Mapping-Based Dosage of Gait Modification Selection for Multi-Parameter, Subject-Specific Gait Retraining
Gait retraining to reduce knee loading has been proposed as a conservative treatment option for early-stage knee osteoarthritis. Mounting evidence suggests that a subject-specific approach may be most effective for ensuring consistent knee loading reductions across all individuals within a populatio...
Saved in:
Published in | IEEE access Vol. 8; pp. 106354 - 106363 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2020.2999473 |
Cover
Summary: | Gait retraining to reduce knee loading has been proposed as a conservative treatment option for early-stage knee osteoarthritis. Mounting evidence suggests that a subject-specific approach may be most effective for ensuring consistent knee loading reductions across all individuals within a population. However, it is currently unclear how to determine the required gait modification dosage selection type and amount to both reduce knee loading and satisfy individual preferences. To overcome this challenge, we introduce a novel, mapping-based dosage selection approach to systematically determine multi-parameter gait modifications to reduce knee loading while maintaining individual user preference. In this approach, individuals first explore different dosages of multi-parameter gait modifications, and then a resulting visual map is displayed with a subject-specific dosage selection zone for the target knee loading reduction. Subjects then self-select a preferred gait within their dosage selection zone. To evaluate the feasibility of this approach, fifteen healthy subjects and one knee OA patient performed walking trials on a treadmill involving various dosages of gait modifications to foot progression angle and step width. Subjects quickly selected the subject-specific gait modifications via mapping-based dosage selection during a single 6 min trial, which reduced the knee adduction moment by an average of 14.2%. Resulting subject-specific gait modifications varied, with 6 subjects selecting only toe-in, 5 subjects selecting both toe-in and increased step width, 2 subjects selecting only toe-out, 1 subject selecting both toe-out and increased step width and 1 subject selecting only increased step width. Average perceived exertion was "fairly light" (index was 10.5±2.2). The knee OA patient selected only toe-in and reduced the knee adduction moment by 12.8%. The presented mapping-based dosage selection approach could provide a systematic and practical means to determine subject-specific gait modifications while maintaining individual preferences. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2999473 |