Modeling ultrasound propagation through material of increasing geometrical complexity
•Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refract...
Saved in:
| Published in | Ultrasonics Vol. 90; pp. 52 - 62 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0041-624X 1874-9968 1874-9968 |
| DOI | 10.1016/j.ultras.2018.05.014 |
Cover
| Abstract | •Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refraction of wave propagation.•Finite Element Analysis reveals differences depending on step size of models.
Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. |
|---|---|
| AbstractList | Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. •Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were analyzed.•Wiener deconvolution predicts the Ultrasound Acoustic Response and attenuation.•Finite Element Analysis observes scattering and refraction of wave propagation.•Finite Element Analysis reveals differences depending on step size of models. Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. |
| Author | Odabaee, Mostafa Götz, Jürgen Odabaee, Maryam Leinenga, Gerhard Pelekanos, Matthew |
| Author_xml | – sequence: 1 givenname: Maryam surname: Odabaee fullname: Odabaee, Maryam – sequence: 2 givenname: Mostafa orcidid: 0000-0001-8501-7896 surname: Odabaee fullname: Odabaee, Mostafa – sequence: 3 givenname: Matthew surname: Pelekanos fullname: Pelekanos, Matthew – sequence: 4 givenname: Gerhard orcidid: 0000-0002-7549-5568 surname: Leinenga fullname: Leinenga, Gerhard – sequence: 5 givenname: Jürgen surname: Götz fullname: Götz, Jürgen email: j.goetz@uq.edu.au |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29909121$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE2P1SAYRokZ49wZ_QfGdOmmFVo-igsTM_ErGePGSdwRSt_e4YZCBTp6_71cO7pwoa5YcM4TOBfozAcPCD0luCGY8BeHZnU56tS0mPQNZg0m9AHakV7QWkren6EdxpTUvKVfztFFSgdciJ50j9B5KyWWpCU7dPMxjOCs31fbWlj9WC0xLHqvsw2-yrcxrPvbatYZotWuClNlvYmg08naQ5ghR2vKjQnz4uC7zcfH6OGkXYIn9-clunn75vPV-_r607sPV6-va0Nxn2tj9NANhtCxo2ISIDCTIMmgZSu41JOkwvCBTYNglGnORCcH1klNAHMQA3SXiG27q1_08Zt2Ti3RzjoeFcHqlEkd1PYxdcqkMFMlQvGeb1756dcVUlazTQac0x7CemIZF7xreV_QZ_foOsww_t7_lbAAdANMDClFmP73CS__0IzNP5MX1Lp_ya82GUrcOwtRJWPBGxhtBJPVGOzfB34AX6eyvA |
| CitedBy_id | crossref_primary_10_3390_s19020345 crossref_primary_10_1007_s40477_021_00630_7 crossref_primary_10_3389_fnins_2021_673740 crossref_primary_10_3390_mi15081007 crossref_primary_10_3390_s21175962 crossref_primary_10_1016_j_brainresbull_2019_08_002 crossref_primary_10_1002_cnm_3779 |
| Cites_doi | 10.1158/0008-5472.CAN-12-0128 10.1093/brain/awx052 10.1088/0031-9155/56/1/014 10.1088/0031-9155/60/12/N251 10.1056/NEJMoa1600159 10.1186/s40349-016-0074-7 10.1371/journal.pone.0010549 10.1007/978-3-319-30463-2 10.1039/c2lc40733g 10.1088/1361-6560/aa7ccc 10.1371/journal.pone.0164278 10.1080/02656736.2017.1295322 10.7150/thno.22852 10.1177/0954411913486079 10.3109/02656736.2013.861519 10.1177/0954411914523582 10.1190/1.1442453 10.1109/83.128026 10.1126/scitranslmed.aaf6086 10.1118/1.3668316 10.1016/j.expneurol.2013.05.008 10.1109/58.764862 10.1121/1.1529663 10.1038/nrneurol.2016.13 10.1109/TSA.2005.860851 10.7150/thno.20621 10.1126/scitranslmed.aaa2512 10.1088/0031-9155/47/22/302 10.1016/0041-624X(89)90058-9 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.ultras.2018.05.014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1874-9968 |
| EndPage | 62 |
| ExternalDocumentID | 10.1016/j.ultras.2018.05.014 29909121 10_1016_j_ultras_2018_05_014 S0041624X17307850 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c408t-ccab3bc14d347f7e7059e91ba92769af947c6b5fb7545a65739b539a1e06e7be3 |
| IEDL.DBID | .~1 |
| ISSN | 0041-624X 1874-9968 |
| IngestDate | Tue Aug 19 22:26:02 EDT 2025 Sun Sep 28 00:15:50 EDT 2025 Thu Apr 03 07:01:47 EDT 2025 Wed Oct 01 05:14:57 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ultrasound acoustic response (UAR) Wiener deconvolution Therapeutic ultrasound Finite element analysis (FEA) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-ccab3bc14d347f7e7059e91ba92769af947c6b5fb7545a65739b539a1e06e7be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7549-5568 0000-0001-8501-7896 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0041624X17307850 |
| PMID | 29909121 |
| PQID | 2056763268 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ultras_2018_05_014 proquest_miscellaneous_2056763268 pubmed_primary_29909121 crossref_primary_10_1016_j_ultras_2018_05_014 crossref_citationtrail_10_1016_j_ultras_2018_05_014 elsevier_sciencedirect_doi_10_1016_j_ultras_2018_05_014 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics |
| PublicationTitleAlternate | Ultrasonics |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hynynen, Sun (b0075) 1999; 46 Kyriakou, Neufeld, Werner, Paulides, Szekely, Kuster (b0070) 2014; 30 Elias, Lipsman, Ondo, Ghanouni, Kim, Lee, Schwartz, Hynynen, Lozano, Shah, Huss, Dallapiazza, Gwinn, Witt, Ro, Eisenberg, Fishman, Gandhi, Halpern, Chuang, Butts Pauly, Tierney, Hayes, Cosgrove, Yamaguchi, Abe, Taira, Chang (b0010) 2016; 375 Connor, Clement, Hynynen (b0140) 2002; 47 Wille, Zapf, Ruiter, Gemmeke, Langton (b0170) 2015; 60 Brekhovskikh, Godin (b0120) 1990 Walden (b0115) 1988; 53 Aubry, Tanter, Pernot, Thomas, Fink (b0145) 2003; 113 Jordao, Thevenot, Markham-Coultes, Scarcelli, Weng, Xhima, O'Reilly, Huang, McLaurin, Hynynen, Aubert (b0025) 2013; 248 Leinenga, Götz (b0040) 2018 Pichardo, Sin, Hynynen (b0150) 2011; 56 Madenci, Guven (b0125) 2015 Jingdong, Benesty, Yiteng, Doclo (b0110) 2006; 14 L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation, 2016. Leinenga, Götz (b0030) 2015; 7 Pelekanos, Leinenga, Odabaee, Odabaee, Saifzadeh, Steck, Götz (b0055) 2018; 8 McDannold, Arvanitis, Vykhodtseva, Livingstone (b0060) 2012; 72 Howard, Cazzolato (b0130) 2015 Leinenga, Langton, Nisbet, Götz (b0005) 2016; 12 Jordao, Ayala-Grosso, Markham, Huang, Chopra, McLaurin, Hynynen, Aubert (b0020) 2010; 5 O'Reilly, Jones, Barrett, Schwab, Head, Hynynen (b0050) 2017; 7 Langton, Wille, Flegg (b0095) 2014; 228 Hayward, Lewis (b0090) 1989; 27 Dual, Hahn, Leibacher, Moller, Schwarz, Wang (b0135) 2012; 12 Marsac, Chauvet, La Greca, Boch, Chaumoitre, Tanter, Aubry (b0160) 2017; 33 Pichardo, Moreno-Hernandez, Andrew Drainville, Sin, Curiel, Hynynen (b0165) 2017; 62 Langton, Wille (b0080) 2013; 227 Hatch, Leinenga, Götz (b0045) 2016; 11 Landi, Zama (b0105) 2006; 175 Pinton, Aubry, Bossy, Muller, Pernot, Tanter (b0065) 2012; 39 Nisbet, van der Jeugd, Leinenga, Evans, Janowicz, Götz (b0035) 2017; 140 Sin, Chen (b0100) 1992; 1 Almquist, Parker, Christensen (b0155) 2016; 4 Carpentier, Canney, Vignot, Reina, Beccaria, Horodyckid, Karachi, Leclercq, Lafon, Chapelon, Capelle, Cornu, Sanson, Hoang-Xuan, Delattre, Idbaih (b0015) 2016; 8 Leinenga (10.1016/j.ultras.2018.05.014_b0040) 2018 Madenci (10.1016/j.ultras.2018.05.014_b0125) 2015 Landi (10.1016/j.ultras.2018.05.014_b0105) 2006; 175 Kyriakou (10.1016/j.ultras.2018.05.014_b0070) 2014; 30 Howard (10.1016/j.ultras.2018.05.014_b0130) 2015 Marsac (10.1016/j.ultras.2018.05.014_b0160) 2017; 33 Hayward (10.1016/j.ultras.2018.05.014_b0090) 1989; 27 Aubry (10.1016/j.ultras.2018.05.014_b0145) 2003; 113 Hatch (10.1016/j.ultras.2018.05.014_b0045) 2016; 11 Pelekanos (10.1016/j.ultras.2018.05.014_b0055) 2018; 8 Connor (10.1016/j.ultras.2018.05.014_b0140) 2002; 47 Elias (10.1016/j.ultras.2018.05.014_b0010) 2016; 375 Pichardo (10.1016/j.ultras.2018.05.014_b0150) 2011; 56 Jingdong (10.1016/j.ultras.2018.05.014_b0110) 2006; 14 Dual (10.1016/j.ultras.2018.05.014_b0135) 2012; 12 Pichardo (10.1016/j.ultras.2018.05.014_b0165) 2017; 62 Nisbet (10.1016/j.ultras.2018.05.014_b0035) 2017; 140 10.1016/j.ultras.2018.05.014_b0085 Langton (10.1016/j.ultras.2018.05.014_b0095) 2014; 228 Walden (10.1016/j.ultras.2018.05.014_b0115) 1988; 53 Carpentier (10.1016/j.ultras.2018.05.014_b0015) 2016; 8 Jordao (10.1016/j.ultras.2018.05.014_b0020) 2010; 5 Langton (10.1016/j.ultras.2018.05.014_b0080) 2013; 227 Sin (10.1016/j.ultras.2018.05.014_b0100) 1992; 1 Brekhovskikh (10.1016/j.ultras.2018.05.014_b0120) 1990 Leinenga (10.1016/j.ultras.2018.05.014_b0005) 2016; 12 Wille (10.1016/j.ultras.2018.05.014_b0170) 2015; 60 Almquist (10.1016/j.ultras.2018.05.014_b0155) 2016; 4 McDannold (10.1016/j.ultras.2018.05.014_b0060) 2012; 72 Jordao (10.1016/j.ultras.2018.05.014_b0025) 2013; 248 Leinenga (10.1016/j.ultras.2018.05.014_b0030) 2015; 7 Hynynen (10.1016/j.ultras.2018.05.014_b0075) 1999; 46 O'Reilly (10.1016/j.ultras.2018.05.014_b0050) 2017; 7 Pinton (10.1016/j.ultras.2018.05.014_b0065) 2012; 39 |
| References_xml | – volume: 33 start-page: 635 year: 2017 end-page: 645 ident: b0160 article-title: Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz publication-title: Int. J. Hyperthermia – volume: 53 start-page: 186 year: 1988 end-page: 191 ident: b0115 article-title: Robust deconvolution by modified Wiener filtering publication-title: Geophysics – volume: 228 start-page: 321 year: 2014 end-page: 329 ident: b0095 article-title: A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models publication-title: Proc. Inst. Mech. Eng. H – volume: 30 start-page: 36 year: 2014 end-page: 46 ident: b0070 article-title: A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound publication-title: Int. J. Hyperther. – volume: 56 start-page: 219 year: 2011 end-page: 250 ident: b0150 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys. Med. Biol. – volume: 11 start-page: e0164278 year: 2016 ident: b0045 article-title: Scanning ultrasound (SUS) causes no changes to neuronal excitability and prevents age-related reductions in hippocampal CA1 dendritic structure in wild-type mice publication-title: PLoS One – reference: L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation, 2016. – volume: 39 start-page: 299 year: 2012 end-page: 307 ident: b0065 article-title: Attenuation, scattering, and absorption of ultrasound in the skull bone publication-title: Med. Phys. – volume: 227 start-page: 890 year: 2013 end-page: 895 ident: b0080 article-title: Experimental and computer simulation validation of ultrasound phase interference created by lateral inhomogeneity of transit time in replica bone: marrow composite models publication-title: Proc. Inst. Mech. Eng. H – year: 1990 ident: b0120 article-title: Acoustics of Layered Media I – Plane and Quasi-plane Waves, Chapter 2, Section 2 – volume: 175 start-page: 715 year: 2006 end-page: 729 ident: b0105 article-title: The active-set method for nonnegative regularization of linear ill-posed problems publication-title: Appl. Math. Comput. – volume: 1 start-page: 3 year: 1992 end-page: 10 ident: b0100 article-title: A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials publication-title: Trans. Img. Proc. – volume: 46 start-page: 752 year: 1999 end-page: 755 ident: b0075 article-title: Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 113 start-page: 84 year: 2003 end-page: 93 ident: b0145 article-title: Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans publication-title: J. Acoust. Soc. Am. – volume: 72 start-page: 3652 year: 2012 end-page: 3663 ident: b0060 article-title: Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques publication-title: Cancer Res. – volume: 12 start-page: 161 year: 2016 end-page: 174 ident: b0005 article-title: Ultrasound treatment of neurological diseases – current and emerging applications publication-title: Nat. Rev. Neurol. – volume: 140 start-page: 1220 year: 2017 end-page: 1230 ident: b0035 article-title: Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model publication-title: Brain – volume: 248 start-page: 16 year: 2013 end-page: 29 ident: b0025 article-title: Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound publication-title: Exp. Neurol. – volume: 7 start-page: 3573 year: 2017 end-page: 3584 ident: b0050 article-title: Investigation of the safety of focused ultrasound-induced blood-brain barrier opening in a natural canine model of aging publication-title: Theranostics – year: 2015 ident: b0130 article-title: Acoustic analyses using Matlab and Ansys – volume: 4 start-page: 30 year: 2016 ident: b0155 article-title: Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies publication-title: J. Ther. Ultrasound – volume: 12 start-page: 4010 year: 2012 end-page: 4021 ident: b0135 article-title: Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation publication-title: Lab Chip – volume: 5 start-page: e10549 year: 2010 ident: b0020 article-title: Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease publication-title: PLoS One – volume: 60 start-page: N251 year: 2015 end-page: 260 ident: b0170 article-title: Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum publication-title: Phys. Med. Biol. – volume: 62 start-page: 6938 year: 2017 end-page: 6962 ident: b0165 article-title: A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull publication-title: Phys. Med. Biol. – volume: 375 start-page: 730 year: 2016 end-page: 739 ident: b0010 article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor publication-title: N. Engl. J. Med. – year: 2015 ident: b0125 article-title: The Finite Element Method and Applications in Engineering Using ANSYS®The Finite Element Method and Applications in Engineering Using ANSYS® – volume: 7 start-page: 278ra233 year: 2015 ident: b0030 article-title: Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model publication-title: Sci. Transl. Med. – volume: 8 start-page: 2583 year: 2018 end-page: 2602 ident: b0055 article-title: Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions publication-title: Theranostics – volume: 27 start-page: 155 year: 1989 end-page: 164 ident: b0090 article-title: Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data publication-title: Ultrasonics – volume: 47 start-page: 3925 year: 2002 end-page: 3944 ident: b0140 article-title: A unified model for the speed of sound in cranial bone based on genetic algorithm optimization publication-title: Phys. Med. Biol. – volume: 8 start-page: 343re342 year: 2016 ident: b0015 article-title: Clinical trial of blood-brain barrier disruption by pulsed ultrasound publication-title: Sci. Transl. Med. – volume: 14 start-page: 1218 year: 2006 end-page: 1234 ident: b0110 article-title: New insights into the noise reduction wiener filter publication-title: IEEE Trans. Audio Speech Lang. Process. – start-page: 743 year: 2018 ident: b0040 article-title: Safety and efficacy of scanning ultrasound treatment of aged APP23 mice publication-title: Front. Neurosci. – volume: 72 start-page: 3652 year: 2012 ident: 10.1016/j.ultras.2018.05.014_b0060 article-title: Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0128 – volume: 140 start-page: 1220 year: 2017 ident: 10.1016/j.ultras.2018.05.014_b0035 article-title: Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model publication-title: Brain doi: 10.1093/brain/awx052 – volume: 56 start-page: 219 year: 2011 ident: 10.1016/j.ultras.2018.05.014_b0150 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/1/014 – volume: 60 start-page: N251 year: 2015 ident: 10.1016/j.ultras.2018.05.014_b0170 article-title: Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/12/N251 – volume: 375 start-page: 730 year: 2016 ident: 10.1016/j.ultras.2018.05.014_b0010 article-title: A randomized trial of focused ultrasound thalamotomy for essential tremor publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1600159 – volume: 4 start-page: 30 year: 2016 ident: 10.1016/j.ultras.2018.05.014_b0155 article-title: Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies publication-title: J. Ther. Ultrasound doi: 10.1186/s40349-016-0074-7 – volume: 5 start-page: e10549 year: 2010 ident: 10.1016/j.ultras.2018.05.014_b0020 article-title: Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0010549 – ident: 10.1016/j.ultras.2018.05.014_b0085 doi: 10.1007/978-3-319-30463-2 – volume: 12 start-page: 4010 year: 2012 ident: 10.1016/j.ultras.2018.05.014_b0135 article-title: Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation publication-title: Lab Chip doi: 10.1039/c2lc40733g – volume: 62 start-page: 6938 year: 2017 ident: 10.1016/j.ultras.2018.05.014_b0165 article-title: A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa7ccc – volume: 11 start-page: e0164278 year: 2016 ident: 10.1016/j.ultras.2018.05.014_b0045 article-title: Scanning ultrasound (SUS) causes no changes to neuronal excitability and prevents age-related reductions in hippocampal CA1 dendritic structure in wild-type mice publication-title: PLoS One doi: 10.1371/journal.pone.0164278 – volume: 33 start-page: 635 year: 2017 ident: 10.1016/j.ultras.2018.05.014_b0160 article-title: Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz publication-title: Int. J. Hyperthermia doi: 10.1080/02656736.2017.1295322 – volume: 8 start-page: 2583 year: 2018 ident: 10.1016/j.ultras.2018.05.014_b0055 article-title: Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions publication-title: Theranostics doi: 10.7150/thno.22852 – volume: 227 start-page: 890 year: 2013 ident: 10.1016/j.ultras.2018.05.014_b0080 article-title: Experimental and computer simulation validation of ultrasound phase interference created by lateral inhomogeneity of transit time in replica bone: marrow composite models publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411913486079 – volume: 30 start-page: 36 year: 2014 ident: 10.1016/j.ultras.2018.05.014_b0070 article-title: A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound publication-title: Int. J. Hyperther. doi: 10.3109/02656736.2013.861519 – volume: 228 start-page: 321 year: 2014 ident: 10.1016/j.ultras.2018.05.014_b0095 article-title: A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411914523582 – volume: 175 start-page: 715 year: 2006 ident: 10.1016/j.ultras.2018.05.014_b0105 article-title: The active-set method for nonnegative regularization of linear ill-posed problems publication-title: Appl. Math. Comput. – volume: 53 start-page: 186 year: 1988 ident: 10.1016/j.ultras.2018.05.014_b0115 article-title: Robust deconvolution by modified Wiener filtering publication-title: Geophysics doi: 10.1190/1.1442453 – volume: 1 start-page: 3 year: 1992 ident: 10.1016/j.ultras.2018.05.014_b0100 article-title: A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials publication-title: Trans. Img. Proc. doi: 10.1109/83.128026 – volume: 8 start-page: 343re342 year: 2016 ident: 10.1016/j.ultras.2018.05.014_b0015 article-title: Clinical trial of blood-brain barrier disruption by pulsed ultrasound publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf6086 – start-page: 743 year: 2018 ident: 10.1016/j.ultras.2018.05.014_b0040 article-title: Safety and efficacy of scanning ultrasound treatment of aged APP23 mice publication-title: Front. Neurosci. – volume: 39 start-page: 299 year: 2012 ident: 10.1016/j.ultras.2018.05.014_b0065 article-title: Attenuation, scattering, and absorption of ultrasound in the skull bone publication-title: Med. Phys. doi: 10.1118/1.3668316 – year: 2015 ident: 10.1016/j.ultras.2018.05.014_b0125 – year: 2015 ident: 10.1016/j.ultras.2018.05.014_b0130 – volume: 248 start-page: 16 year: 2013 ident: 10.1016/j.ultras.2018.05.014_b0025 article-title: Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2013.05.008 – volume: 46 start-page: 752 year: 1999 ident: 10.1016/j.ultras.2018.05.014_b0075 article-title: Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.764862 – volume: 113 start-page: 84 year: 2003 ident: 10.1016/j.ultras.2018.05.014_b0145 article-title: Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1529663 – year: 1990 ident: 10.1016/j.ultras.2018.05.014_b0120 – volume: 12 start-page: 161 year: 2016 ident: 10.1016/j.ultras.2018.05.014_b0005 article-title: Ultrasound treatment of neurological diseases – current and emerging applications publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.13 – volume: 14 start-page: 1218 year: 2006 ident: 10.1016/j.ultras.2018.05.014_b0110 article-title: New insights into the noise reduction wiener filter publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TSA.2005.860851 – volume: 7 start-page: 3573 year: 2017 ident: 10.1016/j.ultras.2018.05.014_b0050 article-title: Investigation of the safety of focused ultrasound-induced blood-brain barrier opening in a natural canine model of aging publication-title: Theranostics doi: 10.7150/thno.20621 – volume: 7 start-page: 278ra233 year: 2015 ident: 10.1016/j.ultras.2018.05.014_b0030 article-title: Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa2512 – volume: 47 start-page: 3925 year: 2002 ident: 10.1016/j.ultras.2018.05.014_b0140 article-title: A unified model for the speed of sound in cranial bone based on genetic algorithm optimization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/22/302 – volume: 27 start-page: 155 year: 1989 ident: 10.1016/j.ultras.2018.05.014_b0090 article-title: Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data publication-title: Ultrasonics doi: 10.1016/0041-624X(89)90058-9 |
| SSID | ssj0014813 |
| Score | 2.2698736 |
| Snippet | •Ultrasound is increasingly being recognized as therapeutic tool for brain diseases.•The acoustic properties of a set of simple bone-modeling samples were... Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 52 |
| SubjectTerms | Finite element analysis (FEA) Therapeutic ultrasound Ultrasound acoustic response (UAR) Wiener deconvolution |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pKgPttVaz1ZJoY_dY7P5fhSpSKHigwfnU0jWbFGve6K39OOv72Sze1iLaB8XkjDJTDK_bGZ-A_BRSRE08zILAu8mXOjIAUmrTHNulHfUMddG-Z7I4zH_MhGTJfjU58L89X7fxmE1U7zyR2JtqhPHJl-GFSkQeQ9gZXxyenCeHpFpJgs-ifcrrXiGMF73mXKPDPOYJ_oXaa7DalPfuF8_3HR6z_scvYSvvdwp6OR61Mz9qPz9gNLxuRN7BRsdDCUHyW5ew1KoN2H9HjnhJrxog0PLuy0Yx4JpMW2dpMFiJSaCouBZ1OqVdMV-CKLf1qDJrCKXdcSj8U8E-RZm32PhLjQH0oawh5-I_d_A-Ojz2eFx1pVjyEqe63mGuvbMl5RfMK4qFRQis2Cod6ZQ0rjKcFVKLyqvEJU5KRQzXjDjaMhlUD6wbRjUszrsAKE0sILx4qIyntOSGZZrh66Sl7mSXLkhsF41tuy4ymPJjKntg9KubJqxjctnc2Fx-YaQLXrdJK6OJ9qrXuu2wxsJR1hU1hM9P_RGYnE7xjcWV4dZExsJiUd2IfUQ3ibrWcgSPb-hBR3CaGFOzxJ09387vIO1-JVyJt_DYH7bhD0ET3O_3-2ZP_nOE8E priority: 102 providerName: Unpaywall |
| Title | Modeling ultrasound propagation through material of increasing geometrical complexity |
| URI | https://dx.doi.org/10.1016/j.ultras.2018.05.014 https://www.ncbi.nlm.nih.gov/pubmed/29909121 https://www.proquest.com/docview/2056763268 https://doi.org/10.1016/j.ultras.2018.05.014 |
| UnpaywallVersion | publishedVersion |
| Volume | 90 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmhzKE362rYJKvTqxLJe1nEJDZsElhy6sD0JyZHLlo13SXdpculv74xsLyklpPRkbGQ81jee-WTNA-CT0SqWIugsKlybSFVSDUheZ6WU1gTPvfApynesRxN5PlXTLTjpc2EorLKz_a1NT9a6u3LczebxcjajHF8kE4WcclRSU6Z1u5SGuhgc_dqEeSDb590uM89odJ8-l2K81vPVjaei3bxs63fKh9zT3_RzF56um6W_--nn83su6fQFPO-4JBu24u7BVmz2YfdehcF92EkRntWPlzChrmeUe85acaidEsPHoUFJ4LCuYw9DCpu0ki1qNmuIVNLvBPYtLq6p-xZiylIcerxFAv8KJqefv5yMsq6nQlbJvFxlCFgQoeLySkhTm2iQXkXLg7eF0dbXVppKB1UHg9TKa2WEDUpYz2OuowlRvIbtZtHEt8A4j6IQsriqbZC8ElbkpUd_J6vcaGn8AEQ_la7qCo5T34u56yPLvrv2jR0B4HLlEIABZJu7lm3BjUfGmx4l94fiOPQJj9z5sQfV4TdFGyW-iYs1DVIa7W6hywG8adHeyELu2_KCD-BoA_8_CfruvwV9D8_orM2A_ADbq5t1PEAqtAqHSdcP4cnw7GI0xuNkfDn8-hu2LQpA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrVDooYLyCgW6SFzder0v77GqqAKUnhIpt9Wus0apghOFRG0v_e3M-BG1QiiIq70rj_cbz3zrnQfAJ6NVzEXQSVS4N5EqpxqQvExyKa0Jnnvh6yjfKz0Yya9jNd6B8y4XhsIqW9vf2PTaWrdXTtvVPF1Mp5Tji2Qik2OOSmpy2rfvSZUZ2oGd3G_iPJDu8_aYmSc0vMufq4O81rPV0lPVbp43BTzl3_zTn_xzH3rrauHvbvxs9sAnXTyDg5ZMsrNG3uewE6tD2H9QYvAQntQhnsWvFzCitmeUfM4acaifEsPHoUWp0WFtyx6GHLZWSzYv2bQiVkn_E9iPOP9J7bcQVFYHosdbZPAvYXTxeXg-SNqmCkkh03yVIGJBhILLiZCmNNEgv4qWB28zo60vrTSFDqoMBrmV18oIG5SwnsdURxOieAW71byKb4BxHkUmZDYpbZC8EFakuUeHJ4vUaGl8H0S3lK5oK45T44uZ60LLrl3zxo4AcKlyCEAfks2sRVNxY8t406HkHmmOQ6ewZebHDlSHHxWdlPgqztc0SGk0vJnO-_C6QXsjC_lvyzPeh5MN_P8k6Nv_FvQYeoPh90t3-eXq2xE8pTtNOuQ72F0t1_E98qJV-FDr_W9x6Qol |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pKgPttVaz1ZJoY_dY7P5fhSpSKHigwfnU0jWbFGve6K39OOv72Sze1iLaB8XkjDJTDK_bGZ-A_BRSRE08zILAu8mXOjIAUmrTHNulHfUMddG-Z7I4zH_MhGTJfjU58L89X7fxmE1U7zyR2JtqhPHJl-GFSkQeQ9gZXxyenCeHpFpJgs-ifcrrXiGMF73mXKPDPOYJ_oXaa7DalPfuF8_3HR6z_scvYSvvdwp6OR61Mz9qPz9gNLxuRN7BRsdDCUHyW5ew1KoN2H9HjnhJrxog0PLuy0Yx4JpMW2dpMFiJSaCouBZ1OqVdMV-CKLf1qDJrCKXdcSj8U8E-RZm32PhLjQH0oawh5-I_d_A-Ojz2eFx1pVjyEqe63mGuvbMl5RfMK4qFRQis2Cod6ZQ0rjKcFVKLyqvEJU5KRQzXjDjaMhlUD6wbRjUszrsAKE0sILx4qIyntOSGZZrh66Sl7mSXLkhsF41tuy4ymPJjKntg9KubJqxjctnc2Fx-YaQLXrdJK6OJ9qrXuu2wxsJR1hU1hM9P_RGYnE7xjcWV4dZExsJiUd2IfUQ3ibrWcgSPb-hBR3CaGFOzxJ09387vIO1-JVyJt_DYH7bhD0ET3O_3-2ZP_nOE8E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+ultrasound+propagation+through+material+of+increasing+geometrical+complexity&rft.jtitle=Ultrasonics&rft.au=Odabaee%2C+Maryam&rft.au=Odabaee%2C+Mostafa&rft.au=Pelekanos%2C+Matthew&rft.au=Leinenga%2C+Gerhard&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=0041-624X&rft.eissn=1874-9968&rft.volume=90&rft.spage=52&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ultras.2018.05.014&rft.externalDocID=S0041624X17307850 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |