmblYwp577Q8zqFjvTeWH2fvsCUlDh7gOzcvGy8W1XbZLsLXHw4GNPFBpFmry2TATKDzyfXSqfXQkWWU3cBSKlGdcIrmlXCcJd9DFIPFQ-DoiWLUBtU63g1vAHMLdYagj4lzmpVIoHTkkNK4iX8o08yxwKl7FuqwlblpavMWTKsiGvzHxN875G48sOBr_0ysqaUydvVuJIC5XVT-e6IAFB-PPxGWT5FAd7A7NHEGIwyE_bcqcKJShT3Y4smCzEO-YJAKkhCB9bsFxJe8JAf_Tuz2d3h1YcHNdM-GbXagNPoa4R2hmkOznKrsPc_Wr19sGPc8bD49PNNp069_3cfCz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4heqA9oJY-2JZSV6Kn1qrXj30cqoIoKJDAoQUpt63XOyshoSSQpIU_xW9kvI8EhMiNW7SZXVkzY898tucbgC1ZGPS0ZNxFSc61TWO_0aS4NLlyopQWK_rio-Ooc6oP-6a_BDdtLYy_VtmuidVCXQyd3yP_ToGEIk9Mc_Pn6IL7rlH-dLVtoVG7RRev_xNkG_84-EX2_SLl_t7Jboc3XQW40yKZcBSxLcrEEbTBUqHSBBFc4SIMDQUvGYcWVSFKYZDQm3B5LkKUGOcaVeRS7YkOaMl_ppXQnqs_7s8AHi31NbMopQRcEpJpinTqUr362Jmgn6DPRvzqfiB8kN0-OJmtAt7-S1htMlW2U7vWK1jCwRqs7LYN4tbgxR0uw9ew3aXfJMr8zcRrNixZD_9Nq7pLtuPOCuYLWdif0dmlf2jZ6NxWl-fH7DfSjJjiGzh9EkW-heXBcIDrwELK85PEpaS5UhdGWZeG5CTCppExRakDCFtdZa7hLvctNM6zOeuy129G-s0q_WZXAXydvTOqmTsWSm-0JsiaWTzO5j4XwOfZ36Rlf6hiBzicehlFGU5IuHCBTJqYJKK4nwbwrjbvbEiUAFPGGokAvrX2ng_g8fG-XzzeT7DSOTnqZb2D4-4HeC4rv_NbRxuwPLmc4kfKpCb5ZuW-DP4-9Xy5BVp2KZ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxsxEB4hKtH2oaL0WqDFldqn1sLrY4-HiiJoBARQ1RYpb1uvd1ZCQkkgCcdf49d1vEcCQs0bb9FmdmWNZzzfeC6AT7Iw6NuScRclOdc2jf1Fk-LS5MqJUlqs2hcfHUd7J_qgZ3oLcNvWwvi0yvZMrA7qYuD8HfkmGRKyPDHp5mbZpEX83O1sDc-5nyDlI63tOI1aRLp4c0Xu2-jb_i7t9WcpOz_-7OzxZsIAd1okY44itkWZOHJzsFSoNLkLrnARhoYMmYxDi6oQpTBInpxweS5ClBjnGlXkUu2bHtDx_yRWWvl0srg3dfbo2K-7jBI84JK8mqZgpy7bq0PQ5AYK-mzEr-8bxQdI90GUtjJ-nWV40aBWtl2L2UtYwP4KPN1ph8WtwPM7fQ1fwfcu_SZS5rMUb9igZId4OalqMNm2Oy2YL2phv4enF_6hZcMzWyXSj9gvJO2Y4Gs4eRRGvoHF_qCP74CFhPmTxKXEuVIXRlmXhiQwwqaRMUWpAwhbXmWu6WPux2mcZbMOzJ6_GfE3q_ibXQfwZfrOsO7iMZd6vd2CrNHoUTaTvwA-Tv8mLvsAi-3jYOJpFKGdkHzEOTRpYpKIMEAawNt6e6dLIjBM6DUSAXxt93u2gP-vd3X-ejdgiTQlO9w_7q7BM1mJnb9FWofF8cUE3xOoGucfKull8Pex1eUffQct2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Study+of+Levulinic+Acid+from+Spirulina+platensis+Residue&rft.jtitle=Applied+biochemistry+and+biotechnology&rft.au=Ringgani%2C+Retno&rft.au=Azis%2C+Muhammad+Mufti&rft.au=Rochmadi&rft.au=Budiman%2C+Arief&rft.date=2022-06-01&rft.eissn=1559-0291&rft.volume=194&rft.issue=6&rft.spage=2684&rft_id=info:doi/10.1007%2Fs12010-022-03806-x&rft_id=info%3Apmid%2F35243560&rft.externalDocID=35243560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-2289&client=summon