Fault Diagnosis of Rod Pumping Wells Based on Support Vector Machine Optimized by Improved Chicken Swarm Optimization
Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a l...
Saved in:
| Published in | IEEE access Vol. 7; pp. 171598 - 171608 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2956221 |
Cover
| Abstract | Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a lot of human and financial resources. If it is not discovered in time, it will cause serious damage to oil exploitation, even shutdown. Indicator diagrams can reflect the working state of the rod pumping well, which can effectively reflect various faults of the pumping well. This paper diagnoses the faults of pumping wells by classifying and identifying the indicator diagrams. Because support vector machine (SVM) has good effect on classification and recognition of small sample data and nonlinear data, this paper uses SVM for classification, and uses the chicken swarm optimization (CSO) to optimize support for the problem that the SVM parameters are difficult to determine. Aiming at the problems of traditional CSO in solving high-dimensional optimization problems, such as premature and rough precision, an improved CSO is proposed. The traditional CSO, particle swarm optimization (PSO) and bat algorithm (BA) are used to compare it. The simulation proves that the improved CSO has good optimization effect and is superior to the other three optimization algorithms. |
|---|---|
| AbstractList | Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a lot of human and financial resources. If it is not discovered in time, it will cause serious damage to oil exploitation, even shutdown. Indicator diagrams can reflect the working state of the rod pumping well, which can effectively reflect various faults of the pumping well. This paper diagnoses the faults of pumping wells by classifying and identifying the indicator diagrams. Because support vector machine (SVM) has good effect on classification and recognition of small sample data and nonlinear data, this paper uses SVM for classification, and uses the chicken swarm optimization (CSO) to optimize support for the problem that the SVM parameters are difficult to determine. Aiming at the problems of traditional CSO in solving high-dimensional optimization problems, such as premature and rough precision, an improved CSO is proposed. The traditional CSO, particle swarm optimization (PSO) and bat algorithm (BA) are used to compare it. The simulation proves that the improved CSO has good optimization effect and is superior to the other three optimization algorithms. |
| Author | Gao, Xianwen Liu, Jinze Feng, Jian |
| Author_xml | – sequence: 1 givenname: Jinze orcidid: 0000-0003-0692-8793 surname: Liu fullname: Liu, Jinze organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Jian orcidid: 0000-0001-6813-6754 surname: Feng fullname: Feng, Jian email: fjneu@163.com organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Xianwen orcidid: 0000-0003-0305-1041 surname: Gao fullname: Gao, Xianwen organization: College of Information Science and Engineering, Northeastern University, Shenyang, China |
| BookMark | eNqFkU1v1DAQhiNUJErpL-jFEudd7Pgjm2MJbVmpqIjl42hNnPHWSxIHO6Fafj3eplSoHPDFo1fzPqOZ92V21Pses-yM0SVjtHxzXlUXm80yp6xc5qVUec6eZcc5U-WCS66O_qpfZKcx7mh6qyTJ4jibLmFqR_LOwbb30UXiLfnkG_Jx6gbXb8k3bNtI3kLEhviebKZh8GEkX9GMPpAPYG5dj-RmGF3nfqWeek_W3RD8z1RXt858x2S6g9D96YHR-f5V9txCG_H04T_JvlxefK7eL65vrtbV-fXCCLoaF8ZSKViNqkQsQBRFnZSCWaUMU1JgbXPacNHUNQUKgmNBqbCsZBZZI43lJ9l65jYednoIroOw1x6cvhd82GoIozMtamkAQVFQaHJhsSiByYLyhjJluOI8scTMmvoB9nfQto9ARvUhCQ3GYIz6kIR-SCLZXs-2dJQfE8ZR7_wU-rS1zoWUSnAlD3A-d5ngYwxo_2HPKT9ll09cxo33Bx4DuPY_3rPZ6xDxcdqqTFsXOf8N7oy2tQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1038_s41598_024_56698_8 crossref_primary_10_1007_s11227_025_06965_w crossref_primary_10_1109_TIE_2020_3047061 crossref_primary_10_1016_j_geoen_2024_213240 crossref_primary_10_1109_TNNLS_2022_3201517 crossref_primary_10_1016_j_petrol_2022_110295 crossref_primary_10_1109_ACCESS_2021_3063322 crossref_primary_10_1016_j_asoc_2023_111172 crossref_primary_10_1109_ACCESS_2024_3355017 crossref_primary_10_1109_TIE_2022_3203754 crossref_primary_10_1109_ACCESS_2023_3251354 crossref_primary_10_3390_su14169870 crossref_primary_10_1016_j_neucom_2025_129715 crossref_primary_10_1109_ACCESS_2021_3089251 crossref_primary_10_1002_ett_4579 crossref_primary_10_1016_j_psep_2024_08_059 crossref_primary_10_1109_TCSII_2023_3278324 crossref_primary_10_1016_j_isatra_2021_03_022 crossref_primary_10_1016_j_measurement_2025_116682 crossref_primary_10_1109_ACCESS_2022_3142097 crossref_primary_10_1109_ACCESS_2020_2994298 crossref_primary_10_1109_JIOT_2022_3141382 |
| Cites_doi | 10.1109/TII.2009.2033181 10.1016/j.sigpro.2014.09.012 10.2991/fmsmt-17.2017.169 10.1109/TII.2018.2839062 10.1109/TIE.2016.2515057 10.1007/978-1-4757-3264-1 10.1109/TII.2005.844425 10.1109/TASE.2015.2417882 10.1109/TIM.2017.2698738 10.1109/JSEN.2011.2170411 10.1109/TIM.2017.2673024 10.1109/TIE.2017.2668986 10.1002/oca.2394 10.1109/TII.2018.2828811 10.1109/JSEN.2018.2832216 10.23919/ChiCC.2018.8483594 10.1109/TIM.2018.2813839 10.1109/TII.2012.2214394 10.1109/ICEC.1998.699146 10.1007/978-3-319-11857-4_10 10.1109/TMAG.2017.2690628 10.1016/j.petrol.2006.11.008 10.1109/TIE.2014.2328316 10.2118/25420-PA |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2956221 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 171608 |
| ExternalDocumentID | oai_doaj_org_article_5caea60a6ec24fe79a15703d016c3633 10.1109/access.2019.2956221 10_1109_ACCESS_2019_2956221 8915772 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673093; 61621004; 61627809; 61573088 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-cf0541be69ee7a477bcf071f66c1654ebf20d34dbb0a0a43e7004f191fe1d5cf3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Tue Aug 19 18:53:54 EDT 2025 Sun Jun 29 15:56:26 EDT 2025 Wed Oct 01 02:05:49 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Aug 27 02:40:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-cf0541be69ee7a477bcf071f66c1654ebf20d34dbb0a0a43e7004f191fe1d5cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0305-1041 0000-0001-6813-6754 0000-0003-0692-8793 |
| OpenAccessLink | https://doaj.org/article/5caea60a6ec24fe79a15703d016c3633 |
| PQID | 2455643653 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2019_2956221 crossref_primary_10_1109_ACCESS_2019_2956221 proquest_journals_2455643653 ieee_primary_8915772 doaj_primary_oai_doaj_org_article_5caea60a6ec24fe79a15703d016c3633 crossref_citationtrail_10_1109_ACCESS_2019_2956221 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 li (ref28) 2006; 22 ding (ref23) 2014; 22 ref31 ref33 ref11 ref32 ref10 bezerra (ref9) 2009 ref2 ref1 pan (ref20) 1996; 2 ref17 ref38 ref16 ref19 ref18 meng (ref30) 2012 yuan (ref36) 2007; 19 ref24 wang (ref29) 2011 ref26 ref25 ref22 ref27 gao (ref35) 2011; 33 ref8 ref7 liu (ref34) 2008; 3 li (ref14) 1995; 6 ref4 derek (ref13) 1988; 14 ref3 xu (ref21) 2006; 27 ref6 ref5 feng (ref15) 1996; 1 zheng (ref37) 2018; 35 |
| References_xml | – ident: ref2 doi: 10.1109/TII.2009.2033181 – ident: ref17 doi: 10.1016/j.sigpro.2014.09.012 – volume: 22 start-page: 209 year: 2006 ident: ref28 article-title: Research on fault diagnosis of pumping unit based on support vector machine publication-title: Microcomput Inf – ident: ref24 doi: 10.2991/fmsmt-17.2017.169 – ident: ref26 doi: 10.1109/TII.2018.2839062 – ident: ref4 doi: 10.1109/TIE.2016.2515057 – ident: ref27 doi: 10.1007/978-1-4757-3264-1 – ident: ref10 doi: 10.1109/TII.2005.844425 – ident: ref16 doi: 10.1109/TASE.2015.2417882 – ident: ref7 doi: 10.1109/TIM.2017.2698738 – ident: ref8 doi: 10.1109/JSEN.2011.2170411 – volume: 1 start-page: 29 year: 1996 ident: ref15 article-title: Neural network rod pump diagnostic expert system publication-title: Petroleum Machinery – ident: ref18 doi: 10.1109/TIM.2017.2673024 – ident: ref5 doi: 10.1109/TIE.2017.2668986 – ident: ref33 doi: 10.1002/oca.2394 – year: 2012 ident: ref30 article-title: Supported vector machine based monitoring and diagnosis of rod pumping system – start-page: 351 year: 2009 ident: ref9 article-title: Pattern recognition for downhole indicator diagram card in oil rod pump system using artificial neural networks publication-title: Proc Int Conf Enterprise Inf Syst – ident: ref19 doi: 10.1109/TII.2018.2828811 – volume: 27 start-page: 107 year: 2006 ident: ref21 article-title: Artificial neural network method for fault diagnosis of rod pumping system publication-title: ACTA PETROLEI SINICA – ident: ref32 doi: 10.1109/JSEN.2018.2832216 – volume: 22 start-page: 148 year: 2014 ident: ref23 article-title: Research and application of eigengram feature extraction in oil well fault diagnosis publication-title: Elect Engineering – volume: 3 start-page: 487 year: 2008 ident: ref34 article-title: Mixed differential mutation strategy publication-title: J Intell Syst – ident: ref25 doi: 10.23919/ChiCC.2018.8483594 – volume: 19 start-page: 4646 year: 2007 ident: ref36 article-title: Numerical simulation of differential evolution algorithm publication-title: J Syst Simul – ident: ref12 doi: 10.1109/TIM.2018.2813839 – ident: ref1 doi: 10.1109/TII.2012.2214394 – volume: 35 start-page: 99 year: 2018 ident: ref37 article-title: Improved flock algorithm with adaptive properties publication-title: Microelectron Comput – year: 2011 ident: ref29 article-title: Research on eigengram feature extraction method for working condition diagnosis – ident: ref38 doi: 10.1109/ICEC.1998.699146 – volume: 33 start-page: 1167 year: 2011 ident: ref35 article-title: Hybrid artificial bee colony algorithm publication-title: Syst Eng Electron – volume: 2 start-page: 40 year: 1996 ident: ref20 article-title: Identification model of pumping well indicator diagram neural network publication-title: J China Univ Petroleum (Natural Sci Ed ) – ident: ref31 doi: 10.1007/978-3-319-11857-4_10 – ident: ref11 doi: 10.1109/TMAG.2017.2690628 – ident: ref22 doi: 10.1016/j.petrol.2006.11.008 – volume: 14 start-page: 1041 year: 1988 ident: ref13 article-title: Permian basin oil and gas recovery conference-Sucker rod pumping unit diagnostics using an expert system publication-title: Proc Plasma Sci Technol Soc Petroleum Eng Permian Basin Oil Gas Recovery Conf – volume: 6 start-page: 89 year: 1995 ident: ref14 article-title: Expert system for fault dlagnosis of sucker rod pumping well publication-title: Oil Drilling Technology – ident: ref3 doi: 10.1109/TIE.2014.2328316 – ident: ref6 doi: 10.2118/25420-PA |
| SSID | ssj0000816957 |
| Score | 2.2758534 |
| Snippet | Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 171598 |
| SubjectTerms | algorithm optimization Algorithms chicken swarm optimization (CSO) Classification Expert systems Fault detection Fault diagnosis Feature extraction Indicator diagrams Inspection Neural networks Oil exploration Oil field equipment Oil fields Optimization Particle swarm optimization Pumping pumping well Pumps Shutdowns support vector machine (SVM) Support vector machines |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaXoADBQpiaUE-cGy2-XDszbFdWFVICwhR6C0a22OpappU3URV--sZO9moCwhxi6xxYmvG9vNk5g1j74VMgYDxLMqshkhYpyMwCBEUGozIlIqlTxRefpanZ-LTeX6-xQ7HXBhEDMFnOPWP4V--bUznXWVHsyLJCQ1us201k32u1uhP8QUkilwNxEJJXBwdz-c0Bx-9VUxTugakabJx-ASO_qGoyga-fNTV13B3C1X14KhZ7LLlepB9hMnltGv11Nz_xt_4v7N4xp4OmJMf90bynG1h_YI9ecBEuMe6BXRVyz_0gXcXK944_q2x_CtpmwT4T6yqFT-hI8_ypua-Fijhdv4j-Pz5MkRkIv9C-8_VxT3J6Dveuyvo2Ud7XCJ1uoWbq7VMMIiX7Gzx8fv8NBoqMkRGxLM2Mo4QXqJRFogKhFKaWlTipDQ-Kwq1S2ObCat1DDGIDD15vqMrocPE5sZlr9hO3dT4mnHnbCyA-vvMXEugSoLJEic05AT6TDJh6VpVpRnoyn3VjKoM15a4KHv9ll6_5aDfCTscO133bB3_Fj_xNjCKeqrt0ED6KoeVW-YGEGQMEk0qHKoCEs9aZgkrm0xm2YTteR2PLxnUO2EHa4sqh21hVaYizwkCypx6RaOV_TFUCLUyN4b65u9f2WePvVTvEzpgO-1Nh28JJbX6XVgevwCzKA_s priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAgygbyA48kzQ_HaR67QjUhbUyIwniKzvZZqpa11dpobH89Z8etVpCQ4C2y7hJHd7Y_23ffMfZOyAwIGA-j3CiIhLEqAo0QQaVAi7wsE-kShU_P5MlUfLooLsKBm8-FQUQffIaxe_R3-TNsfpYDmTnytGowdIzqSTpIhlVaEDaMl8Y-ZHuyoE_22N707Hz0w1WUS2UV5f5u8jAQaw7A1yB08VxVnNHGIMvSneXIs_aHMis7iPNRO1_C7Q00zb3FZ7LP6k23u5iTy7hdq1jf_cbo-P__9ZQ9CbiUjzpHesYe4Pw5e3yPrfCAtRNomzX_0AXnzVZ8YfmXheHn5BEkwL9j06z4MS2Lhi_m3NULJWzPv_l7AX7qozaRf6Y56mp2RzLqlndHGvTsIkIukZRu4PpqI-Od5gWbTj5-HZ9EoWpDpEUyXEfaEgpMFcoKsQRRlopaytRKqV3mFCqbJSYXRqkEEhA5OoJ9S9tGi6kptM1fst58McdXjFtrEgGk77J3DQEvCTpPrVBQEDDUaZ9lG-PVOlCau8oaTe23NklVj8Zj8uPaWbwOFu-z91ulZcfo8XfxY-cVW1FHx-0byIJ1GN11oQFBJiBRZ8JiWUHqmM0M4WmdyzzvswNn9e1Lgon77GjjY3WYOlZ1JoqCYKIsSCva-t0fXe18eaerr_9R_oj11tctviFUtVZvw9D5BfcbHfc priority: 102 providerName: Unpaywall |
| Title | Fault Diagnosis of Rod Pumping Wells Based on Support Vector Machine Optimized by Improved Chicken Swarm Optimization |
| URI | https://ieeexplore.ieee.org/document/8915772 https://www.proquest.com/docview/2455643653 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08915772.pdf https://doaj.org/article/5caea60a6ec24fe79a15703d016c3633 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQ9gA8oMFAFEblBx4Jsx3HTh67QjUhbUyIwniKzr-kiSyd1lbT9tfv7KRVK6TxsrfIubMuvov92Tp_R8hHqQQgMC6z3BnIpAsmA-shg8qAlbnWTMWLwien6ngqv50X5xulvmJOWEcP3A3cYWHBg2KgvBUyeF0Bj6RRDqGKzVWeeD5ZWW1sptIcXHJVFbqnGeKsOhyNx_hFMZer-ixwUyAE31qKEmN_X2JlC20-XbZXcHsDTbOx8Ez2yIseMdJRZ-lL8sS3r8jzDR7BfbKcwLJZ0C9d2tzFnM4C_TFz9Ax9hQL0t2-aOT3CBcvRWUtjJU9E3fRXOrGnJymf0tPvOHtcXtyhjLml3WEDPsdcjb8elW7g-nIlk9z5mkwnX3-Oj7O-nkJmJSsXmQ2Iz7jxqvJeg9TaYIvmQSkb7zR5EwRzuXTGMGAgcx-p7wNu6ILnrrAhf0N22lnr3xIagmMSUD_eq3UIiRTYnAdpoEDIZvmAiNXQ1rYnG481L5o6bTpYVXf-qKM_6t4fA_JprXTVcW08LH4UfbYWjUTZqQHDp-7Dp_5f-AzIfvT4upOywvdaDMjBKgLq_qee10IWBQI4VaBWto6Kf0yFVOlyy9R3j2Hqe_Is9tmd_xyQncX10n9ARLQwwxT8w3R5cUh2p6dnoz_3O6EJDA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvApioYAPHJttHrazObYLqwW6BaEWerPGL6lqmlTdRFX76xk72agLCHGLrJnE0Uzsz5OZbwh5z0QKCIwnUWYURMw4FYG2EEGhQLMsz2PhC4UXR2J-wj6f8tMNsjvUwlhrQ_KZHfvL8C_f1Lr1obK9SZFwRIP3yH3OGONdtdYQUfEtJAqe99RCSVzs7U-n-BY-f6sYp3gQSNNkbfsJLP19W5U1hLnVVpdwcw1leWezmT0mi9U0uxyT83HbqLG-_Y3B8X_f4wl51KNOut-5yVOyYatn5OEdLsJt0s6gLRv6oUu9O1vS2tHvtaHf0N4oQH_aslzSA9z0DK0r6ruBInKnP0LUny5CTqalX3EFuji7RRl1Q7uABV77fI9zi0rXcHWxkgku8ZyczD4eT-dR35Mh0iyeNJF2iPESZUVhbQ4szxWO5IkTQvu6KKtcGpuMGaViiIFl1tPnOzwUOpsYrl32gmxWdWVfEuqciRmgvq_NNQirBOgscUwBR9inkxFJV6aSuics930zShkOLnEhO_tKb1_Z23dEdgely46v49_iB94HBlFPth0G0F6y_3Yl12BBxCCsTpmzeQGJ5y0ziJZ1JrJsRLa9jYeb9OYdkZ2VR8l-YVjKlHGOIFBw1IoGL_tjqhC6Za5N9dXfn_KObM2PF4fy8NPRl9fkgdfoIkQ7ZLO5au0bxEyNehs-lV8KgRM5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAgygbyA48kzQ_HaR67QjUhbUyIwniKzvZZqpa11dpobH89Z8etVpCQ4C2y7hJHd7Y_23ffMfZOyAwIGA-j3CiIhLEqAo0QQaVAi7wsE-kShU_P5MlUfLooLsKBm8-FQUQffIaxe_R3-TNsfpYDmTnytGowdIzqSTpIhlVaEDaMl8Y-ZHuyoE_22N707Hz0w1WUS2UV5f5u8jAQaw7A1yB08VxVnNHGIMvSneXIs_aHMis7iPNRO1_C7Q00zb3FZ7LP6k23u5iTy7hdq1jf_cbo-P__9ZQ9CbiUjzpHesYe4Pw5e3yPrfCAtRNomzX_0AXnzVZ8YfmXheHn5BEkwL9j06z4MS2Lhi_m3NULJWzPv_l7AX7qozaRf6Y56mp2RzLqlndHGvTsIkIukZRu4PpqI-Od5gWbTj5-HZ9EoWpDpEUyXEfaEgpMFcoKsQRRlopaytRKqV3mFCqbJSYXRqkEEhA5OoJ9S9tGi6kptM1fst58McdXjFtrEgGk77J3DQEvCTpPrVBQEDDUaZ9lG-PVOlCau8oaTe23NklVj8Zj8uPaWbwOFu-z91ulZcfo8XfxY-cVW1FHx-0byIJ1GN11oQFBJiBRZ8JiWUHqmM0M4WmdyzzvswNn9e1Lgon77GjjY3WYOlZ1JoqCYKIsSCva-t0fXe18eaerr_9R_oj11tctviFUtVZvw9D5BfcbHfc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+of+Rod+Pumping+Wells+Based+on+Support+Vector+Machine+Optimized+by+Improved+Chicken+Swarm+Optimization&rft.jtitle=IEEE+access&rft.au=Liu%2C+Jinze&rft.au=Feng%2C+Jian&rft.au=Gao%2C+Xianwen&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=171598&rft.epage=171608&rft_id=info:doi/10.1109%2FACCESS.2019.2956221&rft.externalDocID=8915772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |