Efficacy of GIS-based AHP and data-driven intelligent machine learning algorithms for irrigation water quality prediction in an agricultural-mine district within the Lower Benue Trough, Nigeria

Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this stud...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 31; no. 41; pp. 54204 - 54233
Main Authors Omeka, Michael E., Igwe, Ogbonnaya, Onwuka, Obialo S., Nwodo, Ogechukwu M., Ugar, Samuel I., Undiandeye, Peter A., Anyanwu, Ifeanyi E.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-25291-3

Cover

Abstract Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models—multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)—were integrated and validated to predict the IWQ parameters. The coefficient of determination ( R 2 ) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO 3 , Cl, Mg, and SO 4 were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
AbstractList Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models-multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)-were integrated and validated to predict the IWQ parameters. The coefficient of determination (R ) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO , Cl, Mg, and SO were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models—multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)—were integrated and validated to predict the IWQ parameters. The coefficient of determination (R²) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO₃, Cl, Mg, and SO₄ were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models—multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)—were integrated and validated to predict the IWQ parameters. The coefficient of determination (R2) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO3, Cl, Mg, and SO4 were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models-multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)-were integrated and validated to predict the IWQ parameters. The coefficient of determination (R2) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO3, Cl, Mg, and SO4 were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models-multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)-were integrated and validated to predict the IWQ parameters. The coefficient of determination (R2) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO3, Cl, Mg, and SO4 were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most influential water quality parameters for accurate prediction becomes crucial for enhanced water resource management and sustainability. In this study, the geographical information system (GIS), analytical hierarchy process (AHP) technique, and machine learning models were integrated to assess and predict the irrigation water quality (IWQ) suitability of the Okurumutet-Iyamitet agricultural-mine district. To achieve this, six water quality criteria were reclassified into four major hazard groups (permeability and infiltration hazard, salinity hazard, specific ion toxicity, and mixed effects) based on their sensitivity on crop yield. The normalized weights of the criteria were computed using the AHP pairwise comparison matrix. Eight thematic maps based on IWQ parameters (electrical conductivity, total dissolved solids, sodium adsorption ratio, permeability index, soluble sodium percentage, magnesium hazard, hardness, and pH) were generated and rasterized in the ArcGIS environment to generate an irrigation suitability map of the area using the weighted sum technique. The derived IWQ map showed that the water in 28.2% of the area is suitable for irrigation, 43.7% is moderately suitable, and 28.1% is unsuitable, with the irrigation water quality deteriorating in the central-southeastern direction. Two machine learning models—multilayer perceptron neural networks (MLP-NNs) and multilinear regression (MLR)—were integrated and validated to predict the IWQ parameters. The coefficient of determination ( R 2 ) for MLR and MLP-NN ranged from 0.513 to 0.858 and 0.526 to 0.861 respectively. Based on the results of all the metrics, the MLP-NN showed higher performance accuracy than the MLR. From the results of MLP-NN sensitivity analysis, HCO 3 , Cl, Mg, and SO 4 were identified to have the highest influence on the irrigation water quality of the area. This study showed that the integration of GIS-AHP and machine learning can serve as efficient and rapid decision-making tools in irrigation water quality monitoring and prediction.
Author Nwodo, Ogechukwu M.
Ugar, Samuel I.
Anyanwu, Ifeanyi E.
Omeka, Michael E.
Onwuka, Obialo S.
Igwe, Ogbonnaya
Undiandeye, Peter A.
Author_xml – sequence: 1
  givenname: Michael E.
  orcidid: 0000-0003-0405-8616
  surname: Omeka
  fullname: Omeka, Michael E.
  email: omeka.ekuru@unical.edu.ng, michaelekuru@gmail.com
  organization: Department of Geology, University of Calabar
– sequence: 2
  givenname: Ogbonnaya
  surname: Igwe
  fullname: Igwe, Ogbonnaya
  organization: Department of Geology, Faculty of Physical Sciences, University of Nigeria
– sequence: 3
  givenname: Obialo S.
  surname: Onwuka
  fullname: Onwuka, Obialo S.
  organization: Department of Geology, Faculty of Physical Sciences, University of Nigeria
– sequence: 4
  givenname: Ogechukwu M.
  surname: Nwodo
  fullname: Nwodo, Ogechukwu M.
  organization: Centre for Atmospheric Research, Kogi State University
– sequence: 5
  givenname: Samuel I.
  surname: Ugar
  fullname: Ugar, Samuel I.
  organization: Department of Geology, University of Calabar
– sequence: 6
  givenname: Peter A.
  surname: Undiandeye
  fullname: Undiandeye, Peter A.
  organization: Department of Geology, University of Calabar
– sequence: 7
  givenname: Ifeanyi E.
  orcidid: 0000-0002-0935-5479
  surname: Anyanwu
  fullname: Anyanwu, Ifeanyi E.
  organization: Department of Geology, Faculty of Physical Sciences, University of Nigeria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36723836$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu3CAYhVGVqkmmfYEuKqRuuggtF9vYyyTKTRq1lZquEebiIbJhArijeby-WclMolZZpBtA8J3Dz885Bgc-eAPAe4I_E4z5l0QIqxuEKUO0ph1B7BU4Ig2pEK-67uCf9SE4TukOY4o7yt-AQ9ZwylrWHIHfF9Y6JdUWBguvbn6gXiaj4en1dyi9hlpmiXR0v4yHzmczjm4wPsNJqpXzBo5GRu_8AOU4hOjyakrQhghdjG6Q2QUPNzKbCO9nObq8hetotFO7A-fLFVAO0al5zHOUI5oePLVLuexluCl-BcorA5dhU0zOjJ8NvI1hHlYn8GspJTr5Fry2ckzm3eO8AD8vL27Pr9Hy29XN-ekSqQq3GWllOa9ZbzXudEWZNLXue9OY3raU2b6pOm01q1hHVS9brLuO2r6SDWOaNq1hC_Bp77uO4X42KYvJJVU6Ir0JcxKM1IxzTgn9L0o5Jw3jrMUF_fgMvQtz9OUhxRCTAtVlXIAPj9TcT0aLdXSTjFvx9I8FaPeAiiGlaKxQLu_6n6N0oyBYPERG7CMjSmTELjKCFSl9Jn1yf1HE9qJUYF_-4W_ZL6j-AHqe1ok
CitedBy_id crossref_primary_10_1108_JM2_09_2023_0202
crossref_primary_10_1007_s40808_023_01777_4
crossref_primary_10_1007_s12665_025_12173_9
crossref_primary_10_1007_s40808_024_02123_y
crossref_primary_10_1007_s11356_024_32552_2
crossref_primary_10_1007_s10653_023_01737_y
crossref_primary_10_1007_s11356_025_36120_0
crossref_primary_10_3390_agriculture13081545
crossref_primary_10_1016_j_gsd_2025_101405
crossref_primary_10_1016_j_eja_2024_127441
crossref_primary_10_3389_fenvs_2023_1116220
crossref_primary_10_1007_s10661_023_11923_1
crossref_primary_10_1007_s41748_023_00357_x
crossref_primary_10_3390_info14110583
crossref_primary_10_2166_ws_2024_242
crossref_primary_10_1007_s12517_024_12008_0
Cites_doi 10.1016/j.marpolbul.2021.112907
10.1007/s00521-016-2404-7
10.1016/j.gexplo.2018.07.003
10.1007/s12517-022-10514-7
10.1016/0377-2217(90)90057-I
10.1080/03067319.2021.1907359
10.1007/s10661-008-0633-7
10.1007/s12665-013-2757-5
10.1007/s10653-018-0194-9
10.1007/s40808-019-00581-3
10.1007/s10661-022-09856-2
10.1016/0301-9268(87)90004-0
10.1016/j.jssas.2020.08.001
10.1007/s11269-008-9321-1
10.1016/j.jafrearsci.2014.01.004
10.1007/s11356-022-18520-8
10.1016/j.landusepol.2012.04.023
10.1016/0899-5362(88)90061-9
10.1080/19942060.2020.1861987
10.1007/s13201-014-0154-1
10.1007/s11269-014-0817-6
10.1007/978-1-4615-1665-1
10.1016/S0043-1354(00)00036-1
10.1080/19475705.2017.1407368
10.1016/j.gsd.2021.100545
10.1016/0034-4257(94)90020-5
10.1007/s12665-014-3972-4
10.1016/J.ECOLMODEL.2010.09.007
10.1016/0043-1354(71)90097-2
10.1016/j.jksus.2019.01.005
10.1007/s13201-022-01590-x
10.1007/s40808-016-0250-3
10.4236/jwarp.2019.116046
10.1080/03067319.2021.1873316
10.1016/j.jenvman.2008.11.008
10.1023/B:EMAS.0000031715.83752.a1
10.1007/s10064-013-0538-8
10.1080/19942060.2021.1984992
10.1007/s12665-015-4905-6
10.1007/s10661-020-08832-y
10.1016/j.hydres.2021.04.001
10.11591/ijai.v9.i1.pp126-134
10.30492/ijcce.2020.39800
10.1007/s11269-013-0364-6
10.1097/00010694-196512000-00001
10.1007/s11356-020-10156-w
10.1080/19475705.2015.1045043
10.1002/hyp.10879
10.1007/s12517-020-05813-w
10.1007/s11269-017-1685-7
10.1080/00031305.2000.10474502
10.1007/s11356-018-3751-y
10.3390/w12020471
10.1007/s00477-014-0899-y
10.1097/00010694-196306000-00003
10.1007/s11069-020-04141-2
10.1007/s40808-020-01041-z
10.1007/s13201-021-01556-5
10.1016/j.chemosphere.2018.11.193
10.20944/preprints202003.0088.v1
10.2136/sssaj1961.03615995002500010016x
10.5067/ASTER/ASTGTM.003
10.1007/s10653-022-01332-7
10.1016/j.jhydrol.2020.124974
10.1016/j.jics.2022.100479
10.1007/s40808-022-01502-7
10.1007/978-3-031-04707-7_8
10.1007/978-3-031-04707-7_9
10.1007/s42108-022-00183-3
10.1007/s42108-021-00128-2
10.1016/j.geogeo.2022.100104
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-25291-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 54233
ExternalDocumentID 36723836
10_1007_s11356_023_25291_3
Genre Journal Article
GeographicLocations Nigeria
GeographicLocations_xml – name: Nigeria
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-dcf7753bfd09d423ae5dbbe6ebf823fb649dfd34392cba80d992fb4a633d268e3
IEDL.DBID BENPR
ISSN 1614-7499
0944-1344
IngestDate Wed Oct 01 14:04:08 EDT 2025
Fri Sep 05 06:55:29 EDT 2025
Tue Oct 07 06:40:02 EDT 2025
Mon Jul 21 06:07:58 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Wed Oct 01 03:13:45 EDT 2025
Fri Feb 21 02:39:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Irrigation water quality
Analytic hierarchy process (AHP)
Artificial neural networks (ANNs)
Machine learning
Lower Benue Trough
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-dcf7753bfd09d423ae5dbbe6ebf823fb649dfd34392cba80d992fb4a633d268e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0935-5479
0000-0003-0405-8616
PMID 36723836
PQID 3101373501
PQPubID 54208
PageCount 30
ParticipantIDs proquest_miscellaneous_3153777212
proquest_miscellaneous_2771637380
proquest_journals_3101373501
pubmed_primary_36723836
crossref_citationtrail_10_1007_s11356_023_25291_3
crossref_primary_10_1007_s11356_023_25291_3
springer_journals_10_1007_s11356_023_25291_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Omeka, Egbueri, Unigwe (CR65) 2022; 15
CR38
Wagh, Panaskar, Muley, Mukate, Lolage, Aamalawar (CR94) 2016; 2
Beven (CR14) 2016; 30
Kouadri, Samir (CR47) 2021; 40
Wang (CR96) 2009; 23
Richards (CR79) 1954; 60
Hussain, Joshi, Singhal, Kumar, Rao (CR35) 2012; 4
Moran, Clarke, Inoue, Vidal (CR58) 1994; 49
Nhantumbo, Carvalho, Uvo, Larsson, Larson (CR63) 2018; 193
Ray, Kumar, Kumar, Rai, Khandelwal, Singh (CR78) 2020
Benjmel, Amraoui, Boutaleb, Ouchchen, Tahiri, Touab (CR13) 2020; 12
Aravinthasamy, Karunanidhi, Subramani, Anand, Roy, Srinivasamoorthy (CR8) 2019; 12
Mohammed, Scholz (CR59) 2017; 31
Barzegar, Moghaddam, Adamowski, Nazemi (CR11) 2018; 87
Cay, Uyan (CR17) 2013; 30
CR43
Prati, Pavanello, Pesarin (CR74) 1971; 5
CR42
Ozel, Gemici, Gemici, Ozel, Cetin, Sevik (CR68) 2020
Aykut (CR10) 2021; 12
Bouaroudj, Menad, Bounamous (CR15) 2019; 219
Bozdağ (CR16) 2015; 73
Ifediegwu (CR36) 2022; 12
Chowdary, Chakraborthy, Jeyaram, Murthy, Sharma, Dadhwal (CR18) 2013; 27
Wang, Liu, Zhang, Chen (CR95) 2011; 222
Omeka, Igwe, Unigwe (CR66) 2022; 194
Mokhtar, Elbeltagi, Gyasi-Agyei, Al-Ansari, Abdel-Fattah (CR57) 2022; 12
CR55
CR54
Shunmugapriya, Panneerselvam, Muniraj, Ravichandran, Prasath, Thomas, Duraisamy (CR85) 2021; 172
Greaves (CR32) 2011
CR51
Kaur, Rishi, Sharma, Sharma, Lata, Singh (CR45) 2019; 31
Kaur, Rishi, Arora (CR44) 2021; 193
Adamu, Nganje, Edet (CR3) 2015; 3
Kelley (CR46) 1963; 95
Singh, Madhuri, Arora (CR86) 2019; 1
Mohammadpour, Shaharuddin, Zakaria, Ghani, Vakili, Chan (CR56) 2016; 75
Song, Kim (CR87) 2009; 90
Pesce, Wunderlin (CR73) 2000; 34
CR67
CR64
Gaya, Abba, Abdu, Tukur, Saleh, Esmaili, Wahab (CR30) 2020; 9
CR61
CR60
Ighalo, Adeniyi, Marques (CR37) 2020
Saaty, Vargas (CR82) 1994
Panneerselvam, Paramasivam, Karuppannan, Ravichandran, Selvaraj (CR71) 2020; 13
Egbueri, Unigwe, Omeka (CR25) 2021
Kalantar, Pradhan, Naghibi, Motevalli, Mansor (CR41) 2018; 9
Kudamnya, Sylvanus, Essien, Vulegbo, Omang (CR48) 2019; 11
Saaty (CR83) 1990; 48
Menard (CR53) 2000; 54
Freeze, Cherry (CR29) 1979
Pan, Ng, Fallah, Richter (CR69) 2019; 26
Lloyd, Heathcote (CR52) 1985
Horton, Hawkins (CR34) 1965; 100
Ghavidel, Montazeri (CR31) 2014; 28
CR2
Saaty, Vargas (CR81) 2001
CR4
CR6
CR7
CR9
Papaioannou, Vasiliades, Loukas (CR72) 2014
CR89
CR84
CR80
Egbueri, Agbasi (CR24) 2022; 29
El Bilali, Taleb (CR27) 2020
Ragunath (CR75) 1987
Panneerselvam, Muniraj, Pande, Ravichandran (CR70) 2021
Edet, Okereke (CR22) 2014; 92
Tao, Al-Khafaji, Qi, Kermani, Kisi, Tiyasha, Chau, Nourani, Melesse, Elhakeem, Farooque, Nejadhashemi, Khedher, Alawi, Deo, Shahid, Singh, Yaseen (CR90) 2021; 15
Hameed, Sharqi, Yaseen, Afan, Hussain, Elshafe (CR33) 2017; 28
CR12
Sun, Rajabtabar, Samadi, Rezaie-Balf, Ghaemi, Band, Mosavi (CR88) 2021; 15
Juahir, Zain, Toriman (CR39) 2004; 16
CR97
Todd, Mays (CR91) 2005
Rahmati, Zeinivand, Besharat (CR77) 2015
Nagaraju, Sunil Kumar, Thejaswi (CR62) 2014; 4
CR93
CR92
Adamu, Nganje, Edet (CR1) 2014; 71
Aju, Achu, Raicy, Raghunath (CR5) 2021; 4
Kadam, Wagh, Muley, Umrikar, Sankhua (CR40) 2019
Rahman, Ekwere, Azmatullah, Ukpong (CR76) 1988; 7
Kumar, Rammohan, Sahayam, Jeevanandam (CR49) 2009; 159
CR28
CR23
CR21
CR20
Liou, Lo, Wang (CR50) 2004; 96
Corominas, van Westen, Frattini, Cascini, Malet, Fotopoulou, Catani, Van Den Eeckhaut, Mavrouli, Agliardi, Pitilakis, Winter, Pastor, Ferlisi, Tofani, Hervas, Smith (CR19) 2014; 73
Ekwueme (CR26) 1987; 34
H Juahir (25291_CR39) 2004; 16
25291_CR9
J Corominas (25291_CR19) 2014; 73
25291_CR7
ME Omeka (25291_CR65) 2022; 15
25291_CR38
RA Freeze (25291_CR29) 1979
25291_CR6
SZZ Ghavidel (25291_CR31) 2014; 28
25291_CR4
25291_CR2
W Wang (25291_CR95) 2011; 222
MS Gaya (25291_CR30) 2020; 9
TL Saaty (25291_CR83) 1990; 48
S Bouaroudj (25291_CR15) 2019; 219
B Kalantar (25291_CR41) 2018; 9
25291_CR23
25291_CR28
L Kaur (25291_CR45) 2019; 31
25291_CR20
25291_CR21
HM Ragunath (25291_CR75) 1987
A Ray (25291_CR78) 2020
HM Hussain (25291_CR35) 2012; 4
JH Horton (25291_CR34) 1965; 100
25291_CR51
MS Moran (25291_CR58) 1994; 49
25291_CR54
25291_CR55
A Nagaraju (25291_CR62) 2014; 4
R Mohammadpour (25291_CR56) 2016; 75
L Prati (25291_CR74) 1971; 5
ME Omeka (25291_CR66) 2022; 194
G Singh (25291_CR86) 2019; 1
K Shunmugapriya (25291_CR85) 2021; 172
SK Kumar (25291_CR49) 2009; 159
R Mohammed (25291_CR59) 2017; 31
DK Todd (25291_CR91) 2005
25291_CR42
25291_CR43
A Edet (25291_CR22) 2014; 92
T Song (25291_CR87) 2009; 90
T Cay (25291_CR17) 2013; 30
O Rahmati (25291_CR77) 2015
A Bozdağ (25291_CR16) 2015; 73
25291_CR80
CI Adamu (25291_CR1) 2014; 71
C Nhantumbo (25291_CR63) 2018; 193
TL Saaty (25291_CR82) 1994
L Kaur (25291_CR44) 2021; 193
S Liou (25291_CR50) 2004; 96
G Papaioannou (25291_CR72) 2014
P Aravinthasamy (25291_CR8) 2019; 12
K Benjmel (25291_CR13) 2020; 12
VM Chowdary (25291_CR18) 2013; 27
A Mokhtar (25291_CR57) 2022; 12
VM Wagh (25291_CR94) 2016; 2
M Hameed (25291_CR33) 2017; 28
AK Kadam (25291_CR40) 2019
25291_CR67
CD Aju (25291_CR5) 2021; 4
25291_CR60
25291_CR61
W Kelley (25291_CR46) 1963; 95
C Pan (25291_CR69) 2019; 26
25291_CR64
T Saaty (25291_CR81) 2001
LA Richards (25291_CR79) 1954; 60
S Kouadri (25291_CR47) 2021; 40
S Menard (25291_CR53) 2000; 54
SI Ifediegwu (25291_CR36) 2022; 12
EA Kudamnya (25291_CR48) 2019; 11
CI Adamu (25291_CR3) 2015; 3
JO Ighalo (25291_CR37) 2020
25291_CR12
SF Pesce (25291_CR73) 2000; 34
H Tao (25291_CR90) 2021; 15
R Barzegar (25291_CR11) 2018; 87
B Panneerselvam (25291_CR70) 2021
HU Ozel (25291_CR68) 2020
25291_CR92
25291_CR93
BN Ekwueme (25291_CR26) 1987; 34
AMS Rahman (25291_CR76) 1988; 7
K Sun (25291_CR88) 2021; 15
25291_CR97
X Wang (25291_CR96) 2009; 23
T Aykut (25291_CR10) 2021; 12
JC Egbueri (25291_CR25) 2021
JW Lloyd (25291_CR52) 1985
A El Bilali (25291_CR27) 2020
25291_CR89
K Beven (25291_CR14) 2016; 30
GE Greaves (25291_CR32) 2011
JC Egbueri (25291_CR24) 2022; 29
B Panneerselvam (25291_CR71) 2020; 13
25291_CR84
References_xml – ident: CR97
– year: 1979
  ident: CR29
  publication-title: Groundwater
– volume: 16
  start-page: 42
  year: 2004
  end-page: 55
  ident: CR39
  article-title: Application of artificial neural network models for predicting water quality index
  publication-title: Malaysian J Civ Eng
– volume: 172
  year: 2021
  ident: CR85
  article-title: Integration of multi-criteria decision analysis and GIS for evaluating the site suitability for aquaculture in southern coastal region, India
  publication-title: Marine Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112907
– volume: 28
  start-page: 893
  issue: 1
  year: 2017
  end-page: 905
  ident: CR33
  article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region Malaysia
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-016-2404-7
– ident: CR51
– volume: 193
  start-page: 32
  year: 2018
  end-page: 40
  ident: CR63
  article-title: Applicability of a processes-based model and artificial neural networks to estimate the concentration of major ions in rivers
  publication-title: J Geochem Exploration
  doi: 10.1016/j.gexplo.2018.07.003
– volume: 15
  start-page: 1
  issue: 13
  year: 2022
  end-page: 24
  ident: CR65
  article-title: Investigating the hydrogeochemistry, corrosivity, and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical, and statistical modeling
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10514-7
– volume: 48
  start-page: 9
  issue: 1
  year: 1990
  end-page: 26
  ident: CR83
  article-title: How to make a decision: the analytic hierarchy process
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(90)90057-I
– year: 2021
  ident: CR25
  article-title: Ayejoto DA (2021) Urban groundwater quality assessment using pollution indicators and multivariate statistical tools: a case study in southeast Nigeria
  publication-title: Int J Environ Anal Chem
  doi: 10.1080/03067319.2021.1907359
– volume: 159
  start-page: 341
  year: 2009
  end-page: 351
  ident: CR49
  article-title: Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India
  publication-title: Environ Monit Asses
  doi: 10.1007/s10661-008-0633-7
– ident: CR54
– ident: CR80
– volume: 71
  start-page: 3793
  year: 2014
  end-page: 3811
  ident: CR1
  article-title: Hydrochemical assessment of pond and stream water near abandoned barite mine sites in parts of Oban massif and Mamfe Embayment, Southeastern Nigeria
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2757-5
– ident: CR42
– volume: 87
  start-page: 141
  year: 2018
  end-page: 653
  ident: CR11
  article-title: Assessing the potential origins and human health risks of trace elements in groundwater: a case study in the Khoy plain Iran
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-018-0194-9
– year: 2019
  ident: CR40
  article-title: Prediction of water quality index using artificial neural network and multiple linear regression modeling approaches in Shivganga River basin India
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-019-00581-3
– ident: CR92
– volume: 1
  start-page: 1438
  year: 2019
  ident: CR86
  article-title: Integrated GIS-based modeling approach for irrigation water quality suitability zonation in parts of Satluj River Basin, Bist Doab region, North India
  publication-title: Appl Sci
– start-page: 294
  year: 1985
  ident: CR52
  publication-title: Natural inorganic hydrochemistry in relation to groundwater
– volume: 194
  start-page: 1
  issue: 3
  year: 2022
  end-page: 30
  ident: CR66
  article-title: An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria
  publication-title: Environ Monit Asses
  doi: 10.1007/s10661-022-09856-2
– year: 2011
  ident: CR32
  publication-title: On water augmentation strategies for small island developing states: a case study of Bequia
– ident: CR60
– volume: 34
  start-page: 269
  issue: 3–4
  year: 1987
  end-page: 289
  ident: CR26
  article-title: Structural orientations and Precambrian deformational episodes of Uwet area Oban massif, SE Nigeria
  publication-title: Precam Res
  doi: 10.1016/0301-9268(87)90004-0
– year: 2020
  ident: CR27
  article-title: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment
  publication-title: J Saudi Soc Agric Sci
  doi: 10.1016/j.jssas.2020.08.001
– volume: 23
  start-page: 1171
  year: 2009
  end-page: 1182
  ident: CR96
  article-title: A proposal and application of the integrated benefit assessment model for urban water resources exploitation and utilization
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-008-9321-1
– volume: 92
  start-page: 25
  year: 2014
  end-page: 44
  ident: CR22
  article-title: Hydrogeologic framework of the shallow aquifers in the Ikom-Mamfe Embayment, Nigeria using an integrated approach
  publication-title: J African Earth Sci
  doi: 10.1016/j.jafrearsci.2014.01.004
– ident: CR89
– volume: 29
  start-page: 38346
  issue: 25
  year: 2022
  end-page: 38373
  ident: CR24
  article-title: Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: comparing the performances of different algorithms
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18520-8
– volume: 30
  start-page: 541
  year: 2013
  end-page: 548
  ident: CR17
  article-title: Evaluation of reallocation criteria in land consolidation studies using the analytic hierarchy process (AHP)
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2012.04.023
– ident: CR6
– volume: 7
  start-page: 149
  issue: 1
  year: 1988
  end-page: 157
  ident: CR76
  article-title: Petrology and geochemistry of granitic intrusive rocks from the western part of the Oban Massif, southeastern Nigeria
  publication-title: J African Earth Sci (and the Middle East)
  doi: 10.1016/0899-5362(88)90061-9
– volume: 15
  start-page: 251
  issue: 1
  year: 2021
  end-page: 271
  ident: CR88
  article-title: An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction
  publication-title: Engin Appl Comput Fluid Mech
  doi: 10.1080/19942060.2020.1861987
– volume: 4
  start-page: 385
  year: 2014
  end-page: 396
  ident: CR62
  article-title: Assessment of groundwater quality for irrigation: a case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-014-0154-1
– ident: CR38
– year: 2014
  ident: CR72
  article-title: Multi-criteria analysis framework for potential flood prone areas mapping
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-014-0817-6
– year: 2001
  ident: CR81
  publication-title: Methods, concepts and applications of the analytic hierarchy process
  doi: 10.1007/978-1-4615-1665-1
– ident: CR55
– volume: 34
  start-page: 2915
  issue: 11
  year: 2000
  end-page: 2926
  ident: CR73
  article-title: Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquıa river
  publication-title: Water Res
  doi: 10.1016/S0043-1354(00)00036-1
– volume: 9
  start-page: 49
  year: 2018
  end-page: 69
  ident: CR41
  article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN)
  publication-title: Geomat Nat Hazard Risk
  doi: 10.1080/19475705.2017.1407368
– volume: 12
  year: 2021
  ident: CR10
  article-title: Determination of groundwater potential zones using geographical information systems (GIS) and analytic hierarchy process (AHP) between Edirne-Kalkansogut (northwestern Turkey)
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2021.100545
– volume: 12
  start-page: 55
  year: 2019
  end-page: 87
  ident: CR8
  article-title: Fluoride contamination in groundwater of the Shanmuganadhi River Basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics
  publication-title: Geochem
– volume: 49
  start-page: 246
  issue: 3
  year: 1994
  end-page: 263
  ident: CR58
  article-title: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(94)90020-5
– ident: CR93
– volume: 73
  start-page: 8217
  issue: 12
  year: 2015
  end-page: 8236
  ident: CR16
  article-title: Combining AHP with GIS for assessment of irrigation water quality in Çumra irrigation district (Konya), Central Anatolia, Turkey
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3972-4
– ident: CR4
– ident: CR12
– volume: 222
  start-page: 307
  year: 2011
  end-page: 312
  ident: CR95
  article-title: Assessment of a model of pollution disaster in near-shore coastal waters based on catastrophe theory
  publication-title: Ecol Modell
  doi: 10.1016/J.ECOLMODEL.2010.09.007
– ident: CR61
– volume: 5
  start-page: 741
  year: 1971
  end-page: 751
  ident: CR74
  article-title: Assessment of surface water quality by a single index of pollution
  publication-title: Water Res
  doi: 10.1016/0043-1354(71)90097-2
– ident: CR84
– volume: 31
  start-page: 1245
  issue: 4
  year: 2019
  end-page: 1253
  ident: CR45
  article-title: Hydrogeochemical characterization of groundwater in alluvial plains of River Yamuna in Northern India: an insight of controlling processes
  publication-title: J King Saud University-Science
  doi: 10.1016/j.jksus.2019.01.005
– volume: 12
  start-page: 1
  issue: 4
  year: 2022
  end-page: 14
  ident: CR57
  article-title: Prediction of irrigation water quality indices based on machine learning and regression models
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01590-x
– ident: CR21
– volume: 2
  start-page: 1
  issue: 4
  year: 2016
  end-page: 10
  ident: CR94
  article-title: Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra India
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-016-0250-3
– volume: 60
  start-page: 210
  year: 1954
  end-page: 220
  ident: CR79
  article-title: Diagnosis and improvement of saline and alkali soils
  publication-title: Agriculture Handbook
– volume: 11
  start-page: 758
  issue: 06
  year: 2019
  ident: CR48
  article-title: A 2D GIS Approach for Mapping Aquiferous Zones Using Remotely Sensed Data within Obubra, Southeast-Nigeria
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2019.116046
– year: 2021
  ident: CR70
  publication-title: Prediction and evaluation of groundwater characteristics using the radial basic model in Semi-arid region
  doi: 10.1080/03067319.2021.1873316
– volume: 90
  start-page: 1534
  year: 2009
  end-page: 1543
  ident: CR87
  article-title: Development of a water quality loading index based on water quality modeling
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2008.11.008
– volume: 96
  start-page: 35
  year: 2004
  end-page: 52
  ident: CR50
  article-title: A generalized water quality index for Taiwan
  publication-title: Environ Monitor Assess
  doi: 10.1023/B:EMAS.0000031715.83752.a1
– ident: CR67
– volume: 73
  start-page: 209
  year: 2014
  end-page: 263
  ident: CR19
  article-title: Recommendations for the quantitative analysis of landslide risk
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-013-0538-8
– start-page: 563
  year: 1987
  ident: CR75
  publication-title: Groundwater
– volume: 15
  start-page: 1585
  issue: 1
  year: 2021
  end-page: 1612
  ident: CR90
  article-title: Artificial intelligence models for suspended river sediment prediction: state-of-the art, modeling framework appraisal, and proposed future research directions
  publication-title: Engin Appl Comput Fluid Mech
  doi: 10.1080/19942060.2021.1984992
– volume: 75
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR56
  article-title: Prediction of water quality index in free surface constructed wetlands
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4905-6
– ident: CR9
– volume: 193
  start-page: 1
  issue: 3
  year: 2021
  end-page: 22
  ident: CR44
  article-title: Deciphering pollution vulnerability zones of River Yamuna in relation to existing land use land cover in Panipat, Haryana, India
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08832-y
– volume: 4
  start-page: 24
  year: 2021
  end-page: 37
  ident: CR5
  article-title: Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River Basin, South India
  publication-title: HydroResearch
  doi: 10.1016/j.hydres.2021.04.001
– ident: CR64
– volume: 9
  start-page: 126
  issue: 1
  year: 2020
  end-page: 134
  ident: CR30
  article-title: Estimation of water quality index using artificial intelligence approaches and multi-linear regression
  publication-title: IAES Int J Artif Intell
  doi: 10.11591/ijai.v9.i1.pp126-134
– volume: 40
  start-page: 1315
  issue: 4
  year: 2021
  end-page: 1333
  ident: CR47
  article-title: Hydro-chemical study with geospatial analysis of groundwater Quality Illizi Region, South-East of Algeria
  publication-title: Iran J Chem Chemical Eng (IJCCE)
  doi: 10.30492/ijcce.2020.39800
– ident: CR43
– volume: 27
  start-page: 3555
  year: 2013
  end-page: 3571
  ident: CR18
  article-title: Multi-criteria decision-making approach for watershed prioritization using analytic hierarchy process technique and GIS
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-013-0364-6
– volume: 100
  start-page: 377
  issue: 6
  year: 1965
  end-page: 383
  ident: CR34
  article-title: Flow path of rain from the soil surface to the water table
  publication-title: Soil Sci
  doi: 10.1097/00010694-196512000-00001
– ident: CR2
– volume: 3
  start-page: 10
  year: 2015
  end-page: 21
  ident: CR3
  article-title: Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria
  publication-title: Environ Nanotech, Monit, Managt
– year: 2020
  ident: CR68
  article-title: Application of artificial neural networks to predict the heavy metal contamination in the Bartin River
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10156-w
– year: 2015
  ident: CR77
  article-title: Flood hazard zoning in Yasooj region, Iran, using GIS and multicriteria decision analysis
  publication-title: Geomatics, Natural Hazards Risk
  doi: 10.1080/19475705.2015.1045043
– start-page: 636
  year: 2005
  ident: CR91
  publication-title: Groundwater hydrology
– volume: 30
  start-page: 3578
  issue: 20
  year: 2016
  end-page: 3582
  ident: CR14
  article-title: Advice to a young hydrologist
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10879
– volume: 4
  start-page: 44
  year: 2012
  end-page: 50
  ident: CR35
  article-title: Development of an index of aquifer water quality within the GIS environment
  publication-title: Iran J Earth Sci
– volume: 13
  start-page: 1
  issue: 17
  year: 2020
  end-page: 22
  ident: CR71
  article-title: A GIS-based evaluation of hydrochemical characterization of groundwater in hard rock region, South Tamil Nadu, India
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-05813-w
– ident: CR23
– volume: 31
  start-page: 3557
  year: 2017
  end-page: 3573
  ident: CR59
  article-title: Adaptation strategy to mitigate the impact of climate change on water resources in arid and semi-arid regions: a case study
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1685-7
– volume: 54
  start-page: 17
  issue: 1
  year: 2000
  end-page: 24
  ident: CR53
  article-title: Coefficients of determination for multiple logistic regression analysis
  publication-title: Amer Statist
  doi: 10.1080/00031305.2000.10474502
– volume: 26
  start-page: 1821
  issue: 2
  year: 2019
  end-page: 1833
  ident: CR69
  article-title: Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3751-y
– volume: 12
  start-page: 471
  year: 2020
  ident: CR13
  article-title: Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis (case of the Ighrem region, Western Anti-Atlas, Morocco)
  publication-title: Wat
  doi: 10.3390/w12020471
– volume: 28
  start-page: 2101
  issue: 8
  year: 2014
  end-page: 2118
  ident: CR31
  article-title: Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin
  publication-title: Stochastic Environ Res Risk Ass
  doi: 10.1007/s00477-014-0899-y
– volume: 95
  start-page: 385
  year: 1963
  end-page: 391
  ident: CR46
  article-title: Use of saline irrigation water
  publication-title: Soil Sci
  doi: 10.1097/00010694-196306000-00003
– year: 2020
  ident: CR78
  article-title: Stability prediction of Himalayan residual soil slope using artificial neural network
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04141-2
– year: 2020
  ident: CR37
  article-title: Artificial intelligence for surface water quality monitoring and assessment A systematic literature analysis
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-020-01041-z
– ident: CR7
– volume: 12
  start-page: 10
  year: 2022
  ident: CR36
  article-title: Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafa district, Nasarawa State, Nigeria
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01556-5
– ident: CR28
– year: 1994
  ident: CR82
  publication-title: Decision making with the Analytic Hierarchy Process
– ident: CR20
– volume: 219
  start-page: 76
  year: 2019
  end-page: 88
  ident: CR15
  article-title: Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.193
– volume: 27
  start-page: 3555
  year: 2013
  ident: 25291_CR18
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-013-0364-6
– ident: 25291_CR61
  doi: 10.20944/preprints202003.0088.v1
– volume: 15
  start-page: 1
  issue: 13
  year: 2022
  ident: 25291_CR65
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10514-7
– volume: 73
  start-page: 209
  year: 2014
  ident: 25291_CR19
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-013-0538-8
– ident: 25291_CR80
– volume: 13
  start-page: 1
  issue: 17
  year: 2020
  ident: 25291_CR71
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-05813-w
– volume: 4
  start-page: 385
  year: 2014
  ident: 25291_CR62
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-014-0154-1
– volume: 4
  start-page: 44
  year: 2012
  ident: 25291_CR35
  publication-title: Iran J Earth Sci
– ident: 25291_CR92
  doi: 10.2136/sssaj1961.03615995002500010016x
– volume: 12
  year: 2021
  ident: 25291_CR10
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2021.100545
– year: 2021
  ident: 25291_CR25
  publication-title: Int J Environ Anal Chem
  doi: 10.1080/03067319.2021.1907359
– volume: 28
  start-page: 2101
  issue: 8
  year: 2014
  ident: 25291_CR31
  publication-title: Stochastic Environ Res Risk Ass
  doi: 10.1007/s00477-014-0899-y
– volume: 49
  start-page: 246
  issue: 3
  year: 1994
  ident: 25291_CR58
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(94)90020-5
– volume-title: Methods, concepts and applications of the analytic hierarchy process
  year: 2001
  ident: 25291_CR81
  doi: 10.1007/978-1-4615-1665-1
– volume-title: Decision making with the Analytic Hierarchy Process
  year: 1994
  ident: 25291_CR82
– ident: 25291_CR60
  doi: 10.5067/ASTER/ASTGTM.003
– volume: 30
  start-page: 541
  year: 2013
  ident: 25291_CR17
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2012.04.023
– volume: 12
  start-page: 1
  issue: 4
  year: 2022
  ident: 25291_CR57
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01590-x
– volume: 4
  start-page: 24
  year: 2021
  ident: 25291_CR5
  publication-title: HydroResearch
  doi: 10.1016/j.hydres.2021.04.001
– ident: 25291_CR51
– volume: 12
  start-page: 55
  year: 2019
  ident: 25291_CR8
  publication-title: Geochem
– volume: 222
  start-page: 307
  year: 2011
  ident: 25291_CR95
  publication-title: Ecol Modell
  doi: 10.1016/J.ECOLMODEL.2010.09.007
– ident: 25291_CR97
– ident: 25291_CR67
  doi: 10.1007/s10653-022-01332-7
– year: 2014
  ident: 25291_CR72
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-014-0817-6
– volume: 16
  start-page: 42
  year: 2004
  ident: 25291_CR39
  publication-title: Malaysian J Civ Eng
– volume: 60
  start-page: 210
  year: 1954
  ident: 25291_CR79
  publication-title: Agriculture Handbook
– year: 2019
  ident: 25291_CR40
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-019-00581-3
– volume: 34
  start-page: 269
  issue: 3–4
  year: 1987
  ident: 25291_CR26
  publication-title: Precam Res
  doi: 10.1016/0301-9268(87)90004-0
– volume: 31
  start-page: 3557
  year: 2017
  ident: 25291_CR59
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1685-7
– volume: 54
  start-page: 17
  issue: 1
  year: 2000
  ident: 25291_CR53
  publication-title: Amer Statist
  doi: 10.1080/00031305.2000.10474502
– volume-title: Groundwater
  year: 1979
  ident: 25291_CR29
– volume: 5
  start-page: 741
  year: 1971
  ident: 25291_CR74
  publication-title: Water Res
  doi: 10.1016/0043-1354(71)90097-2
– year: 2015
  ident: 25291_CR77
  publication-title: Geomatics, Natural Hazards Risk
  doi: 10.1080/19475705.2015.1045043
– volume: 100
  start-page: 377
  issue: 6
  year: 1965
  ident: 25291_CR34
  publication-title: Soil Sci
  doi: 10.1097/00010694-196512000-00001
– volume: 92
  start-page: 25
  year: 2014
  ident: 25291_CR22
  publication-title: J African Earth Sci
  doi: 10.1016/j.jafrearsci.2014.01.004
– volume: 11
  start-page: 758
  issue: 06
  year: 2019
  ident: 25291_CR48
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2019.116046
– volume: 219
  start-page: 76
  year: 2019
  ident: 25291_CR15
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.193
– year: 2020
  ident: 25291_CR78
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04141-2
– volume: 87
  start-page: 141
  year: 2018
  ident: 25291_CR11
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-018-0194-9
– volume: 12
  start-page: 10
  year: 2022
  ident: 25291_CR36
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01556-5
– volume-title: Prediction and evaluation of groundwater characteristics using the radial basic model in Semi-arid region
  year: 2021
  ident: 25291_CR70
  doi: 10.1080/03067319.2021.1873316
– ident: 25291_CR89
– year: 2020
  ident: 25291_CR68
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10156-w
– year: 2020
  ident: 25291_CR37
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-020-01041-z
– volume: 26
  start-page: 1821
  issue: 2
  year: 2019
  ident: 25291_CR69
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3751-y
– ident: 25291_CR2
  doi: 10.1016/j.jhydrol.2020.124974
– volume: 28
  start-page: 893
  issue: 1
  year: 2017
  ident: 25291_CR33
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-016-2404-7
– volume: 7
  start-page: 149
  issue: 1
  year: 1988
  ident: 25291_CR76
  publication-title: J African Earth Sci (and the Middle East)
  doi: 10.1016/0899-5362(88)90061-9
– start-page: 563
  volume-title: Groundwater
  year: 1987
  ident: 25291_CR75
– volume: 159
  start-page: 341
  year: 2009
  ident: 25291_CR49
  publication-title: Environ Monit Asses
  doi: 10.1007/s10661-008-0633-7
– start-page: 294
  volume-title: Natural inorganic hydrochemistry in relation to groundwater
  year: 1985
  ident: 25291_CR52
– ident: 25291_CR9
– volume: 9
  start-page: 126
  issue: 1
  year: 2020
  ident: 25291_CR30
  publication-title: IAES Int J Artif Intell
  doi: 10.11591/ijai.v9.i1.pp126-134
– start-page: 636
  volume-title: Groundwater hydrology
  year: 2005
  ident: 25291_CR91
– volume: 23
  start-page: 1171
  year: 2009
  ident: 25291_CR96
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-008-9321-1
– volume: 29
  start-page: 38346
  issue: 25
  year: 2022
  ident: 25291_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18520-8
– ident: 25291_CR84
– ident: 25291_CR93
  doi: 10.1016/j.jics.2022.100479
– volume: 40
  start-page: 1315
  issue: 4
  year: 2021
  ident: 25291_CR47
  publication-title: Iran J Chem Chemical Eng (IJCCE)
  doi: 10.30492/ijcce.2020.39800
– ident: 25291_CR28
  doi: 10.1007/s40808-022-01502-7
– ident: 25291_CR43
  doi: 10.1007/978-3-031-04707-7_8
– volume: 15
  start-page: 1585
  issue: 1
  year: 2021
  ident: 25291_CR90
  publication-title: Engin Appl Comput Fluid Mech
  doi: 10.1080/19942060.2021.1984992
– volume: 172
  year: 2021
  ident: 25291_CR85
  publication-title: Marine Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112907
– volume: 1
  start-page: 1438
  year: 2019
  ident: 25291_CR86
  publication-title: Appl Sci
– volume: 34
  start-page: 2915
  issue: 11
  year: 2000
  ident: 25291_CR73
  publication-title: Water Res
  doi: 10.1016/S0043-1354(00)00036-1
– ident: 25291_CR42
  doi: 10.1007/978-3-031-04707-7_9
– ident: 25291_CR6
– volume: 15
  start-page: 251
  issue: 1
  year: 2021
  ident: 25291_CR88
  publication-title: Engin Appl Comput Fluid Mech
  doi: 10.1080/19942060.2020.1861987
– volume: 96
  start-page: 35
  year: 2004
  ident: 25291_CR50
  publication-title: Environ Monitor Assess
  doi: 10.1023/B:EMAS.0000031715.83752.a1
– volume: 75
  start-page: 1
  year: 2016
  ident: 25291_CR56
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4905-6
– ident: 25291_CR20
– volume: 30
  start-page: 3578
  issue: 20
  year: 2016
  ident: 25291_CR14
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10879
– ident: 25291_CR55
– ident: 25291_CR7
– volume: 48
  start-page: 9
  issue: 1
  year: 1990
  ident: 25291_CR83
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(90)90057-I
– volume: 90
  start-page: 1534
  year: 2009
  ident: 25291_CR87
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2008.11.008
– volume: 95
  start-page: 385
  year: 1963
  ident: 25291_CR46
  publication-title: Soil Sci
  doi: 10.1097/00010694-196306000-00003
– volume: 12
  start-page: 471
  year: 2020
  ident: 25291_CR13
  publication-title: Wat
  doi: 10.3390/w12020471
– volume: 71
  start-page: 3793
  year: 2014
  ident: 25291_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2757-5
– ident: 25291_CR4
– ident: 25291_CR21
– volume: 2
  start-page: 1
  issue: 4
  year: 2016
  ident: 25291_CR94
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-016-0250-3
– ident: 25291_CR64
  doi: 10.1007/s42108-022-00183-3
– ident: 25291_CR54
– volume: 3
  start-page: 10
  year: 2015
  ident: 25291_CR3
  publication-title: Environ Nanotech, Monit, Managt
– ident: 25291_CR38
  doi: 10.1007/s42108-021-00128-2
– ident: 25291_CR12
– ident: 25291_CR23
  doi: 10.1016/j.geogeo.2022.100104
– volume: 73
  start-page: 8217
  issue: 12
  year: 2015
  ident: 25291_CR16
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3972-4
– volume: 193
  start-page: 32
  year: 2018
  ident: 25291_CR63
  publication-title: J Geochem Exploration
  doi: 10.1016/j.gexplo.2018.07.003
– volume: 9
  start-page: 49
  year: 2018
  ident: 25291_CR41
  publication-title: Geomat Nat Hazard Risk
  doi: 10.1080/19475705.2017.1407368
– volume: 193
  start-page: 1
  issue: 3
  year: 2021
  ident: 25291_CR44
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08832-y
– year: 2020
  ident: 25291_CR27
  publication-title: J Saudi Soc Agric Sci
  doi: 10.1016/j.jssas.2020.08.001
– volume: 194
  start-page: 1
  issue: 3
  year: 2022
  ident: 25291_CR66
  publication-title: Environ Monit Asses
  doi: 10.1007/s10661-022-09856-2
– volume: 31
  start-page: 1245
  issue: 4
  year: 2019
  ident: 25291_CR45
  publication-title: J King Saud University-Science
  doi: 10.1016/j.jksus.2019.01.005
– volume-title: On water augmentation strategies for small island developing states: a case study of Bequia
  year: 2011
  ident: 25291_CR32
SSID ssj0020927
Score 2.519246
Snippet Agricultural productivity can be impaired by poor irrigation water quality. Therefore, adequate vulnerability assessment and identification of the most...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54204
SubjectTerms Agricultural equipment
Agricultural production
agricultural productivity
Algorithms
Analytic hierarchy process
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Criteria
Crop yield
Decision making
Dissolved solids
Earth and Environmental Science
Ecotoxicology
Electrical conductivity
Electrical resistivity
Environment
Environmental Chemistry
Environmental Health
Geographic information systems
Hierarchies
Information management
Information processing
Irrigation
Irrigation efficiency
Irrigation water
Learning algorithms
Machine learning
Magnesium
Multilayer perceptrons
Neural networks
Nigeria
Parameter identification
Parameter sensitivity
Permeability
prediction
Predictions
Regression analysis
Resilient and Sustainable Water Management in Agriculture
Resource management
risk assessment
salinity
Sensitivity analysis
Sodium
sodium adsorption ratio
Thematic mapping
Total dissolved solids
Toxic hazards
Toxicity
Waste Water Technology
Water hardness
Water Management
Water monitoring
Water Pollution Control
Water quality
Water quality management
Water resources management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggKBRCCxokbtRSYufl44K2LAgqJLpSb5EdO8tK3aRKsqr68_rPOpPXCrVFIlePE0fjib_JzHzD2McoSJ3SLuXExcZD7XKuk9DwSDm8lC8TR47iz9N4sQy_n0fnQ1FYM2a7jyHJ7ku9K3YLZEQJs5KLSKiAy8fsSUR0XriLl2I2uVm-EslQHnP_vL-PoDu48k5MtDtqTp6zZwNGhFmv1BfskSv32cF8V5KGg4NNNi_ZzZxYIHR-DVUBX7_95nQwWZgtfoEuLVAKKLc1fdRgPfFvtrDpsigdDG0jVqAvVlW9bv9sGkAgC-u67tg3qhKuEI_W0JdfXsNlTbGdbmBd4iNAr-qJwINv6J6W2HhRBugvLwohyIQf1I4NPrty6-Cs6w10DKe4FDSAV2x5Mj_7suBDYwaeh37acpsXCbo5prC-sojHtIusMS52pkiFLEwcKltYiVhH5EanvlVKFCbUsZRWxKmTB2yvrEr3hoElp1gXUWxSdEytMmEoY50qZ9IgSZLcY8GoqywfWMupecZFtuNbJv1mqN-s028mPfZpmnPZc3b8U_po3ALZYL9NhqA3kAkFXT32YRpGy6Nwii5dtW0ykaCvScRQ_sMyEg8UfA3EBx573W-vaUkypoZvMvbY8bjfdgt4eL1v_0_8kD0ViMP6tLgjttfWW_cOcVRr3ndmcwuGhRkV
  priority: 102
  providerName: Springer Nature
Title Efficacy of GIS-based AHP and data-driven intelligent machine learning algorithms for irrigation water quality prediction in an agricultural-mine district within the Lower Benue Trough, Nigeria
URI https://link.springer.com/article/10.1007/s11356-023-25291-3
https://www.ncbi.nlm.nih.gov/pubmed/36723836
https://www.proquest.com/docview/3101373501
https://www.proquest.com/docview/2771637380
https://www.proquest.com/docview/3153777212
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxoxELYSuPRS9ZWWNkVTqbfGKrv2PnyoKhKR0BeK2iDR08peeylSWOgCqvLz-s86sy9URQmHPWADw86M_c165hvG3gZe7JR2MScuNi61S7mOpOGBcvhSAxE5ChS_TcLxVH6eBbMDNmlqYSitslkTy4XarlJ6Rv4eYYgnIjoG-7j-zalrFJ2uNi00dN1awX4oKcYOWdcnZqwO656OJpff2xBsoKomrkpK7gkp6zKaqpjOEwEl5AruB77yuPh_q7qFP2-dnZZb0vkj9rDGkjCslP-YHbj8CTsa7UvXcLD23c1T9ndEbBE6vYFVBheffnDawCwMx5egcwuUKsptQYsfLFqezi0sy2xLB3V7iTno6znel-2v5QYQ8MKiKEqWjlUOfxC3FlCVad7AuqAzoHJgkeNPgJ4XLdEHX9J3WmLtxTlAT4NxEoJR-Ept2-DU5TsHV2UPoROYoCjoKM_Y9Hx0dTbmdQMHnspBvOU2zSIMh0xmB8oibtMusMa40Jks9kVmQqlsZgViIj81Oh5YpfzMSB0KYf0wduKIdfJV7l4wsBQ86ywITYwBrFVGShHqWDkTe1EUpT3mNbpK0prdnJpsXCd7XmbSb4L6TUr9JqLH3rWfWVfcHvfOPm5MIKn9fJPsrbLH3rTD6KF07KJzt9ptEj_CmJQIpAZ3zxG48eDfQKPtseeVebUiiZAaw4mwx04ae9sLcLe8L--X9xV74CM-q9LljllnW-zca8RXW9Nnh9Eswmt85vVZd3jx88uoXzsSvjv1h_8AAnYomw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAXxKsQKDBIcKIrbO_6sYcKtZCS0DSqoJV6c9fedYjUOMFJVOXPIfHPmPErQlV7a667cSaa3ZlvPDPfMPbedyOrtI04cbFxqW3KdSgT7iuLH-WI0FKgeDwMemfy-7l_vsH-NL0wVFbZ2MTSUJtpSu_IPyEMcUVIabDPs9-cpkZRdrUZoaHr0Qpmr6QYqxs7juzqCkO4-V7_K-r7g-cddk-_9Hg9ZYCn0okW3KRZiJg9yYyjDIILbX2TJDawSRZ5IksCqUxmBDpuL0105BilvCyROhDCeEFkBT73HtuSQioM_rYOusOTH23I56hqaKySkrtCyrptp2rec4VPBcCCe76nXC7-d43X8O61XG3pAg8fsYc1doX96rA9Zhs2f8K2u-tWOVysbcX8KfvbJXYKna5gmsG3_k9ODtPAfu8EdG6ASlO5KcjYwrjlBV3ApKzutFCPsxiBvhyhHha_JnNAgA3joihZQaY5XCFOLqBqC13BrKCcU7kwzvEnQI-KlliET-iZhliCcQ_Q22fchOAXBjQmDg5svrRwWs4s2oUhioIX8xk7uxNVbrPNfJrbFwwMBes684MkwoDZqERKEehI2SRywzBMO8xtdBWnNZs6DfW4jNc80KTfGPUbl_qNRYd9bL8zq7hEbt290xyBuLYr83h9CzrsXbuMFoHSPDq30-U89kKMgYmwyrl5j0BHh38DcUuHPa-OVyuSCGgQnQg6bLc5b2sBbpb35e3yvmX3e6fHg3jQHx69Yg88xIZVqd4O21wUS_sasd0ieVNfIGAXd31n_wHOfGOE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiEuiFchUGCQ4ERXtb3rxx4QKjQhoSWqRCv1Zna96xCpcYKTqMpf48Y_Y8aPRKhqb_V1N_Y4MzvzjefF2LvQT5zSLuHUi41L7TKuY2l4qBxeyhOxI0fx-zDqn8lv5-H5FvvT1sJQWmWrEytFbacZfSPfRxjii5jCYPt5kxZxctj7NPvNaYIURVrbcRq1iBy51SW6b_OPg0Pk9fsg6HVPv_R5M2GAZ9JLFtxmeYx43eTWUxaBhXahNcZFzuRJIHITSWVzK9BoB5nRiWeVCnIjdSSEDaLECbzvHXY3FkJROmF8vnH2PFWPi1VScl9I2RTs1GV7vggp9VfwIAyUz8X_RvEK0r0Spa2MX-8he9CgVjioxewR23LFY7bT3RTJ4WKjJeZP2N8u9aXQ2QqmOXwd_OBkKi0c9E9AFxYoKZXbktQsjNcdQRcwqfI6HTSDLEagL0b4ry9-TeaA0BrGZVn1A5kWcIkIuYS6IHQFs5KiTdXCuMBHgB6V65YifEL3tNQfGPcAfXfGTQh74ZgGxMFnVywdnFbTivZgiKTgkXzKzm6FkTtsu5gW7jkDS266zsPIJOgqW2WkFJFOlDOJH8dx1mF-y6s0a_qo0ziPi3TTAZr4myJ_04q_qeiwD-vfzOouIjfu3m1FIG00yjzdyH-HvV0voy6gAI8u3HQ5T4MYvV9qVeVdv0egicPXQMTSYc9q8VqTJCIaQSeiDttr5W1DwPX0vriZ3jfsHp7U9HgwPHrJ7gcICuscvV22vSiX7hWCuoV5XZ0eYD9v-7j-AxtoYR4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficacy+of+GIS-based+AHP+and+data-driven+intelligent+machine+learning+algorithms+for+irrigation+water+quality+prediction+in+an+agricultural-mine+district+within+the+Lower+Benue+Trough%2C+Nigeria&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Omeka%2C+Michael+E.&rft.au=Igwe%2C+Ogbonnaya&rft.au=Onwuka%2C+Obialo+S.&rft.au=Nwodo%2C+Ogechukwu+M.&rft.date=2024-09-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=31&rft.issue=41&rft.spage=54204&rft.epage=54233&rft_id=info:doi/10.1007%2Fs11356-023-25291-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_023_25291_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon