A New Convolutional Kernel Classifier for Hyperspectral Image Classification
Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convoluti...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 11240 - 11256 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2021.3123087 |
Cover
| Abstract | Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convolutional kernel classifier (CKC) for hyperspectral remote sensing images to address these issues. The CKC uses the Nyström approximation method to estimate a low-rank approximation of the basis kernels, thus solves the issues associated with the high dimensionality of the basis kernels. The CKC uses deep architecture to learn the optimal combination of the basis kernels and the classification task to enable end-to-end learning. The proposed CKC's architecture is based on a one-dimensional-convolutional neural network (CNN-1-D), and it uses kernel dropout to prevent overfitting. It is the first instance of deep-kernel algorithms in the field of remote sensing. The proposed method was compared with several well-known hyperspectral image analysis MKL algorithms, including a multi-kernel variant of the deep kernel machine optimization, MKL-average, Simple-MKL, and generalize MKL, and state-of-the-art deep learning models, including Vanilla recurrent neural network (VanillaRNN) and CNN-1-D in classifying four benchmark hyperspectral datasets. The experimental results show that the CKC consistently outperforms all the competitor methods, and its runtime is lower than its MKL algorithm counterparts on four benchmark hyperspectral datasets. Moreover, the Nyström approximation solves the high dimensionality of the basis kernels and boosts classification accuracy. The source codes of CKC are available from: https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification . |
|---|---|
| AbstractList | Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convolutional kernel classifier (CKC) for hyperspectral remote sensing images to address these issues. The CKC uses the Nyström approximation method to estimate a low-rank approximation of the basis kernels, thus solves the issues associated with the high dimensionality of the basis kernels. The CKC uses deep architecture to learn the optimal combination of the basis kernels and the classification task to enable end-to-end learning. The proposed CKC's architecture is based on a one-dimensional-convolutional neural network (CNN-1-D), and it uses kernel dropout to prevent overfitting. It is the first instance of deep-kernel algorithms in the field of remote sensing. The proposed method was compared with several well-known hyperspectral image analysis MKL algorithms, including a multi-kernel variant of the deep kernel machine optimization, MKL-average, Simple-MKL, and generalize MKL, and state-of-the-art deep learning models, including Vanilla recurrent neural network (VanillaRNN) and CNN-1-D in classifying four benchmark hyperspectral datasets. The experimental results show that the CKC consistently outperforms all the competitor methods, and its runtime is lower than its MKL algorithm counterparts on four benchmark hyperspectral datasets. Moreover, the Nyström approximation solves the high dimensionality of the basis kernels and boosts classification accuracy. The source codes of CKC are available from: https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification . |
| Author | Homayouni, Saeid Ansari, Mohsen Safari, Abdolreza Niazmardi, Saeid |
| Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0003-1743-7965 surname: Ansari fullname: Ansari, Mohsen email: moh.ansari@ut.ac.ir organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Saeid orcidid: 0000-0002-0214-5356 surname: Homayouni fullname: Homayouni, Saeid email: saeid.homayouni@ete.inrs.ca organization: Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Canada – sequence: 3 givenname: Abdolreza surname: Safari fullname: Safari, Abdolreza email: asafari@ut.ac.ir organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 4 givenname: Saeid surname: Niazmardi fullname: Niazmardi, Saeid email: s.niazmardi@kgut.ac.ir organization: Department of Surveying Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran |
| BookMark | eNptkcFqGzEQhkVJoU7aJ8hloWe7mpVWKx2NaRu3poUmPYtZaRTWbFZbad3gt-86G3wwPQ2I__tn-HTNrvrYE2O3wFcA3Hz6dv-w_nW_KnkJKwGl4Lp-wxYlVLCESlRXbAFGmCVILt-x65z3nKuyNmLBduviBz0Xm9j_jd1hbGOPXfGdUk9dsekw5za0lIoQU3F3HCjlgdyYpsz2CR_pHHF4Qt-ztwG7TB9e5w37_eXzw-Zuufv5dbtZ75ZOcj0uXQDfNBqpcSJIX5YeglRKcu9NrRR5TRqhCkI0geuA2mHta2wQSSoNQdyw7dzrI-7tkNonTEcbsbUvDzE9Wkxj6zqywctQ1cYpoyupG2ekVkZJr8A1BjyfuuTcdegHPD5j150LgduTXbvPI6ZsT3btq90J-zhjQ4p_DpRHu4-HNMmbcpXRpVKqgill5pRLMedEwbp2fFE1OWy784b5_y43iAv28q7_U7cz1RLRmTCVAaFq8Q9C3ais |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1080_01431161_2024_2343132 crossref_primary_10_1016_j_jag_2022_103011 crossref_primary_10_1080_01431161_2023_2297178 crossref_primary_10_5194_essd_15_681_2023 crossref_primary_10_3390_electronics12030488 crossref_primary_10_3390_rs15245736 crossref_primary_10_1016_j_mex_2025_103219 crossref_primary_10_1016_j_rse_2023_113708 crossref_primary_10_1109_TGRS_2023_3266565 crossref_primary_10_1016_j_jag_2022_102785 crossref_primary_10_1109_TGRS_2023_3290794 crossref_primary_10_3390_rs14040992 |
| Cites_doi | 10.1109/TGRS.2020.3016820 10.1109/MGRS.2021.3064051 10.1109/IGARSS.2016.7729001 10.1109/TMM.2019.2932564 10.1109/JSTARS.2017.2682189 10.1109/TNNLS.2017.2672978 10.3390/sym11030325 10.1109/MGRS.2019.2911100 10.1145/3065386 10.1109/JSTARS.2014.2305441 10.1109/TNNLS.2018.2804895 10.1109/TNNLS.2021.3082289 10.1109/JSTSP.2018.2877497 10.1016/j.inffus.2015.03.001 10.1016/j.neucom.2014.09.013 10.1007/s10044-017-0600-4 10.1016/j.eswa.2017.11.058Get 10.1016/j.patcog.2018.12.005 10.1109/TNNLS.2019.2922123 10.1145/2339530.2339648 10.1145/1015330.1015424 10.1016/j.patcog.2020.107194 10.1109/TGRS.2020.3015157 10.1109/TIP.2018.2878958 10.1016/j.neucom.2015.09.116 10.1109/TGRS.2019.2907932 10.1109/TGRS.2011.2153861 10.1016/j.patcog.2016.10.019 10.1109/TCYB.2020.2987575 10.1016/j.neucom.2020.06.039 10.1016/j.isprsjprs.2019.09.006 10.1016/j.inffus.2020.10.002 10.1016/j.isprsjprs.2021.05.011 10.1007/978-3-030-01237-3_29 10.1016/j.neucom.2020.02.096 10.1109/TNNLS.2014.2359798 10.1109/TGRS.2017.2762597 10.1109/MGRS.2021.3075491 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY DOA |
| DOI | 10.1109/JSTARS.2021.3123087 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 11256 |
| ExternalDocumentID | oai_doaj_org_article_fd4f579c698548bc9486964d61cb91d0 10.1109/jstars.2021.3123087 10_1109_JSTARS_2021_3123087 9591367 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-cf1dbb8aebc3f4d22d1f46640dd9766ed8e8a15f33bf08fa8ca7d7abaae4681f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1939-1404 2151-1535 |
| IngestDate | Fri Oct 03 12:53:21 EDT 2025 Wed Oct 01 16:42:58 EDT 2025 Fri Jul 25 06:10:49 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed Oct 01 03:51:25 EDT 2025 Wed Aug 27 02:26:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-cf1dbb8aebc3f4d22d1f46640dd9766ed8e8a15f33bf08fa8ca7d7abaae4681f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0214-5356 0000-0003-1743-7965 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4609443/4609444/09591367.pdf |
| PQID | 2598266651 |
| PQPubID | 75722 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1109_jstars_2021_3123087 crossref_primary_10_1109_JSTARS_2021_3123087 ieee_primary_9591367 crossref_citationtrail_10_1109_JSTARS_2021_3123087 proquest_journals_2598266651 doaj_primary_oai_doaj_org_article_fd4f579c698548bc9486964d61cb91d0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 cortes (ref47) 2009 ref15 ref14 ref11 ref10 ref16 ref19 doya (ref48) 1993 ref18 srivastava (ref17) 2014; 15 drineas (ref38) 2005; 6 ref42 ref41 ref44 ref43 sonnenburg (ref23) 2006; 7 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 sun (ref46) 2010 ref30 belanche muñoz (ref26) 2017 ref33 ref32 ref2 ref1 rakotomamonjy (ref45) 2008; 9 cho (ref28) 2009; 22 rahimi (ref39) 2008; 3 ref24 ref25 wilson (ref29) 2016 ref20 ref22 ref21 ref27 |
| References_xml | – ident: ref10 doi: 10.1109/TGRS.2020.3016820 – ident: ref13 doi: 10.1109/MGRS.2021.3064051 – ident: ref5 doi: 10.1109/IGARSS.2016.7729001 – ident: ref33 doi: 10.1109/TMM.2019.2932564 – volume: 6 start-page: 2153 year: 2005 ident: ref38 article-title: On the Nyström method for approximating a gram matrix for improved kernel-based learning publication-title: J Mach Learn Res – ident: ref6 doi: 10.1109/JSTARS.2017.2682189 – ident: ref16 doi: 10.1109/TNNLS.2017.2672978 – ident: ref34 doi: 10.3390/sym11030325 – ident: ref8 doi: 10.1109/MGRS.2019.2911100 – ident: ref19 doi: 10.1145/3065386 – ident: ref44 doi: 10.1109/JSTARS.2014.2305441 – ident: ref14 doi: 10.1109/TNNLS.2018.2804895 – ident: ref18 doi: 10.1109/TNNLS.2021.3082289 – ident: ref3 doi: 10.1109/JSTSP.2018.2877497 – ident: ref41 doi: 10.1016/j.inffus.2015.03.001 – ident: ref7 doi: 10.1016/j.neucom.2014.09.013 – ident: ref31 doi: 10.1007/s10044-017-0600-4 – ident: ref30 doi: 10.1016/j.eswa.2017.11.058Get – ident: ref36 doi: 10.1016/j.patcog.2018.12.005 – ident: ref25 doi: 10.1109/TNNLS.2019.2922123 – ident: ref22 doi: 10.1145/2339530.2339648 – start-page: 370 year: 2016 ident: ref29 article-title: Deep kernel learning publication-title: Proc 19th Int Conf Artif Intell Statist – ident: ref24 doi: 10.1145/1015330.1015424 – ident: ref27 doi: 10.1016/j.patcog.2020.107194 – volume: 3 start-page: 1177 year: 2008 ident: ref39 article-title: Random features for large-scale kernel machines publication-title: Adv Neural Inf Process Syst – ident: ref11 doi: 10.1109/TGRS.2020.3015157 – ident: ref4 doi: 10.1109/TIP.2018.2878958 – year: 1993 ident: ref48 article-title: Universality of fully connected recurrent neural networks – start-page: 2361 year: 2010 ident: ref46 article-title: Multiple kernel learning and the SMO algorithm publication-title: Proc Adv Neural Inf Process Syst – ident: ref42 doi: 10.1016/j.neucom.2015.09.116 – ident: ref1 doi: 10.1109/TGRS.2019.2907932 – ident: ref49 doi: 10.1109/TGRS.2011.2153861 – ident: ref43 doi: 10.1016/j.patcog.2016.10.019 – start-page: 1 year: 2017 ident: ref26 article-title: Bridging deep and kernel methods publication-title: Proc 25th Eur Symp Artif Neural Netw – ident: ref37 doi: 10.1109/TCYB.2020.2987575 – ident: ref35 doi: 10.1016/j.neucom.2020.06.039 – volume: 22 start-page: 342 year: 2009 ident: ref28 article-title: Kernel methods for deep learning publication-title: Adv Neural Inf Process Syst – ident: ref15 doi: 10.1016/j.isprsjprs.2019.09.006 – ident: ref21 doi: 10.1016/j.inffus.2020.10.002 – ident: ref12 doi: 10.1016/j.isprsjprs.2021.05.011 – ident: ref2 doi: 10.1007/978-3-030-01237-3_29 – volume: 9 start-page: 2491 year: 2008 ident: ref45 article-title: SimpleMKL publication-title: J Mach Learn Res – start-page: 396 year: 2009 ident: ref47 article-title: Learning non-linear combinations of kernels publication-title: Proc Adv Neural Inf Process Syst – volume: 15 start-page: 1929 year: 2014 ident: ref17 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref32 doi: 10.1016/j.neucom.2020.02.096 – ident: ref40 doi: 10.1109/TNNLS.2014.2359798 – volume: 7 start-page: 1531 year: 2006 ident: ref23 article-title: Large scale multiple kernel learning publication-title: J Mach Learn Res – ident: ref20 doi: 10.1109/TGRS.2017.2762597 – ident: ref9 doi: 10.1109/MGRS.2021.3075491 |
| SSID | ssj0062793 |
| Score | 2.3649182 |
| Snippet | Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11240 |
| SubjectTerms | Algorithms Approximation Approximation method Artificial neural networks Benchmarks Classification Classification algorithms Classifiers Computer applications Computer architecture Convolutional neural network (CNN) Datasets deep kernel Deep learning Feature extraction hyperspectral classification Hyperspectral imaging Image analysis Image classification Image processing Kernel Kernels Machine learning Mathematical analysis multiple kernel learning (MKL) Neural networks Nonhomogeneous media Optimization Recurrent neural networks Remote sensing Task analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iiF7EJ9YXPXi0mLRpmxxXUdfnwQd4C3mCsnZlXRX_vZMmW1wEvXgt0zDMTDPfF5pvENorFOaKQAZqVpiMMldnSkud5cxBM9RFodq7MFfXVf-enj-UD99Gffl_woI8cAjcgTPUlTXXFWcArpXmlFW8oqYiWnFiWraOGZ-QqbAHVzmUXdQYIpgfQJH3bm6BDeYESGruVfCm-lAr1x_nq0xBzfm35kV-fsjB4FvXOVlCixEupr3g5jKasc0Kmjttx_F-rqLLXgq7VHo0bN5jCYHxhR01dpC24y4fHbS9FIBp2gfCGe5VjsDm7Bn2kc4kHNutofuT47ujfhbnI2SaYjbOtCNGKSat0oWjJs8NcV4tHhsDIKOyhlkmSekg4A4zJ5mWtamlktLSihFXrKPZZtjYDZTyutTMYompBH5oC24K42BFZnltGLUJyifREjqKh_sZFgPRkgjMRQix8CEWMcQJ2u9eegnaGb-bH_o0dKZe-Lp9AOUgYjmIv8ohQas-id0ivORelC5B25OkiviRvorcixcCfStJgrIu0T9cfQKYPnqdcnXzP1zdQgt-zXCes41mx6M3uwMIZ6x222L-Ag_y9Ts priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lRBceBVEoKAcODbbOHH8OC4VZXmUA1CpN8tPqbBkq-0uqPx6xo43YgEhblE0cex8Y8-M4_kG4HlramkIIsBF6yoqAq-M1bZqREBjaNvWpFyY0_dsdkbfnHfnO3A45sJ479PhMz-Jl-lfvlvYddwqO5KdjAxju7DLBRtytTarLmt4IthFf0RWkTImMwyRWh6hik8_fMRYsCEYojaRA2_LCiWy_lxdZcvRvLnuL_X1dz2f_2JzTu7A6aa3w1GTL5P1ykzsj9-IHP93OHfhdnY-y-mgLfdgx_f34carVNz3eh_eTUtc88rjRf8tKyQKv_XL3s_LVDzzIqARLdHNLWcYvg5ZmkuUef0VV6VRZNgEfABnJy8_Hc-qXG2hsrQWq8oG4owR2hvbBuqaxpEQuedr59BlYd4JLzTpAsIXahG0sJo7ro3WnjJBQvsQ9vpF7x9BKXlnha91TTVGm76VrnUBWxRecieoL6DZfH1lMxV5rIgxVykkqaUaIFMRMpUhK-BwfOhyYOL4t_iLCOsoGmm00w2EQOVZqYKjoePSMikwcjNWUsEko44RayRxdQH7EbaxkYxYAQcbJVF5yl-pJlIhYjDYkQKqUXH-6OpndPqXV1tdffz3tzyBW1Fq2O85gL3Vcu2foge0Ms-S6v8EqYcBFQ priority: 102 providerName: IEEE |
| Title | A New Convolutional Kernel Classifier for Hyperspectral Image Classification |
| URI | https://ieeexplore.ieee.org/document/9591367 https://www.proquest.com/docview/2598266651 https://ieeexplore.ieee.org/ielx7/4609443/4609444/09591367.pdf https://doaj.org/article/fd4f579c698548bc9486964d61cb91d0 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE-IJBgMRNKo88IjbOHYS-7FMbOU2IaDSeLJ8lQYhq0rLNn49x44bUZCQ4ClRdGLZ-o59Lra_g9BTqguhCSDQcGox477B2iiDS-7BGBpKdbwL8_a0ni_Yq7PqLCXc4l0Y51w8fOYm4TXu5Z-79qqZshoiEUbTk01DAivwjU2W1t9Ee3UFvvgI7S1O380-9VvJAgfumFBdDswahqldJdohUojpZ3C-VoGvuyQQt5aBGG_HNEUG_1RyZcf7vL3plur6UrXtL4bo-C6S2yH050--TDZrPTE_fmN3_P8x7qM7yUfNZ71S3UM3XHcf3TqJNYCvD9CbWQ5LY3500X1PegvCr92qc20ea2yee7C1OXjD-Ryi3P4y5wpkXn6FxWsQ6XOFD9Di-MXHozlORRmwYQVfY-OJ1Zorpw31zJalJT5Q1BfWgmdTO8sdV6TygLIvuFfcqMY2SivlWM2Jpw_RqLvo3COUi6Yy3BWqYAqCUkeFpdZDi9yJxnLmMlRu8ZAmMZaHwhmtjJFLISQsXrP3H2QAUSYQM_Rs-GnZE3b8Xfx5AHoQDWzb8QOAItPkld4yXzXC1IJDgKeNYLwWNbM1MVoQW2ToIAA5NJJQy9DhVm1kWhm-yTIwJkLMWJEM4UGV_uhqr547XX38j_KHaLRebdwTcJrWehyTDeN4v3GcZslPz4MRww |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VItReyqMgAgVy4Nhs48RJ7ONStWzpbg_QSr1ZfkrAkq22u0Xtr2fseKMuIMQtisaOk2_smXE83wC8L1XOFUEEGlaajDLXZEpLnRXMoTHUZalCLszkrB5d0E-X1eUG7Pe5MNbacPjMDvxl-JdvZnrpt8oOeMU9w9gDeFhRSqsuW2u17tZFEyh20SPhmSeNiRxDJOcHqOTDz18wGiwIBqmFZ8Fbs0OBrj_WV1lzNbeW7ZW8_Smn03tW5_gxTFbj7Q6bfB8sF2qg736jcvzfF3oCO9H9TIedvjyFDds-g0cfQ3nf210YD1Nc9dLDWXsTVRKFT-28tdM0lM_86tCMpujopiMMYLs8zTnKnPzAdakX6bYBn8PF8dH54SiL9RYyTXO2yLQjRikmrdKlo6YoDHGefT43Bp2W2hpmmSSVQwBdzpxkWjamkUpKS2tGXPkCNttZa19CyptKM5vLnEqMN23JTWkc9sgsbwyjNoFi9fWFjmTkvibGVISgJOeig0x4yESELIH9vtFVx8Xxb_EPHtZe1BNphxsIgYjzUjhDXdVwXXOGsZvSnLKa19TURCtOTJ7Aroet7yQilsDeSklEnPTXovBkiBgOViSBrFecP4b6Dd3--fXaUF_9_SnvYGt0PhmL8cnZ6WvY9i263Z892FzMl_YN-kML9TZMg18_eQRi |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE-KJ20BkGigPPOLWTpzEfuymjXKbEFBpPFm-Shshq7oWNn79jh03oiAhwVOi6MSy9R2fiy_fQehFqYnQFBBoeGkx477B2iiDC-7BGZqy1PEuzPuTejZnb06r07TgFu_COOfi4TM3Dq9xL__MtVfNhNWQibAyPdkkLGAFvrHxwvrbaKeuIBYfoZ35yYfpl34rWeDAHROqy4FbwzC1q0Q7RImYnEPwtQx83QWFvLUIxHhbriky-KeSK1vR5911t1DXP1Tb_uKIju8juRlCf_7k63i90mPz8zd2x_8f4wN0L8Wo-bRXqofoluseoTuvYg3g6130bpqDacwPL7rvSW9B-K1bdq7NY43NMw--NodoOJ9Blttf5lyCzOtvYLwGkX6t8DGaHx99PpzhVJQBG0b4ChtPrdZcOW1Kz2xRWOoDRT2xFiKb2lnuuKKVB5Q94V5xoxrbKK2UYzWnvnyCRt1F556iXDSV4Y4owhQkpa4UtrQeWuRONJYzl6Fig4c0ibE8FM5oZcxciJBgvKYfP8kAokwgZujl8NOiJ-z4u_hBAHoQDWzb8QOAItPkld4yXzXC1IJDgqeNYLwWNbM1NVpQSzK0G4AcGkmoZWh_ozYyWYZLWQTGRMgZK5ohPKjSH13t1XOrq3v_KL-PRqvl2j2DoGmln6eZcQMLwQ_N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Convolutional+Kernel+Classifier+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ansari%2C+Mohsen&rft.au=Homayouni%2C+Saeid&rft.au=Safari%2C+Abdolreza&rft.au=Niazmardi%2C+Saeid&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=11240&rft.epage=11256&rft_id=info:doi/10.1109%2FJSTARS.2021.3123087&rft.externalDocID=9591367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |