Modeling ultrasound propagation through material of increasing geometrical complexity

•Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refract...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 90; pp. 52 - 62
Main Authors Odabaee, Maryam, Odabaee, Mostafa, Pelekanos, Matthew, Leinenga, Gerhard, Götz, Jürgen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text
ISSN0041-624X
1874-9968
1874-9968
DOI10.1016/j.ultras.2018.05.014

Cover

Abstract •Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refraction of wave propagation.•Finite Element Analysis reveals differences depending on step size of models. Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.
AbstractList Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.
•Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refraction of wave propagation.•Finite Element Analysis reveals differences depending on step size of models. Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.
Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.
Author Odabaee, Mostafa
Götz, Jürgen
Odabaee, Maryam
Leinenga, Gerhard
Pelekanos, Matthew
Author_xml – sequence: 1
  givenname: Maryam
  surname: Odabaee
  fullname: Odabaee, Maryam
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0001-8501-7896
  surname: Odabaee
  fullname: Odabaee, Mostafa
– sequence: 3
  givenname: Matthew
  surname: Pelekanos
  fullname: Pelekanos, Matthew
– sequence: 4
  givenname: Gerhard
  orcidid: 0000-0002-7549-5568
  surname: Leinenga
  fullname: Leinenga, Gerhard
– sequence: 5
  givenname: Jürgen
  surname: Götz
  fullname: Götz, Jürgen
  email: j.goetz@uq.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29909121$$D View this record in MEDLINE/PubMed
BookMark eNqNkE2P1SAYRokZ49wZ_QfGdOmmFVo-igsTM_ErGePGSdwRSt_e4YZCBTp6_71cO7pwoa5YcM4TOBfozAcPCD0luCGY8BeHZnU56tS0mPQNZg0m9AHakV7QWkren6EdxpTUvKVfztFFSgdciJ50j9B5KyWWpCU7dPMxjOCs31fbWlj9WC0xLHqvsw2-yrcxrPvbatYZotWuClNlvYmg08naQ5ghR2vKjQnz4uC7zcfH6OGkXYIn9-clunn75vPV-_r607sPV6-va0Nxn2tj9NANhtCxo2ISIDCTIMmgZSu41JOkwvCBTYNglGnORCcH1klNAHMQA3SXiG27q1_08Zt2Ti3RzjoeFcHqlEkd1PYxdcqkMFMlQvGeb1756dcVUlazTQac0x7CemIZF7xreV_QZ_foOsww_t7_lbAAdANMDClFmP73CS__0IzNP5MX1Lp_ya82GUrcOwtRJWPBGxhtBJPVGOzfB34AX6eyvA
CitedBy_id crossref_primary_10_3390_s19020345
crossref_primary_10_1007_s40477_021_00630_7
crossref_primary_10_3389_fnins_2021_673740
crossref_primary_10_3390_mi15081007
crossref_primary_10_3390_s21175962
crossref_primary_10_1016_j_brainresbull_2019_08_002
crossref_primary_10_1002_cnm_3779
Cites_doi 10.1158/0008-5472.CAN-12-0128
10.1093/brain/awx052
10.1088/0031-9155/56/1/014
10.1088/0031-9155/60/12/N251
10.1056/NEJMoa1600159
10.1186/s40349-016-0074-7
10.1371/journal.pone.0010549
10.1007/978-3-319-30463-2
10.1039/c2lc40733g
10.1088/1361-6560/aa7ccc
10.1371/journal.pone.0164278
10.1080/02656736.2017.1295322
10.7150/thno.22852
10.1177/0954411913486079
10.3109/02656736.2013.861519
10.1177/0954411914523582
10.1190/1.1442453
10.1109/83.128026
10.1126/scitranslmed.aaf6086
10.1118/1.3668316
10.1016/j.expneurol.2013.05.008
10.1109/58.764862
10.1121/1.1529663
10.1038/nrneurol.2016.13
10.1109/TSA.2005.860851
10.7150/thno.20621
10.1126/scitranslmed.aaa2512
10.1088/0031-9155/47/22/302
10.1016/0041-624X(89)90058-9
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.ultras.2018.05.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
EndPage 62
ExternalDocumentID 10.1016/j.ultras.2018.05.014
29909121
10_1016_j_ultras_2018_05_014
S0041624X17307850
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c408t-ccab3bc14d347f7e7059e91ba92769af947c6b5fb7545a65739b539a1e06e7be3
IEDL.DBID .~1
ISSN 0041-624X
1874-9968
IngestDate Tue Aug 19 22:26:02 EDT 2025
Sun Sep 28 00:15:50 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Wed Oct 01 05:14:57 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultrasound acoustic response (UAR)
Wiener deconvolution
Therapeutic ultrasound
Finite element analysis (FEA)
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ccab3bc14d347f7e7059e91ba92769af947c6b5fb7545a65739b539a1e06e7be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7549-5568
0000-0001-8501-7896
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0041624X17307850
PMID 29909121
PQID 2056763268
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_ultras_2018_05_014
proquest_miscellaneous_2056763268
pubmed_primary_29909121
crossref_primary_10_1016_j_ultras_2018_05_014
crossref_citationtrail_10_1016_j_ultras_2018_05_014
elsevier_sciencedirect_doi_10_1016_j_ultras_2018_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hynynen, Sun (b0075) 1999; 46
Kyriakou, Neufeld, Werner, Paulides, Szekely, Kuster (b0070) 2014; 30
Elias, Lipsman, Ondo, Ghanouni, Kim, Lee, Schwartz, Hynynen, Lozano, Shah, Huss, Dallapiazza, Gwinn, Witt, Ro, Eisenberg, Fishman, Gandhi, Halpern, Chuang, Butts Pauly, Tierney, Hayes, Cosgrove, Yamaguchi, Abe, Taira, Chang (b0010) 2016; 375
Connor, Clement, Hynynen (b0140) 2002; 47
Wille, Zapf, Ruiter, Gemmeke, Langton (b0170) 2015; 60
Brekhovskikh, Godin (b0120) 1990
Walden (b0115) 1988; 53
Aubry, Tanter, Pernot, Thomas, Fink (b0145) 2003; 113
Jordao, Thevenot, Markham-Coultes, Scarcelli, Weng, Xhima, O'Reilly, Huang, McLaurin, Hynynen, Aubert (b0025) 2013; 248
Leinenga, Götz (b0040) 2018
Pichardo, Sin, Hynynen (b0150) 2011; 56
Madenci, Guven (b0125) 2015
Jingdong, Benesty, Yiteng, Doclo (b0110) 2006; 14
L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation, 2016.
Leinenga, Götz (b0030) 2015; 7
Pelekanos, Leinenga, Odabaee, Odabaee, Saifzadeh, Steck, Götz (b0055) 2018; 8
McDannold, Arvanitis, Vykhodtseva, Livingstone (b0060) 2012; 72
Howard, Cazzolato (b0130) 2015
Leinenga, Langton, Nisbet, Götz (b0005) 2016; 12
Jordao, Ayala-Grosso, Markham, Huang, Chopra, McLaurin, Hynynen, Aubert (b0020) 2010; 5
O'Reilly, Jones, Barrett, Schwab, Head, Hynynen (b0050) 2017; 7
Langton, Wille, Flegg (b0095) 2014; 228
Hayward, Lewis (b0090) 1989; 27
Dual, Hahn, Leibacher, Moller, Schwarz, Wang (b0135) 2012; 12
Marsac, Chauvet, La Greca, Boch, Chaumoitre, Tanter, Aubry (b0160) 2017; 33
Pichardo, Moreno-Hernandez, Andrew Drainville, Sin, Curiel, Hynynen (b0165) 2017; 62
Langton, Wille (b0080) 2013; 227
Hatch, Leinenga, Götz (b0045) 2016; 11
Landi, Zama (b0105) 2006; 175
Pinton, Aubry, Bossy, Muller, Pernot, Tanter (b0065) 2012; 39
Nisbet, van der Jeugd, Leinenga, Evans, Janowicz, Götz (b0035) 2017; 140
Sin, Chen (b0100) 1992; 1
Almquist, Parker, Christensen (b0155) 2016; 4
Carpentier, Canney, Vignot, Reina, Beccaria, Horodyckid, Karachi, Leclercq, Lafon, Chapelon, Capelle, Cornu, Sanson, Hoang-Xuan, Delattre, Idbaih (b0015) 2016; 8
Leinenga (10.1016/j.ultras.2018.05.014_b0040) 2018
Madenci (10.1016/j.ultras.2018.05.014_b0125) 2015
Landi (10.1016/j.ultras.2018.05.014_b0105) 2006; 175
Kyriakou (10.1016/j.ultras.2018.05.014_b0070) 2014; 30
Howard (10.1016/j.ultras.2018.05.014_b0130) 2015
Marsac (10.1016/j.ultras.2018.05.014_b0160) 2017; 33
Hayward (10.1016/j.ultras.2018.05.014_b0090) 1989; 27
Aubry (10.1016/j.ultras.2018.05.014_b0145) 2003; 113
Hatch (10.1016/j.ultras.2018.05.014_b0045) 2016; 11
Pelekanos (10.1016/j.ultras.2018.05.014_b0055) 2018; 8
Connor (10.1016/j.ultras.2018.05.014_b0140) 2002; 47
Elias (10.1016/j.ultras.2018.05.014_b0010) 2016; 375
Pichardo (10.1016/j.ultras.2018.05.014_b0150) 2011; 56
Jingdong (10.1016/j.ultras.2018.05.014_b0110) 2006; 14
Dual (10.1016/j.ultras.2018.05.014_b0135) 2012; 12
Pichardo (10.1016/j.ultras.2018.05.014_b0165) 2017; 62
Nisbet (10.1016/j.ultras.2018.05.014_b0035) 2017; 140
10.1016/j.ultras.2018.05.014_b0085
Langton (10.1016/j.ultras.2018.05.014_b0095) 2014; 228
Walden (10.1016/j.ultras.2018.05.014_b0115) 1988; 53
Carpentier (10.1016/j.ultras.2018.05.014_b0015) 2016; 8
Jordao (10.1016/j.ultras.2018.05.014_b0020) 2010; 5
Langton (10.1016/j.ultras.2018.05.014_b0080) 2013; 227
Sin (10.1016/j.ultras.2018.05.014_b0100) 1992; 1
Brekhovskikh (10.1016/j.ultras.2018.05.014_b0120) 1990
Leinenga (10.1016/j.ultras.2018.05.014_b0005) 2016; 12
Wille (10.1016/j.ultras.2018.05.014_b0170) 2015; 60
Almquist (10.1016/j.ultras.2018.05.014_b0155) 2016; 4
McDannold (10.1016/j.ultras.2018.05.014_b0060) 2012; 72
Jordao (10.1016/j.ultras.2018.05.014_b0025) 2013; 248
Leinenga (10.1016/j.ultras.2018.05.014_b0030) 2015; 7
Hynynen (10.1016/j.ultras.2018.05.014_b0075) 1999; 46
O'Reilly (10.1016/j.ultras.2018.05.014_b0050) 2017; 7
Pinton (10.1016/j.ultras.2018.05.014_b0065) 2012; 39
References_xml – volume: 33
  start-page: 635
  year: 2017
  end-page: 645
  ident: b0160
  article-title: Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz
  publication-title: Int. J. Hyperthermia
– volume: 53
  start-page: 186
  year: 1988
  end-page: 191
  ident: b0115
  article-title: Robust deconvolution by modified Wiener filtering
  publication-title: Geophysics
– volume: 228
  start-page: 321
  year: 2014
  end-page: 329
  ident: b0095
  article-title: A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 30
  start-page: 36
  year: 2014
  end-page: 46
  ident: b0070
  article-title: A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound
  publication-title: Int. J. Hyperther.
– volume: 56
  start-page: 219
  year: 2011
  end-page: 250
  ident: b0150
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys. Med. Biol.
– volume: 11
  start-page: e0164278
  year: 2016
  ident: b0045
  article-title: Scanning ultrasound (SUS) causes no changes to neuronal excitability and prevents age-related reductions in hippocampal CA1 dendritic structure in wild-type mice
  publication-title: PLoS One
– reference: L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation, 2016.
– volume: 39
  start-page: 299
  year: 2012
  end-page: 307
  ident: b0065
  article-title: Attenuation, scattering, and absorption of ultrasound in the skull bone
  publication-title: Med. Phys.
– volume: 227
  start-page: 890
  year: 2013
  end-page: 895
  ident: b0080
  article-title: Experimental and computer simulation validation of ultrasound phase interference created by lateral inhomogeneity of transit time in replica bone: marrow composite models
  publication-title: Proc. Inst. Mech. Eng. H
– year: 1990
  ident: b0120
  article-title: Acoustics of Layered Media I – Plane and Quasi-plane Waves, Chapter 2, Section 2
– volume: 175
  start-page: 715
  year: 2006
  end-page: 729
  ident: b0105
  article-title: The active-set method for nonnegative regularization of linear ill-posed problems
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 3
  year: 1992
  end-page: 10
  ident: b0100
  article-title: A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials
  publication-title: Trans. Img. Proc.
– volume: 46
  start-page: 752
  year: 1999
  end-page: 755
  ident: b0075
  article-title: Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 113
  start-page: 84
  year: 2003
  end-page: 93
  ident: b0145
  article-title: Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans
  publication-title: J. Acoust. Soc. Am.
– volume: 72
  start-page: 3652
  year: 2012
  end-page: 3663
  ident: b0060
  article-title: Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques
  publication-title: Cancer Res.
– volume: 12
  start-page: 161
  year: 2016
  end-page: 174
  ident: b0005
  article-title: Ultrasound treatment of neurological diseases – current and emerging applications
  publication-title: Nat. Rev. Neurol.
– volume: 140
  start-page: 1220
  year: 2017
  end-page: 1230
  ident: b0035
  article-title: Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model
  publication-title: Brain
– volume: 248
  start-page: 16
  year: 2013
  end-page: 29
  ident: b0025
  article-title: Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound
  publication-title: Exp. Neurol.
– volume: 7
  start-page: 3573
  year: 2017
  end-page: 3584
  ident: b0050
  article-title: Investigation of the safety of focused ultrasound-induced blood-brain barrier opening in a natural canine model of aging
  publication-title: Theranostics
– year: 2015
  ident: b0130
  article-title: Acoustic analyses using Matlab and Ansys
– volume: 4
  start-page: 30
  year: 2016
  ident: b0155
  article-title: Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies
  publication-title: J. Ther. Ultrasound
– volume: 12
  start-page: 4010
  year: 2012
  end-page: 4021
  ident: b0135
  article-title: Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation
  publication-title: Lab Chip
– volume: 5
  start-page: e10549
  year: 2010
  ident: b0020
  article-title: Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease
  publication-title: PLoS One
– volume: 60
  start-page: N251
  year: 2015
  end-page: 260
  ident: b0170
  article-title: Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 6938
  year: 2017
  end-page: 6962
  ident: b0165
  article-title: A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull
  publication-title: Phys. Med. Biol.
– volume: 375
  start-page: 730
  year: 2016
  end-page: 739
  ident: b0010
  article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor
  publication-title: N. Engl. J. Med.
– year: 2015
  ident: b0125
  article-title: The Finite Element Method and Applications in Engineering Using ANSYS®The Finite Element Method and Applications in Engineering Using ANSYS®
– volume: 7
  start-page: 278ra233
  year: 2015
  ident: b0030
  article-title: Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model
  publication-title: Sci. Transl. Med.
– volume: 8
  start-page: 2583
  year: 2018
  end-page: 2602
  ident: b0055
  article-title: Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions
  publication-title: Theranostics
– volume: 27
  start-page: 155
  year: 1989
  end-page: 164
  ident: b0090
  article-title: Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data
  publication-title: Ultrasonics
– volume: 47
  start-page: 3925
  year: 2002
  end-page: 3944
  ident: b0140
  article-title: A unified model for the speed of sound in cranial bone based on genetic algorithm optimization
  publication-title: Phys. Med. Biol.
– volume: 8
  start-page: 343re342
  year: 2016
  ident: b0015
  article-title: Clinical trial of blood-brain barrier disruption by pulsed ultrasound
  publication-title: Sci. Transl. Med.
– volume: 14
  start-page: 1218
  year: 2006
  end-page: 1234
  ident: b0110
  article-title: New insights into the noise reduction wiener filter
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– start-page: 743
  year: 2018
  ident: b0040
  article-title: Safety and efficacy of scanning ultrasound treatment of aged APP23 mice
  publication-title: Front. Neurosci.
– volume: 72
  start-page: 3652
  year: 2012
  ident: 10.1016/j.ultras.2018.05.014_b0060
  article-title: Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0128
– volume: 140
  start-page: 1220
  year: 2017
  ident: 10.1016/j.ultras.2018.05.014_b0035
  article-title: Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model
  publication-title: Brain
  doi: 10.1093/brain/awx052
– volume: 56
  start-page: 219
  year: 2011
  ident: 10.1016/j.ultras.2018.05.014_b0150
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/1/014
– volume: 60
  start-page: N251
  year: 2015
  ident: 10.1016/j.ultras.2018.05.014_b0170
  article-title: Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/12/N251
– volume: 375
  start-page: 730
  year: 2016
  ident: 10.1016/j.ultras.2018.05.014_b0010
  article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1600159
– volume: 4
  start-page: 30
  year: 2016
  ident: 10.1016/j.ultras.2018.05.014_b0155
  article-title: Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies
  publication-title: J. Ther. Ultrasound
  doi: 10.1186/s40349-016-0074-7
– volume: 5
  start-page: e10549
  year: 2010
  ident: 10.1016/j.ultras.2018.05.014_b0020
  article-title: Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010549
– ident: 10.1016/j.ultras.2018.05.014_b0085
  doi: 10.1007/978-3-319-30463-2
– volume: 12
  start-page: 4010
  year: 2012
  ident: 10.1016/j.ultras.2018.05.014_b0135
  article-title: Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation
  publication-title: Lab Chip
  doi: 10.1039/c2lc40733g
– volume: 62
  start-page: 6938
  year: 2017
  ident: 10.1016/j.ultras.2018.05.014_b0165
  article-title: A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa7ccc
– volume: 11
  start-page: e0164278
  year: 2016
  ident: 10.1016/j.ultras.2018.05.014_b0045
  article-title: Scanning ultrasound (SUS) causes no changes to neuronal excitability and prevents age-related reductions in hippocampal CA1 dendritic structure in wild-type mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164278
– volume: 33
  start-page: 635
  year: 2017
  ident: 10.1016/j.ultras.2018.05.014_b0160
  article-title: Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz
  publication-title: Int. J. Hyperthermia
  doi: 10.1080/02656736.2017.1295322
– volume: 8
  start-page: 2583
  year: 2018
  ident: 10.1016/j.ultras.2018.05.014_b0055
  article-title: Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions
  publication-title: Theranostics
  doi: 10.7150/thno.22852
– volume: 227
  start-page: 890
  year: 2013
  ident: 10.1016/j.ultras.2018.05.014_b0080
  article-title: Experimental and computer simulation validation of ultrasound phase interference created by lateral inhomogeneity of transit time in replica bone: marrow composite models
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411913486079
– volume: 30
  start-page: 36
  year: 2014
  ident: 10.1016/j.ultras.2018.05.014_b0070
  article-title: A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound
  publication-title: Int. J. Hyperther.
  doi: 10.3109/02656736.2013.861519
– volume: 228
  start-page: 321
  year: 2014
  ident: 10.1016/j.ultras.2018.05.014_b0095
  article-title: A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411914523582
– volume: 175
  start-page: 715
  year: 2006
  ident: 10.1016/j.ultras.2018.05.014_b0105
  article-title: The active-set method for nonnegative regularization of linear ill-posed problems
  publication-title: Appl. Math. Comput.
– volume: 53
  start-page: 186
  year: 1988
  ident: 10.1016/j.ultras.2018.05.014_b0115
  article-title: Robust deconvolution by modified Wiener filtering
  publication-title: Geophysics
  doi: 10.1190/1.1442453
– volume: 1
  start-page: 3
  year: 1992
  ident: 10.1016/j.ultras.2018.05.014_b0100
  article-title: A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials
  publication-title: Trans. Img. Proc.
  doi: 10.1109/83.128026
– volume: 8
  start-page: 343re342
  year: 2016
  ident: 10.1016/j.ultras.2018.05.014_b0015
  article-title: Clinical trial of blood-brain barrier disruption by pulsed ultrasound
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf6086
– start-page: 743
  year: 2018
  ident: 10.1016/j.ultras.2018.05.014_b0040
  article-title: Safety and efficacy of scanning ultrasound treatment of aged APP23 mice
  publication-title: Front. Neurosci.
– volume: 39
  start-page: 299
  year: 2012
  ident: 10.1016/j.ultras.2018.05.014_b0065
  article-title: Attenuation, scattering, and absorption of ultrasound in the skull bone
  publication-title: Med. Phys.
  doi: 10.1118/1.3668316
– year: 2015
  ident: 10.1016/j.ultras.2018.05.014_b0125
– year: 2015
  ident: 10.1016/j.ultras.2018.05.014_b0130
– volume: 248
  start-page: 16
  year: 2013
  ident: 10.1016/j.ultras.2018.05.014_b0025
  article-title: Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2013.05.008
– volume: 46
  start-page: 752
  year: 1999
  ident: 10.1016/j.ultras.2018.05.014_b0075
  article-title: Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.764862
– volume: 113
  start-page: 84
  year: 2003
  ident: 10.1016/j.ultras.2018.05.014_b0145
  article-title: Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1529663
– year: 1990
  ident: 10.1016/j.ultras.2018.05.014_b0120
– volume: 12
  start-page: 161
  year: 2016
  ident: 10.1016/j.ultras.2018.05.014_b0005
  article-title: Ultrasound treatment of neurological diseases – current and emerging applications
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.13
– volume: 14
  start-page: 1218
  year: 2006
  ident: 10.1016/j.ultras.2018.05.014_b0110
  article-title: New insights into the noise reduction wiener filter
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TSA.2005.860851
– volume: 7
  start-page: 3573
  year: 2017
  ident: 10.1016/j.ultras.2018.05.014_b0050
  article-title: Investigation of the safety of focused ultrasound-induced blood-brain barrier opening in a natural canine model of aging
  publication-title: Theranostics
  doi: 10.7150/thno.20621
– volume: 7
  start-page: 278ra233
  year: 2015
  ident: 10.1016/j.ultras.2018.05.014_b0030
  article-title: Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa2512
– volume: 47
  start-page: 3925
  year: 2002
  ident: 10.1016/j.ultras.2018.05.014_b0140
  article-title: A unified model for the speed of sound in cranial bone based on genetic algorithm optimization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/47/22/302
– volume: 27
  start-page: 155
  year: 1989
  ident: 10.1016/j.ultras.2018.05.014_b0090
  article-title: Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(89)90058-9
SSID ssj0014813
Score 2.2698736
Snippet •Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were...
Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Finite element analysis (FEA)
Therapeutic ultrasound
Ultrasound acoustic response (UAR)
Wiener deconvolution
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pKgPttVaz1ZJoY_dY7P5fhSpSKHigwfnU0jWbFGve6K39OOv72Sze1iLaB8XkjDJTDK_bGZ-A_BRSRE08zILAu8mXOjIAUmrTHNulHfUMddG-Z7I4zH_MhGTJfjU58L89X7fxmE1U7zyR2JtqhPHJl-GFSkQeQ9gZXxyenCeHpFpJgs-ifcrrXiGMF73mXKPDPOYJ_oXaa7DalPfuF8_3HR6z_scvYSvvdwp6OR61Mz9qPz9gNLxuRN7BRsdDCUHyW5ew1KoN2H9HjnhJrxog0PLuy0Yx4JpMW2dpMFiJSaCouBZ1OqVdMV-CKLf1qDJrCKXdcSj8U8E-RZm32PhLjQH0oawh5-I_d_A-Ojz2eFx1pVjyEqe63mGuvbMl5RfMK4qFRQis2Cod6ZQ0rjKcFVKLyqvEJU5KRQzXjDjaMhlUD6wbRjUszrsAKE0sILx4qIyntOSGZZrh66Sl7mSXLkhsF41tuy4ymPJjKntg9KubJqxjctnc2Fx-YaQLXrdJK6OJ9qrXuu2wxsJR1hU1hM9P_RGYnE7xjcWV4dZExsJiUd2IfUQ3ibrWcgSPb-hBR3CaGFOzxJ09387vIO1-JVyJt_DYH7bhD0ET3O_3-2ZP_nOE8E
  priority: 102
  providerName: Unpaywall
Title Modeling ultrasound propagation through material of increasing geometrical complexity
URI https://dx.doi.org/10.1016/j.ultras.2018.05.014
https://www.ncbi.nlm.nih.gov/pubmed/29909121
https://www.proquest.com/docview/2056763268
https://doi.org/10.1016/j.ultras.2018.05.014
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmhzKE362rYJKvTqxLJe1nEJDZsElhy6sD0JyZHLlo13SXdpculv74xsLyklpPRkbGQ81jee-WTNA-CT0SqWIugsKlybSFVSDUheZ6WU1gTPvfApynesRxN5PlXTLTjpc2EorLKz_a1NT9a6u3LczebxcjajHF8kE4WcclRSU6Z1u5SGuhgc_dqEeSDb590uM89odJ8-l2K81vPVjaei3bxs63fKh9zT3_RzF56um6W_--nn83su6fQFPO-4JBu24u7BVmz2YfdehcF92EkRntWPlzChrmeUe85acaidEsPHoUFJ4LCuYw9DCpu0ki1qNmuIVNLvBPYtLq6p-xZiylIcerxFAv8KJqefv5yMsq6nQlbJvFxlCFgQoeLySkhTm2iQXkXLg7eF0dbXVppKB1UHg9TKa2WEDUpYz2OuowlRvIbtZtHEt8A4j6IQsriqbZC8ElbkpUd_J6vcaGn8AEQ_la7qCo5T34u56yPLvrv2jR0B4HLlEIABZJu7lm3BjUfGmx4l94fiOPQJj9z5sQfV4TdFGyW-iYs1DVIa7W6hywG8adHeyELu2_KCD-BoA_8_CfruvwV9D8_orM2A_ADbq5t1PEAqtAqHSdcP4cnw7GI0xuNkfDn8-hu2LQpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrVDooYLyCgW6SFzder0v77GqqAKUnhIpt9Wus0apghOFRG0v_e3M-BG1QiiIq70rj_cbz3zrnQfAJ6NVzEXQSVS4N5EqpxqQvExyKa0Jnnvh6yjfKz0Yya9jNd6B8y4XhsIqW9vf2PTaWrdXTtvVPF1Mp5Tji2Qik2OOSmpy2rfvSZUZ2oGd3G_iPJDu8_aYmSc0vMufq4O81rPV0lPVbp43BTzl3_zTn_xzH3rrauHvbvxs9sAnXTyDg5ZMsrNG3uewE6tD2H9QYvAQntQhnsWvFzCitmeUfM4acaifEsPHoUWp0WFtyx6GHLZWSzYv2bQiVkn_E9iPOP9J7bcQVFYHosdbZPAvYXTxeXg-SNqmCkkh03yVIGJBhILLiZCmNNEgv4qWB28zo60vrTSFDqoMBrmV18oIG5SwnsdURxOieAW71byKb4BxHkUmZDYpbZC8EFakuUeHJ4vUaGl8H0S3lK5oK45T44uZ60LLrl3zxo4AcKlyCEAfks2sRVNxY8t406HkHmmOQ6ewZebHDlSHHxWdlPgqztc0SGk0vJnO-_C6QXsjC_lvyzPeh5MN_P8k6Nv_FvQYeoPh90t3-eXq2xE8pTtNOuQ72F0t1_E98qJV-FDr_W9x6Qol
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pKgPttVaz1ZJoY_dY7P5fhSpSKHigwfnU0jWbFGve6K39OOv72Sze1iLaB8XkjDJTDK_bGZ-A_BRSRE08zILAu8mXOjIAUmrTHNulHfUMddG-Z7I4zH_MhGTJfjU58L89X7fxmE1U7zyR2JtqhPHJl-GFSkQeQ9gZXxyenCeHpFpJgs-ifcrrXiGMF73mXKPDPOYJ_oXaa7DalPfuF8_3HR6z_scvYSvvdwp6OR61Mz9qPz9gNLxuRN7BRsdDCUHyW5ew1KoN2H9HjnhJrxog0PLuy0Yx4JpMW2dpMFiJSaCouBZ1OqVdMV-CKLf1qDJrCKXdcSj8U8E-RZm32PhLjQH0oawh5-I_d_A-Ojz2eFx1pVjyEqe63mGuvbMl5RfMK4qFRQis2Cod6ZQ0rjKcFVKLyqvEJU5KRQzXjDjaMhlUD6wbRjUszrsAKE0sILx4qIyntOSGZZrh66Sl7mSXLkhsF41tuy4ymPJjKntg9KubJqxjctnc2Fx-YaQLXrdJK6OJ9qrXuu2wxsJR1hU1hM9P_RGYnE7xjcWV4dZExsJiUd2IfUQ3ibrWcgSPb-hBR3CaGFOzxJ09387vIO1-JVyJt_DYH7bhD0ET3O_3-2ZP_nOE8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+ultrasound+propagation+through+material+of+increasing+geometrical+complexity&rft.jtitle=Ultrasonics&rft.au=Odabaee%2C+Maryam&rft.au=Odabaee%2C+Mostafa&rft.au=Pelekanos%2C+Matthew&rft.au=Leinenga%2C+Gerhard&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=0041-624X&rft.eissn=1874-9968&rft.volume=90&rft.spage=52&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ultras.2018.05.014&rft.externalDocID=S0041624X17307850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon