A New Convolutional Kernel Classifier for Hyperspectral Image Classification

Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convoluti...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 11240 - 11256
Main Authors Ansari, Mohsen, Homayouni, Saeid, Safari, Abdolreza, Niazmardi, Saeid
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2021.3123087

Cover

Abstract Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convolutional kernel classifier (CKC) for hyperspectral remote sensing images to address these issues. The CKC uses the Nyström approximation method to estimate a low-rank approximation of the basis kernels, thus solves the issues associated with the high dimensionality of the basis kernels. The CKC uses deep architecture to learn the optimal combination of the basis kernels and the classification task to enable end-to-end learning. The proposed CKC's architecture is based on a one-dimensional-convolutional neural network (CNN-1-D), and it uses kernel dropout to prevent overfitting. It is the first instance of deep-kernel algorithms in the field of remote sensing. The proposed method was compared with several well-known hyperspectral image analysis MKL algorithms, including a multi-kernel variant of the deep kernel machine optimization, MKL-average, Simple-MKL, and generalize MKL, and state-of-the-art deep learning models, including Vanilla recurrent neural network (VanillaRNN) and CNN-1-D in classifying four benchmark hyperspectral datasets. The experimental results show that the CKC consistently outperforms all the competitor methods, and its runtime is lower than its MKL algorithm counterparts on four benchmark hyperspectral datasets. Moreover, the Nyström approximation solves the high dimensionality of the basis kernels and boosts classification accuracy. The source codes of CKC are available from: https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification .
AbstractList Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convolutional kernel classifier (CKC) for hyperspectral remote sensing images to address these issues. The CKC uses the Nyström approximation method to estimate a low-rank approximation of the basis kernels, thus solves the issues associated with the high dimensionality of the basis kernels. The CKC uses deep architecture to learn the optimal combination of the basis kernels and the classification task to enable end-to-end learning. The proposed CKC's architecture is based on a one-dimensional-convolutional neural network (CNN-1-D), and it uses kernel dropout to prevent overfitting. It is the first instance of deep-kernel algorithms in the field of remote sensing. The proposed method was compared with several well-known hyperspectral image analysis MKL algorithms, including a multi-kernel variant of the deep kernel machine optimization, MKL-average, Simple-MKL, and generalize MKL, and state-of-the-art deep learning models, including Vanilla recurrent neural network (VanillaRNN) and CNN-1-D in classifying four benchmark hyperspectral datasets. The experimental results show that the CKC consistently outperforms all the competitor methods, and its runtime is lower than its MKL algorithm counterparts on four benchmark hyperspectral datasets. Moreover, the Nyström approximation solves the high dimensionality of the basis kernels and boosts classification accuracy. The source codes of CKC are available from: https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification .
Author Homayouni, Saeid
Ansari, Mohsen
Safari, Abdolreza
Niazmardi, Saeid
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0003-1743-7965
  surname: Ansari
  fullname: Ansari, Mohsen
  email: moh.ansari@ut.ac.ir
  organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Saeid
  orcidid: 0000-0002-0214-5356
  surname: Homayouni
  fullname: Homayouni, Saeid
  email: saeid.homayouni@ete.inrs.ca
  organization: Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Canada
– sequence: 3
  givenname: Abdolreza
  surname: Safari
  fullname: Safari, Abdolreza
  email: asafari@ut.ac.ir
  organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Saeid
  surname: Niazmardi
  fullname: Niazmardi, Saeid
  email: s.niazmardi@kgut.ac.ir
  organization: Department of Surveying Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran
BookMark eNptkcFqGzEQhkVJoU7aJ8hloWe7mpVWKx2NaRu3poUmPYtZaRTWbFZbad3gt-86G3wwPQ2I__tn-HTNrvrYE2O3wFcA3Hz6dv-w_nW_KnkJKwGl4Lp-wxYlVLCESlRXbAFGmCVILt-x65z3nKuyNmLBduviBz0Xm9j_jd1hbGOPXfGdUk9dsekw5za0lIoQU3F3HCjlgdyYpsz2CR_pHHF4Qt-ztwG7TB9e5w37_eXzw-Zuufv5dbtZ75ZOcj0uXQDfNBqpcSJIX5YeglRKcu9NrRR5TRqhCkI0geuA2mHta2wQSSoNQdyw7dzrI-7tkNonTEcbsbUvDzE9Wkxj6zqywctQ1cYpoyupG2ekVkZJr8A1BjyfuuTcdegHPD5j150LgduTXbvPI6ZsT3btq90J-zhjQ4p_DpRHu4-HNMmbcpXRpVKqgill5pRLMedEwbp2fFE1OWy784b5_y43iAv28q7_U7cz1RLRmTCVAaFq8Q9C3ais
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_01431161_2024_2343132
crossref_primary_10_1016_j_jag_2022_103011
crossref_primary_10_1080_01431161_2023_2297178
crossref_primary_10_5194_essd_15_681_2023
crossref_primary_10_3390_electronics12030488
crossref_primary_10_3390_rs15245736
crossref_primary_10_1016_j_mex_2025_103219
crossref_primary_10_1016_j_rse_2023_113708
crossref_primary_10_1109_TGRS_2023_3266565
crossref_primary_10_1016_j_jag_2022_102785
crossref_primary_10_1109_TGRS_2023_3290794
crossref_primary_10_3390_rs14040992
Cites_doi 10.1109/TGRS.2020.3016820
10.1109/MGRS.2021.3064051
10.1109/IGARSS.2016.7729001
10.1109/TMM.2019.2932564
10.1109/JSTARS.2017.2682189
10.1109/TNNLS.2017.2672978
10.3390/sym11030325
10.1109/MGRS.2019.2911100
10.1145/3065386
10.1109/JSTARS.2014.2305441
10.1109/TNNLS.2018.2804895
10.1109/TNNLS.2021.3082289
10.1109/JSTSP.2018.2877497
10.1016/j.inffus.2015.03.001
10.1016/j.neucom.2014.09.013
10.1007/s10044-017-0600-4
10.1016/j.eswa.2017.11.058Get
10.1016/j.patcog.2018.12.005
10.1109/TNNLS.2019.2922123
10.1145/2339530.2339648
10.1145/1015330.1015424
10.1016/j.patcog.2020.107194
10.1109/TGRS.2020.3015157
10.1109/TIP.2018.2878958
10.1016/j.neucom.2015.09.116
10.1109/TGRS.2019.2907932
10.1109/TGRS.2011.2153861
10.1016/j.patcog.2016.10.019
10.1109/TCYB.2020.2987575
10.1016/j.neucom.2020.06.039
10.1016/j.isprsjprs.2019.09.006
10.1016/j.inffus.2020.10.002
10.1016/j.isprsjprs.2021.05.011
10.1007/978-3-030-01237-3_29
10.1016/j.neucom.2020.02.096
10.1109/TNNLS.2014.2359798
10.1109/TGRS.2017.2762597
10.1109/MGRS.2021.3075491
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JSTARS.2021.3123087
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 11256
ExternalDocumentID oai_doaj_org_article_fd4f579c698548bc9486964d61cb91d0
10.1109/jstars.2021.3123087
10_1109_JSTARS_2021_3123087
9591367
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-cf1dbb8aebc3f4d22d1f46640dd9766ed8e8a15f33bf08fa8ca7d7abaae4681f3
IEDL.DBID UNPAY
ISSN 1939-1404
2151-1535
IngestDate Fri Oct 03 12:53:21 EDT 2025
Wed Oct 01 16:42:58 EDT 2025
Fri Jul 25 06:10:49 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed Oct 01 03:51:25 EDT 2025
Wed Aug 27 02:26:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cf1dbb8aebc3f4d22d1f46640dd9766ed8e8a15f33bf08fa8ca7d7abaae4681f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0214-5356
0000-0003-1743-7965
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4609443/4609444/09591367.pdf
PQID 2598266651
PQPubID 75722
PageCount 17
ParticipantIDs unpaywall_primary_10_1109_jstars_2021_3123087
crossref_primary_10_1109_JSTARS_2021_3123087
ieee_primary_9591367
crossref_citationtrail_10_1109_JSTARS_2021_3123087
proquest_journals_2598266651
doaj_primary_oai_doaj_org_article_fd4f579c698548bc9486964d61cb91d0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
cortes (ref47) 2009
ref15
ref14
ref11
ref10
ref16
ref19
doya (ref48) 1993
ref18
srivastava (ref17) 2014; 15
drineas (ref38) 2005; 6
ref42
ref41
ref44
ref43
sonnenburg (ref23) 2006; 7
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
sun (ref46) 2010
ref30
belanche muñoz (ref26) 2017
ref33
ref32
ref2
ref1
rakotomamonjy (ref45) 2008; 9
cho (ref28) 2009; 22
rahimi (ref39) 2008; 3
ref24
ref25
wilson (ref29) 2016
ref20
ref22
ref21
ref27
References_xml – ident: ref10
  doi: 10.1109/TGRS.2020.3016820
– ident: ref13
  doi: 10.1109/MGRS.2021.3064051
– ident: ref5
  doi: 10.1109/IGARSS.2016.7729001
– ident: ref33
  doi: 10.1109/TMM.2019.2932564
– volume: 6
  start-page: 2153
  year: 2005
  ident: ref38
  article-title: On the Nyström method for approximating a gram matrix for improved kernel-based learning
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1109/JSTARS.2017.2682189
– ident: ref16
  doi: 10.1109/TNNLS.2017.2672978
– ident: ref34
  doi: 10.3390/sym11030325
– ident: ref8
  doi: 10.1109/MGRS.2019.2911100
– ident: ref19
  doi: 10.1145/3065386
– ident: ref44
  doi: 10.1109/JSTARS.2014.2305441
– ident: ref14
  doi: 10.1109/TNNLS.2018.2804895
– ident: ref18
  doi: 10.1109/TNNLS.2021.3082289
– ident: ref3
  doi: 10.1109/JSTSP.2018.2877497
– ident: ref41
  doi: 10.1016/j.inffus.2015.03.001
– ident: ref7
  doi: 10.1016/j.neucom.2014.09.013
– ident: ref31
  doi: 10.1007/s10044-017-0600-4
– ident: ref30
  doi: 10.1016/j.eswa.2017.11.058Get
– ident: ref36
  doi: 10.1016/j.patcog.2018.12.005
– ident: ref25
  doi: 10.1109/TNNLS.2019.2922123
– ident: ref22
  doi: 10.1145/2339530.2339648
– start-page: 370
  year: 2016
  ident: ref29
  article-title: Deep kernel learning
  publication-title: Proc 19th Int Conf Artif Intell Statist
– ident: ref24
  doi: 10.1145/1015330.1015424
– ident: ref27
  doi: 10.1016/j.patcog.2020.107194
– volume: 3
  start-page: 1177
  year: 2008
  ident: ref39
  article-title: Random features for large-scale kernel machines
  publication-title: Adv Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/TGRS.2020.3015157
– ident: ref4
  doi: 10.1109/TIP.2018.2878958
– year: 1993
  ident: ref48
  article-title: Universality of fully connected recurrent neural networks
– start-page: 2361
  year: 2010
  ident: ref46
  article-title: Multiple kernel learning and the SMO algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1016/j.neucom.2015.09.116
– ident: ref1
  doi: 10.1109/TGRS.2019.2907932
– ident: ref49
  doi: 10.1109/TGRS.2011.2153861
– ident: ref43
  doi: 10.1016/j.patcog.2016.10.019
– start-page: 1
  year: 2017
  ident: ref26
  article-title: Bridging deep and kernel methods
  publication-title: Proc 25th Eur Symp Artif Neural Netw
– ident: ref37
  doi: 10.1109/TCYB.2020.2987575
– ident: ref35
  doi: 10.1016/j.neucom.2020.06.039
– volume: 22
  start-page: 342
  year: 2009
  ident: ref28
  article-title: Kernel methods for deep learning
  publication-title: Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1016/j.isprsjprs.2019.09.006
– ident: ref21
  doi: 10.1016/j.inffus.2020.10.002
– ident: ref12
  doi: 10.1016/j.isprsjprs.2021.05.011
– ident: ref2
  doi: 10.1007/978-3-030-01237-3_29
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref45
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
– start-page: 396
  year: 2009
  ident: ref47
  article-title: Learning non-linear combinations of kernels
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref17
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.1016/j.neucom.2020.02.096
– ident: ref40
  doi: 10.1109/TNNLS.2014.2359798
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref23
  article-title: Large scale multiple kernel learning
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1109/TGRS.2017.2762597
– ident: ref9
  doi: 10.1109/MGRS.2021.3075491
SSID ssj0062793
Score 2.3649182
Snippet Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11240
SubjectTerms Algorithms
Approximation
Approximation method
Artificial neural networks
Benchmarks
Classification
Classification algorithms
Classifiers
Computer applications
Computer architecture
Convolutional neural network (CNN)
Datasets
deep kernel
Deep learning
Feature extraction
hyperspectral classification
Hyperspectral imaging
Image analysis
Image classification
Image processing
Kernel
Kernels
Machine learning
Mathematical analysis
multiple kernel learning (MKL)
Neural networks
Nonhomogeneous media
Optimization
Recurrent neural networks
Remote sensing
Task analysis
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iiF7EJ9YXPXi0mLRpmxxXUdfnwQd4C3mCsnZlXRX_vZMmW1wEvXgt0zDMTDPfF5pvENorFOaKQAZqVpiMMldnSkud5cxBM9RFodq7MFfXVf-enj-UD99Gffl_woI8cAjcgTPUlTXXFWcArpXmlFW8oqYiWnFiWraOGZ-QqbAHVzmUXdQYIpgfQJH3bm6BDeYESGruVfCm-lAr1x_nq0xBzfm35kV-fsjB4FvXOVlCixEupr3g5jKasc0Kmjttx_F-rqLLXgq7VHo0bN5jCYHxhR01dpC24y4fHbS9FIBp2gfCGe5VjsDm7Bn2kc4kHNutofuT47ujfhbnI2SaYjbOtCNGKSat0oWjJs8NcV4tHhsDIKOyhlkmSekg4A4zJ5mWtamlktLSihFXrKPZZtjYDZTyutTMYompBH5oC24K42BFZnltGLUJyifREjqKh_sZFgPRkgjMRQix8CEWMcQJ2u9eegnaGb-bH_o0dKZe-Lp9AOUgYjmIv8ohQas-id0ivORelC5B25OkiviRvorcixcCfStJgrIu0T9cfQKYPnqdcnXzP1zdQgt-zXCes41mx6M3uwMIZ6x222L-Ag_y9Ts
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lRBceBVEoKAcODbbOHH8OC4VZXmUA1CpN8tPqbBkq-0uqPx6xo43YgEhblE0cex8Y8-M4_kG4HlramkIIsBF6yoqAq-M1bZqREBjaNvWpFyY0_dsdkbfnHfnO3A45sJ479PhMz-Jl-lfvlvYddwqO5KdjAxju7DLBRtytTarLmt4IthFf0RWkTImMwyRWh6hik8_fMRYsCEYojaRA2_LCiWy_lxdZcvRvLnuL_X1dz2f_2JzTu7A6aa3w1GTL5P1ykzsj9-IHP93OHfhdnY-y-mgLfdgx_f34carVNz3eh_eTUtc88rjRf8tKyQKv_XL3s_LVDzzIqARLdHNLWcYvg5ZmkuUef0VV6VRZNgEfABnJy8_Hc-qXG2hsrQWq8oG4owR2hvbBuqaxpEQuedr59BlYd4JLzTpAsIXahG0sJo7ro3WnjJBQvsQ9vpF7x9BKXlnha91TTVGm76VrnUBWxRecieoL6DZfH1lMxV5rIgxVykkqaUaIFMRMpUhK-BwfOhyYOL4t_iLCOsoGmm00w2EQOVZqYKjoePSMikwcjNWUsEko44RayRxdQH7EbaxkYxYAQcbJVF5yl-pJlIhYjDYkQKqUXH-6OpndPqXV1tdffz3tzyBW1Fq2O85gL3Vcu2foge0Ms-S6v8EqYcBFQ
  priority: 102
  providerName: IEEE
Title A New Convolutional Kernel Classifier for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/9591367
https://www.proquest.com/docview/2598266651
https://ieeexplore.ieee.org/ielx7/4609443/4609444/09591367.pdf
https://doaj.org/article/fd4f579c698548bc9486964d61cb91d0
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE-IJBgMRNKo88IjbOHYS-7FMbOU2IaDSeLJ8lQYhq0rLNn49x44bUZCQ4ClRdGLZ-o59Lra_g9BTqguhCSDQcGox477B2iiDS-7BGBpKdbwL8_a0ni_Yq7PqLCXc4l0Y51w8fOYm4TXu5Z-79qqZshoiEUbTk01DAivwjU2W1t9Ee3UFvvgI7S1O380-9VvJAgfumFBdDswahqldJdohUojpZ3C-VoGvuyQQt5aBGG_HNEUG_1RyZcf7vL3plur6UrXtL4bo-C6S2yH050--TDZrPTE_fmN3_P8x7qM7yUfNZ71S3UM3XHcf3TqJNYCvD9CbWQ5LY3500X1PegvCr92qc20ea2yee7C1OXjD-Ryi3P4y5wpkXn6FxWsQ6XOFD9Di-MXHozlORRmwYQVfY-OJ1Zorpw31zJalJT5Q1BfWgmdTO8sdV6TygLIvuFfcqMY2SivlWM2Jpw_RqLvo3COUi6Yy3BWqYAqCUkeFpdZDi9yJxnLmMlRu8ZAmMZaHwhmtjJFLISQsXrP3H2QAUSYQM_Rs-GnZE3b8Xfx5AHoQDWzb8QOAItPkld4yXzXC1IJDgKeNYLwWNbM1MVoQW2ToIAA5NJJQy9DhVm1kWhm-yTIwJkLMWJEM4UGV_uhqr547XX38j_KHaLRebdwTcJrWehyTDeN4v3GcZslPz4MRww
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VItReyqMgAgVy4Nhs48RJ7ONStWzpbg_QSr1ZfkrAkq22u0Xtr2fseKMuIMQtisaOk2_smXE83wC8L1XOFUEEGlaajDLXZEpLnRXMoTHUZalCLszkrB5d0E-X1eUG7Pe5MNbacPjMDvxl-JdvZnrpt8oOeMU9w9gDeFhRSqsuW2u17tZFEyh20SPhmSeNiRxDJOcHqOTDz18wGiwIBqmFZ8Fbs0OBrj_WV1lzNbeW7ZW8_Smn03tW5_gxTFbj7Q6bfB8sF2qg736jcvzfF3oCO9H9TIedvjyFDds-g0cfQ3nf210YD1Nc9dLDWXsTVRKFT-28tdM0lM_86tCMpujopiMMYLs8zTnKnPzAdakX6bYBn8PF8dH54SiL9RYyTXO2yLQjRikmrdKlo6YoDHGefT43Bp2W2hpmmSSVQwBdzpxkWjamkUpKS2tGXPkCNttZa19CyptKM5vLnEqMN23JTWkc9sgsbwyjNoFi9fWFjmTkvibGVISgJOeig0x4yESELIH9vtFVx8Xxb_EPHtZe1BNphxsIgYjzUjhDXdVwXXOGsZvSnLKa19TURCtOTJ7Aroet7yQilsDeSklEnPTXovBkiBgOViSBrFecP4b6Dd3--fXaUF_9_SnvYGt0PhmL8cnZ6WvY9i263Z892FzMl_YN-kML9TZMg18_eQRi
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE-KJ20BkGigPPOLWTpzEfuymjXKbEFBpPFm-Shshq7oWNn79jh03oiAhwVOi6MSy9R2fiy_fQehFqYnQFBBoeGkx477B2iiDC-7BGZqy1PEuzPuTejZnb06r07TgFu_COOfi4TM3Dq9xL__MtVfNhNWQibAyPdkkLGAFvrHxwvrbaKeuIBYfoZ35yYfpl34rWeDAHROqy4FbwzC1q0Q7RImYnEPwtQx83QWFvLUIxHhbriky-KeSK1vR5911t1DXP1Tb_uKIju8juRlCf_7k63i90mPz8zd2x_8f4wN0L8Wo-bRXqofoluseoTuvYg3g6130bpqDacwPL7rvSW9B-K1bdq7NY43NMw--NodoOJ9Blttf5lyCzOtvYLwGkX6t8DGaHx99PpzhVJQBG0b4ChtPrdZcOW1Kz2xRWOoDRT2xFiKb2lnuuKKVB5Q94V5xoxrbKK2UYzWnvnyCRt1F556iXDSV4Y4owhQkpa4UtrQeWuRONJYzl6Fig4c0ibE8FM5oZcxciJBgvKYfP8kAokwgZujl8NOiJ-z4u_hBAHoQDWzb8QOAItPkld4yXzXC1IJDgqeNYLwWNbM1NVpQSzK0G4AcGkmoZWh_ozYyWYZLWQTGRMgZK5ohPKjSH13t1XOrq3v_KL-PRqvl2j2DoGmln6eZcQMLwQ_N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Convolutional+Kernel+Classifier+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ansari%2C+Mohsen&rft.au=Homayouni%2C+Saeid&rft.au=Safari%2C+Abdolreza&rft.au=Niazmardi%2C+Saeid&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=11240&rft.epage=11256&rft_id=info:doi/10.1109%2FJSTARS.2021.3123087&rft.externalDocID=9591367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon