Fault Diagnosis of Rod Pumping Wells Based on Support Vector Machine Optimized by Improved Chicken Swarm Optimization

Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a l...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 171598 - 171608
Main Authors Liu, Jinze, Feng, Jian, Gao, Xianwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2956221

Cover

Abstract Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a lot of human and financial resources. If it is not discovered in time, it will cause serious damage to oil exploitation, even shutdown. Indicator diagrams can reflect the working state of the rod pumping well, which can effectively reflect various faults of the pumping well. This paper diagnoses the faults of pumping wells by classifying and identifying the indicator diagrams. Because support vector machine (SVM) has good effect on classification and recognition of small sample data and nonlinear data, this paper uses SVM for classification, and uses the chicken swarm optimization (CSO) to optimize support for the problem that the SVM parameters are difficult to determine. Aiming at the problems of traditional CSO in solving high-dimensional optimization problems, such as premature and rough precision, an improved CSO is proposed. The traditional CSO, particle swarm optimization (PSO) and bat algorithm (BA) are used to compare it. The simulation proves that the improved CSO has good optimization effect and is superior to the other three optimization algorithms.
AbstractList Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by manual inspection. In the event of a faults, relying solely on labor to observe the indicator diagrams and determine the fault will waste a lot of human and financial resources. If it is not discovered in time, it will cause serious damage to oil exploitation, even shutdown. Indicator diagrams can reflect the working state of the rod pumping well, which can effectively reflect various faults of the pumping well. This paper diagnoses the faults of pumping wells by classifying and identifying the indicator diagrams. Because support vector machine (SVM) has good effect on classification and recognition of small sample data and nonlinear data, this paper uses SVM for classification, and uses the chicken swarm optimization (CSO) to optimize support for the problem that the SVM parameters are difficult to determine. Aiming at the problems of traditional CSO in solving high-dimensional optimization problems, such as premature and rough precision, an improved CSO is proposed. The traditional CSO, particle swarm optimization (PSO) and bat algorithm (BA) are used to compare it. The simulation proves that the improved CSO has good optimization effect and is superior to the other three optimization algorithms.
Author Gao, Xianwen
Liu, Jinze
Feng, Jian
Author_xml – sequence: 1
  givenname: Jinze
  orcidid: 0000-0003-0692-8793
  surname: Liu
  fullname: Liu, Jinze
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0001-6813-6754
  surname: Feng
  fullname: Feng, Jian
  email: fjneu@163.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Xianwen
  orcidid: 0000-0003-0305-1041
  surname: Gao
  fullname: Gao, Xianwen
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
BookMark eNqFkU1v1DAQhiNUJErpL-jFEudd7Pgjm2MJbVmpqIjl42hNnPHWSxIHO6Fafj3eplSoHPDFo1fzPqOZ92V21Pses-yM0SVjtHxzXlUXm80yp6xc5qVUec6eZcc5U-WCS66O_qpfZKcx7mh6qyTJ4jibLmFqR_LOwbb30UXiLfnkG_Jx6gbXb8k3bNtI3kLEhviebKZh8GEkX9GMPpAPYG5dj-RmGF3nfqWeek_W3RD8z1RXt858x2S6g9D96YHR-f5V9txCG_H04T_JvlxefK7eL65vrtbV-fXCCLoaF8ZSKViNqkQsQBRFnZSCWaUMU1JgbXPacNHUNQUKgmNBqbCsZBZZI43lJ9l65jYednoIroOw1x6cvhd82GoIozMtamkAQVFQaHJhsSiByYLyhjJluOI8scTMmvoB9nfQto9ARvUhCQ3GYIz6kIR-SCLZXs-2dJQfE8ZR7_wU-rS1zoWUSnAlD3A-d5ngYwxo_2HPKT9ll09cxo33Bx4DuPY_3rPZ6xDxcdqqTFsXOf8N7oy2tQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1038_s41598_024_56698_8
crossref_primary_10_1007_s11227_025_06965_w
crossref_primary_10_1109_TIE_2020_3047061
crossref_primary_10_1016_j_geoen_2024_213240
crossref_primary_10_1109_TNNLS_2022_3201517
crossref_primary_10_1016_j_petrol_2022_110295
crossref_primary_10_1109_ACCESS_2021_3063322
crossref_primary_10_1016_j_asoc_2023_111172
crossref_primary_10_1109_ACCESS_2024_3355017
crossref_primary_10_1109_TIE_2022_3203754
crossref_primary_10_1109_ACCESS_2023_3251354
crossref_primary_10_3390_su14169870
crossref_primary_10_1016_j_neucom_2025_129715
crossref_primary_10_1109_ACCESS_2021_3089251
crossref_primary_10_1002_ett_4579
crossref_primary_10_1016_j_psep_2024_08_059
crossref_primary_10_1109_TCSII_2023_3278324
crossref_primary_10_1016_j_isatra_2021_03_022
crossref_primary_10_1016_j_measurement_2025_116682
crossref_primary_10_1109_ACCESS_2022_3142097
crossref_primary_10_1109_ACCESS_2020_2994298
crossref_primary_10_1109_JIOT_2022_3141382
Cites_doi 10.1109/TII.2009.2033181
10.1016/j.sigpro.2014.09.012
10.2991/fmsmt-17.2017.169
10.1109/TII.2018.2839062
10.1109/TIE.2016.2515057
10.1007/978-1-4757-3264-1
10.1109/TII.2005.844425
10.1109/TASE.2015.2417882
10.1109/TIM.2017.2698738
10.1109/JSEN.2011.2170411
10.1109/TIM.2017.2673024
10.1109/TIE.2017.2668986
10.1002/oca.2394
10.1109/TII.2018.2828811
10.1109/JSEN.2018.2832216
10.23919/ChiCC.2018.8483594
10.1109/TIM.2018.2813839
10.1109/TII.2012.2214394
10.1109/ICEC.1998.699146
10.1007/978-3-319-11857-4_10
10.1109/TMAG.2017.2690628
10.1016/j.petrol.2006.11.008
10.1109/TIE.2014.2328316
10.2118/25420-PA
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2956221
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 171608
ExternalDocumentID oai_doaj_org_article_5caea60a6ec24fe79a15703d016c3633
10.1109/access.2019.2956221
10_1109_ACCESS_2019_2956221
8915772
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673093; 61621004; 61627809; 61573088
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-cf0541be69ee7a477bcf071f66c1654ebf20d34dbb0a0a43e7004f191fe1d5cf3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:29 EDT 2025
Tue Aug 19 18:53:54 EDT 2025
Sun Jun 29 15:56:26 EDT 2025
Wed Oct 01 02:05:49 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Wed Aug 27 02:40:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cf0541be69ee7a477bcf071f66c1654ebf20d34dbb0a0a43e7004f191fe1d5cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0305-1041
0000-0001-6813-6754
0000-0003-0692-8793
OpenAccessLink https://doaj.org/article/5caea60a6ec24fe79a15703d016c3633
PQID 2455643653
PQPubID 4845423
PageCount 11
ParticipantIDs unpaywall_primary_10_1109_access_2019_2956221
crossref_primary_10_1109_ACCESS_2019_2956221
proquest_journals_2455643653
ieee_primary_8915772
doaj_primary_oai_doaj_org_article_5caea60a6ec24fe79a15703d016c3633
crossref_citationtrail_10_1109_ACCESS_2019_2956221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
li (ref28) 2006; 22
ding (ref23) 2014; 22
ref31
ref33
ref11
ref32
ref10
bezerra (ref9) 2009
ref2
ref1
pan (ref20) 1996; 2
ref17
ref38
ref16
ref19
ref18
meng (ref30) 2012
yuan (ref36) 2007; 19
ref24
wang (ref29) 2011
ref26
ref25
ref22
ref27
gao (ref35) 2011; 33
ref8
ref7
liu (ref34) 2008; 3
li (ref14) 1995; 6
ref4
derek (ref13) 1988; 14
ref3
xu (ref21) 2006; 27
ref6
ref5
feng (ref15) 1996; 1
zheng (ref37) 2018; 35
References_xml – ident: ref2
  doi: 10.1109/TII.2009.2033181
– ident: ref17
  doi: 10.1016/j.sigpro.2014.09.012
– volume: 22
  start-page: 209
  year: 2006
  ident: ref28
  article-title: Research on fault diagnosis of pumping unit based on support vector machine
  publication-title: Microcomput Inf
– ident: ref24
  doi: 10.2991/fmsmt-17.2017.169
– ident: ref26
  doi: 10.1109/TII.2018.2839062
– ident: ref4
  doi: 10.1109/TIE.2016.2515057
– ident: ref27
  doi: 10.1007/978-1-4757-3264-1
– ident: ref10
  doi: 10.1109/TII.2005.844425
– ident: ref16
  doi: 10.1109/TASE.2015.2417882
– ident: ref7
  doi: 10.1109/TIM.2017.2698738
– ident: ref8
  doi: 10.1109/JSEN.2011.2170411
– volume: 1
  start-page: 29
  year: 1996
  ident: ref15
  article-title: Neural network rod pump diagnostic expert system
  publication-title: Petroleum Machinery
– ident: ref18
  doi: 10.1109/TIM.2017.2673024
– ident: ref5
  doi: 10.1109/TIE.2017.2668986
– ident: ref33
  doi: 10.1002/oca.2394
– year: 2012
  ident: ref30
  article-title: Supported vector machine based monitoring and diagnosis of rod pumping system
– start-page: 351
  year: 2009
  ident: ref9
  article-title: Pattern recognition for downhole indicator diagram card in oil rod pump system using artificial neural networks
  publication-title: Proc Int Conf Enterprise Inf Syst
– ident: ref19
  doi: 10.1109/TII.2018.2828811
– volume: 27
  start-page: 107
  year: 2006
  ident: ref21
  article-title: Artificial neural network method for fault diagnosis of rod pumping system
  publication-title: ACTA PETROLEI SINICA
– ident: ref32
  doi: 10.1109/JSEN.2018.2832216
– volume: 22
  start-page: 148
  year: 2014
  ident: ref23
  article-title: Research and application of eigengram feature extraction in oil well fault diagnosis
  publication-title: Elect Engineering
– volume: 3
  start-page: 487
  year: 2008
  ident: ref34
  article-title: Mixed differential mutation strategy
  publication-title: J Intell Syst
– ident: ref25
  doi: 10.23919/ChiCC.2018.8483594
– volume: 19
  start-page: 4646
  year: 2007
  ident: ref36
  article-title: Numerical simulation of differential evolution algorithm
  publication-title: J Syst Simul
– ident: ref12
  doi: 10.1109/TIM.2018.2813839
– ident: ref1
  doi: 10.1109/TII.2012.2214394
– volume: 35
  start-page: 99
  year: 2018
  ident: ref37
  article-title: Improved flock algorithm with adaptive properties
  publication-title: Microelectron Comput
– year: 2011
  ident: ref29
  article-title: Research on eigengram feature extraction method for working condition diagnosis
– ident: ref38
  doi: 10.1109/ICEC.1998.699146
– volume: 33
  start-page: 1167
  year: 2011
  ident: ref35
  article-title: Hybrid artificial bee colony algorithm
  publication-title: Syst Eng Electron
– volume: 2
  start-page: 40
  year: 1996
  ident: ref20
  article-title: Identification model of pumping well indicator diagram neural network
  publication-title: J China Univ Petroleum (Natural Sci Ed )
– ident: ref31
  doi: 10.1007/978-3-319-11857-4_10
– ident: ref11
  doi: 10.1109/TMAG.2017.2690628
– ident: ref22
  doi: 10.1016/j.petrol.2006.11.008
– volume: 14
  start-page: 1041
  year: 1988
  ident: ref13
  article-title: Permian basin oil and gas recovery conference-Sucker rod pumping unit diagnostics using an expert system
  publication-title: Proc Plasma Sci Technol Soc Petroleum Eng Permian Basin Oil Gas Recovery Conf
– volume: 6
  start-page: 89
  year: 1995
  ident: ref14
  article-title: Expert system for fault dlagnosis of sucker rod pumping well
  publication-title: Oil Drilling Technology
– ident: ref3
  doi: 10.1109/TIE.2014.2328316
– ident: ref6
  doi: 10.2118/25420-PA
SSID ssj0000816957
Score 2.2758534
Snippet Nowadays, rod pump is widely used in oilfield. Since most oil production equipment like pumping pumps are distributed in the wild, they are usually checked by...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171598
SubjectTerms algorithm optimization
Algorithms
chicken swarm optimization (CSO)
Classification
Expert systems
Fault detection
Fault diagnosis
Feature extraction
Indicator diagrams
Inspection
Neural networks
Oil exploration
Oil field equipment
Oil fields
Optimization
Particle swarm optimization
Pumping
pumping well
Pumps
Shutdowns
support vector machine (SVM)
Support vector machines
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaXoADBQpiaUE-cGy2-XDszbFdWFVICwhR6C0a22OpappU3URV--sZO9moCwhxi6xxYmvG9vNk5g1j74VMgYDxLMqshkhYpyMwCBEUGozIlIqlTxRefpanZ-LTeX6-xQ7HXBhEDMFnOPWP4V--bUznXWVHsyLJCQ1us201k32u1uhP8QUkilwNxEJJXBwdz-c0Bx-9VUxTugakabJx-ASO_qGoyga-fNTV13B3C1X14KhZ7LLlepB9hMnltGv11Nz_xt_4v7N4xp4OmJMf90bynG1h_YI9ecBEuMe6BXRVyz_0gXcXK944_q2x_CtpmwT4T6yqFT-hI8_ypua-Fijhdv4j-Pz5MkRkIv9C-8_VxT3J6Dveuyvo2Ud7XCJ1uoWbq7VMMIiX7Gzx8fv8NBoqMkRGxLM2Mo4QXqJRFogKhFKaWlTipDQ-Kwq1S2ObCat1DDGIDD15vqMrocPE5sZlr9hO3dT4mnHnbCyA-vvMXEugSoLJEic05AT6TDJh6VpVpRnoyn3VjKoM15a4KHv9ll6_5aDfCTscO133bB3_Fj_xNjCKeqrt0ED6KoeVW-YGEGQMEk0qHKoCEs9aZgkrm0xm2YTteR2PLxnUO2EHa4sqh21hVaYizwkCypx6RaOV_TFUCLUyN4b65u9f2WePvVTvEzpgO-1Nh28JJbX6XVgevwCzKA_s
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAgygbyA48kzQ_HaR67QjUhbUyIwniKzvZZqpa11dpobH89Z8etVpCQ4C2y7hJHd7Y_23ffMfZOyAwIGA-j3CiIhLEqAo0QQaVAi7wsE-kShU_P5MlUfLooLsKBm8-FQUQffIaxe_R3-TNsfpYDmTnytGowdIzqSTpIhlVaEDaMl8Y-ZHuyoE_22N707Hz0w1WUS2UV5f5u8jAQaw7A1yB08VxVnNHGIMvSneXIs_aHMis7iPNRO1_C7Q00zb3FZ7LP6k23u5iTy7hdq1jf_cbo-P__9ZQ9CbiUjzpHesYe4Pw5e3yPrfCAtRNomzX_0AXnzVZ8YfmXheHn5BEkwL9j06z4MS2Lhi_m3NULJWzPv_l7AX7qozaRf6Y56mp2RzLqlndHGvTsIkIukZRu4PpqI-Od5gWbTj5-HZ9EoWpDpEUyXEfaEgpMFcoKsQRRlopaytRKqV3mFCqbJSYXRqkEEhA5OoJ9S9tGi6kptM1fst58McdXjFtrEgGk77J3DQEvCTpPrVBQEDDUaZ9lG-PVOlCau8oaTe23NklVj8Zj8uPaWbwOFu-z91ulZcfo8XfxY-cVW1FHx-0byIJ1GN11oQFBJiBRZ8JiWUHqmM0M4WmdyzzvswNn9e1Lgon77GjjY3WYOlZ1JoqCYKIsSCva-t0fXe18eaerr_9R_oj11tctviFUtVZvw9D5BfcbHfc
  priority: 102
  providerName: Unpaywall
Title Fault Diagnosis of Rod Pumping Wells Based on Support Vector Machine Optimized by Improved Chicken Swarm Optimization
URI https://ieeexplore.ieee.org/document/8915772
https://www.proquest.com/docview/2455643653
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08915772.pdf
https://doaj.org/article/5caea60a6ec24fe79a15703d016c3633
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQ9gA8oMFAFEblBx4Jsx3HTh67QjUhbUyIwniKzr-kiSyd1lbT9tfv7KRVK6TxsrfIubMuvov92Tp_R8hHqQQgMC6z3BnIpAsmA-shg8qAlbnWTMWLwien6ngqv50X5xulvmJOWEcP3A3cYWHBg2KgvBUyeF0Bj6RRDqGKzVWeeD5ZWW1sptIcXHJVFbqnGeKsOhyNx_hFMZer-ixwUyAE31qKEmN_X2JlC20-XbZXcHsDTbOx8Ez2yIseMdJRZ-lL8sS3r8jzDR7BfbKcwLJZ0C9d2tzFnM4C_TFz9Ax9hQL0t2-aOT3CBcvRWUtjJU9E3fRXOrGnJymf0tPvOHtcXtyhjLml3WEDPsdcjb8elW7g-nIlk9z5mkwnX3-Oj7O-nkJmJSsXmQ2Iz7jxqvJeg9TaYIvmQSkb7zR5EwRzuXTGMGAgcx-p7wNu6ILnrrAhf0N22lnr3xIagmMSUD_eq3UIiRTYnAdpoEDIZvmAiNXQ1rYnG481L5o6bTpYVXf-qKM_6t4fA_JprXTVcW08LH4UfbYWjUTZqQHDp-7Dp_5f-AzIfvT4upOywvdaDMjBKgLq_qee10IWBQI4VaBWto6Kf0yFVOlyy9R3j2Hqe_Is9tmd_xyQncX10n9ARLQwwxT8w3R5cUh2p6dnoz_3O6EJDA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvApioYAPHJttHrazObYLqwW6BaEWerPGL6lqmlTdRFX76xk72agLCHGLrJnE0Uzsz5OZbwh5z0QKCIwnUWYURMw4FYG2EEGhQLMsz2PhC4UXR2J-wj6f8tMNsjvUwlhrQ_KZHfvL8C_f1Lr1obK9SZFwRIP3yH3OGONdtdYQUfEtJAqe99RCSVzs7U-n-BY-f6sYp3gQSNNkbfsJLP19W5U1hLnVVpdwcw1leWezmT0mi9U0uxyT83HbqLG-_Y3B8X_f4wl51KNOut-5yVOyYatn5OEdLsJt0s6gLRv6oUu9O1vS2tHvtaHf0N4oQH_aslzSA9z0DK0r6ruBInKnP0LUny5CTqalX3EFuji7RRl1Q7uABV77fI9zi0rXcHWxkgku8ZyczD4eT-dR35Mh0iyeNJF2iPESZUVhbQ4szxWO5IkTQvu6KKtcGpuMGaViiIFl1tPnOzwUOpsYrl32gmxWdWVfEuqciRmgvq_NNQirBOgscUwBR9inkxFJV6aSuics930zShkOLnEhO_tKb1_Z23dEdgely46v49_iB94HBlFPth0G0F6y_3Yl12BBxCCsTpmzeQGJ5y0ziJZ1JrJsRLa9jYeb9OYdkZ2VR8l-YVjKlHGOIFBw1IoGL_tjqhC6Za5N9dXfn_KObM2PF4fy8NPRl9fkgdfoIkQ7ZLO5au0bxEyNehs-lV8KgRM5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAgygbyA48kzQ_HaR67QjUhbUyIwniKzvZZqpa11dpobH89Z8etVpCQ4C2y7hJHd7Y_23ffMfZOyAwIGA-j3CiIhLEqAo0QQaVAi7wsE-kShU_P5MlUfLooLsKBm8-FQUQffIaxe_R3-TNsfpYDmTnytGowdIzqSTpIhlVaEDaMl8Y-ZHuyoE_22N707Hz0w1WUS2UV5f5u8jAQaw7A1yB08VxVnNHGIMvSneXIs_aHMis7iPNRO1_C7Q00zb3FZ7LP6k23u5iTy7hdq1jf_cbo-P__9ZQ9CbiUjzpHesYe4Pw5e3yPrfCAtRNomzX_0AXnzVZ8YfmXheHn5BEkwL9j06z4MS2Lhi_m3NULJWzPv_l7AX7qozaRf6Y56mp2RzLqlndHGvTsIkIukZRu4PpqI-Od5gWbTj5-HZ9EoWpDpEUyXEfaEgpMFcoKsQRRlopaytRKqV3mFCqbJSYXRqkEEhA5OoJ9S9tGi6kptM1fst58McdXjFtrEgGk77J3DQEvCTpPrVBQEDDUaZ9lG-PVOlCau8oaTe23NklVj8Zj8uPaWbwOFu-z91ulZcfo8XfxY-cVW1FHx-0byIJ1GN11oQFBJiBRZ8JiWUHqmM0M4WmdyzzvswNn9e1Lgon77GjjY3WYOlZ1JoqCYKIsSCva-t0fXe18eaerr_9R_oj11tctviFUtVZvw9D5BfcbHfc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+of+Rod+Pumping+Wells+Based+on+Support+Vector+Machine+Optimized+by+Improved+Chicken+Swarm+Optimization&rft.jtitle=IEEE+access&rft.au=Liu%2C+Jinze&rft.au=Feng%2C+Jian&rft.au=Gao%2C+Xianwen&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=171598&rft.epage=171608&rft_id=info:doi/10.1109%2FACCESS.2019.2956221&rft.externalDocID=8915772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon