Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam’s Mekong River Delta
Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam....
Saved in:
| Published in | Environmental science and pollution research international Vol. 30; no. 29; pp. 74340 - 74357 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-7499 0944-1344 1614-7499 |
| DOI | 10.1007/s11356-023-27516-x |
Cover
| Abstract | Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (
R
2
) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an
R
2
value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of
R
2
of 0.99 and a value of RMSE of 0.051, by XGR-GOA (
R
2
= 0.931, RMSE = 0.055), XGR-MSA (
R
2
= 0.928, RMSE = 0.06), XGR-BSA (
R
2
= 0.926, RMSE = 0.062), XGR-SSA (
R
2
= 0.917, 0.07), XGR-PSO (
R
2
= 0.916, RMSE = 0.08), XGR (
R
2
= 0.867, RMSE = 0.1), CatBoost (
R
2
= 0.78, RMSE = 0.12), and RF (
R
2
= 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. |
|---|---|
| AbstractList | Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R ) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R = 0.931, RMSE = 0.055), XGR-MSA (R = 0.928, RMSE = 0.06), XGR-BSA (R = 0.926, RMSE = 0.062), XGR-SSA (R = 0.917, 0.07), XGR-PSO (R = 0.916, RMSE = 0.08), XGR (R = 0.867, RMSE = 0.1), CatBoost (R = 0.78, RMSE = 0.12), and RF (R = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination ( R 2 ) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R 2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R 2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA ( R 2 = 0.931, RMSE = 0.055), XGR-MSA ( R 2 = 0.928, RMSE = 0.06), XGR-BSA ( R 2 = 0.926, RMSE = 0.062), XGR-SSA ( R 2 = 0.917, 0.07), XGR-PSO ( R 2 = 0.916, RMSE = 0.08), XGR ( R 2 = 0.867, RMSE = 0.1), CatBoost ( R 2 = 0.78, RMSE = 0.12), and RF ( R 2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R²) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R² value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R² of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R² = 0.931, RMSE = 0.055), XGR-MSA (R² = 0.928, RMSE = 0.06), XGR-BSA (R² = 0.926, RMSE = 0.062), XGR-SSA (R² = 0.917, 0.07), XGR-PSO (R² = 0.916, RMSE = 0.08), XGR (R² = 0.867, RMSE = 0.1), CatBoost (R² = 0.78, RMSE = 0.12), and RF (R² = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security. |
| Author | Van, Chien Pham Nguyen, Quoc-Huy Pham, Thi Thuy Nga Nguyen, Tien Giang Bui, Quang-Thanh Dang, Dinh Kha Nguyen, Huu Duy |
| Author_xml | – sequence: 1 givenname: Huu Duy orcidid: 0000-0001-9306-4641 surname: Nguyen fullname: Nguyen, Huu Duy organization: Faculty of Geography, VNU University of Science, Vietnam National University – sequence: 2 givenname: Chien Pham surname: Van fullname: Van, Chien Pham organization: Thuyloi University – sequence: 3 givenname: Tien Giang surname: Nguyen fullname: Nguyen, Tien Giang email: giangnt@vnu.edu.vn organization: Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University – sequence: 4 givenname: Dinh Kha surname: Dang fullname: Dang, Dinh Kha organization: Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University – sequence: 5 givenname: Thi Thuy Nga surname: Pham fullname: Pham, Thi Thuy Nga organization: Center for Environmental Fluid Dynamics, VNU University of Science, Vietnam National University – sequence: 6 givenname: Quoc-Huy surname: Nguyen fullname: Nguyen, Quoc-Huy organization: Faculty of Geography, VNU University of Science, Vietnam National University – sequence: 7 givenname: Quang-Thanh surname: Bui fullname: Bui, Quang-Thanh organization: Faculty of Geography, VNU University of Science, Vietnam National University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37204580$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkclu1TAYhS1URAd4ARbIEhs2KR7iIUsoo1SEBIWt5Th_WpfEbm2n6l3Ba_B6PEl9e1uBuigrW9Z3jo717aKtEAMg9JSSfUqIepkp5UI2hPGGKUFlc_kA7VBJ20a1Xbf1z30b7eZ8SggjHVOP0DZXjLRCkx3082v0E8528sGXFT5LMHhXfAx4yT4c45NVn_yAZ-tOfAA8gU1h_W7DgBPMsQDOEK5RH_BrCPgoQa2JFz44wLXnu4cS7Pzn1--MP8GPWMkv_gISfgNTsY_Rw9FOGZ7cnHvo27u3RwcfmsPP7z8evDpsXEt0aZxjlKuejNL1zMqR81FoRRXre9ENgvdMqt4C0b3kTEvmJBm0ksrJEZilgu-hF5veOu18gVzM7LODabIB4pINrwwjohXtf1GmqVRSdFpV9Pkd9DQuKdSPVIpp0dYNtFLPbqiln2EwZ8nPNq3MrYUK6A3gUsw5wWicL3ZtoSTrJ0OJWQs3G-GmCjfXws1ljbI70dv2e0N8E8oVDseQ_s6-J3UFzJG-pg |
| CitedBy_id | crossref_primary_10_1016_j_compag_2025_109970 crossref_primary_10_2166_ws_2025_007 crossref_primary_10_1016_j_dwt_2024_100930 crossref_primary_10_3390_rs16091565 crossref_primary_10_1007_s10489_024_05502_1 crossref_primary_10_3390_hydrology11110183 crossref_primary_10_1038_s41598_025_89124_8 |
| Cites_doi | 10.1038/s41598-018-37186-2 10.1016/j.future.2019.02.028 10.4236/ars.2013.24040 10.3390/rs14030512 10.1016/j.geoderma.2014.09.011 10.3390/rs13020250 10.1039/C1EE01029H 10.1080/0952813X.2015.1042530 10.1016/j.fcr.2011.01.016 10.1016/j.jhydrol.2020.125133 10.1016/j.measurement.2017.11.004 10.1016/j.scitotenv.2021.148651 10.1080/21642583.2019.1708830 10.1023/A:1010933404324 10.1016/j.geodrs.2021.e00424 10.1016/j.geoderma.2010.12.018 10.1016/j.ecolind.2016.11.043 10.3390/rs14184448 10.1007/s40333-019-0059-9 10.1007/s10462-019-09704-9 10.1080/10106049.2021.1975832 10.1016/j.trgeo.2021.100579 10.1016/j.knosys.2021.107239 10.1016/S0034-4257(02)00188-8 10.7717/peerj.10585 10.1016/j.geoderma.2014.08.008 10.1155/2021/3946958 10.1117/12.668335 10.1016/j.geoderma.2020.114233 10.1007/s00254-007-0951-z 10.1016/j.proeps.2015.08.062 10.3390/rs13020305 10.3390/ijgi9100569 10.1029/94WR02179 10.1007/s12665-018-7995-0 10.1080/03650340.2016.1193162 10.1371/journal.pone.0266915 10.1016/j.ecolind.2020.106173 10.1016/j.jhydrol.2021.127384 10.1080/22797254.2019.1571870 10.1016/j.enconman.2021.115102 10.1016/j.future.2021.07.033 10.1002/ldr.3148 10.1007/s12293-016-0212-3 10.1007/s11629-019-5567-8 10.1016/j.compag.2009.12.002 10.1080/10106049.2021.1948109 10.1016/j.cageo.2007.05.001 10.1007/s42452-020-3060-1 10.1016/j.compchemeng.2019.106656 10.1007/s00366-019-00882-2 10.1007/s11227-020-03212-2 10.3390/w11040860 10.1016/j.advengsoft.2017.01.004 10.1111/tgis.12980 10.1016/j.jhydrol.2019.124379 10.2136/sssaj2007.0013 10.1109/ACCESS.2021.3067597 10.1016/j.geodrs.2020.e00256 10.1080/15324982.2015.1046092 10.1029/94WR02180 10.3390/rs12244118 10.1016/j.catena.2022.106054 10.1111/ejss.13010 10.1016/j.geodrs.2014.10.004 10.1080/22797254.2019.1596756 10.1080/01431161.2018.1513180 10.1016/j.jaridenv.2005.08.005 10.1016/j.catena.2020.104939 10.1016/j.jhydrol.2022.127716 10.1016/S1671-2927(07)60119-9 10.1016/j.envc.2022.100454 10.1016/j.scitotenv.2019.136092 10.3390/s20195609 10.3390/rs11070736 10.1080/15324982.2013.828801 10.1109/ICNN.1995.488968 10.1007/s40333-015-0053-9 10.3390/rs13234825 10.3390/rs14225719 10.1016/j.knosys.2019.01.023 10.1080/10106049.2021.1974959 10.1007/s00521-021-05720-5 10.1016/j.geoderma.2017.03.013 10.1016/j.geoderma.2019.06.040 10.1007/s12145-022-00825-4 10.1016/j.scitotenv.2020.142030 10.1007/s10462-022-10140-5 10.1016/j.agee.2009.06.017 10.3390/rs12121973 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-023-27516-x |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 74357 |
| ExternalDocumentID | 37204580 10_1007_s11356_023_27516_x |
| Genre | Journal Article |
| GeographicLocations | Vietnam Mekong River Delta Mekong River |
| GeographicLocations_xml | – name: Vietnam – name: Mekong River Delta – name: Mekong River |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-cc2137b0f6cb2a6f33f587172bb59d53b267bae08b632862c60d8767c6fe2a153 |
| IEDL.DBID | BENPR |
| ISSN | 1614-7499 0944-1344 |
| IngestDate | Fri Sep 05 15:05:18 EDT 2025 Fri Sep 05 14:12:43 EDT 2025 Tue Oct 07 07:06:00 EDT 2025 Wed Feb 19 02:23:17 EST 2025 Thu Apr 24 23:04:56 EDT 2025 Wed Oct 01 04:12:07 EDT 2025 Fri Feb 21 02:43:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | Ben Tre Soil salinity Remote sensing Mekong Delta Machine learning |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-cc2137b0f6cb2a6f33f587172bb59d53b267bae08b632862c60d8767c6fe2a153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9306-4641 |
| PMID | 37204580 |
| PQID | 2828548761 |
| PQPubID | 54208 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_3153205454 proquest_miscellaneous_2816765987 proquest_journals_2828548761 pubmed_primary_37204580 crossref_citationtrail_10_1007_s11356_023_27516_x crossref_primary_10_1007_s11356_023_27516_x springer_journals_10_1007_s11356_023_27516_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Mulder, de Bruin, Schaepman, Mayr (CR51) 2011; 162 Abd Elaziz, Xiong, Jayasena, Li (CR1) 2019; 169 Feng, Wang (CR18) 2022; 126 Nguyen (CR54) 2022; 15 Peng, Li, Makar, Li, Feng, Luo, Shen, Wang, Jiang, Fang (CR59) 2022; 14 Houssein, Hosney, Oliva, Mohamed, Hassaballah (CR32) 2020; 133 Tajgardan, Ayoubi, Shataee, Sahrawat (CR73) 2010; 4 Tilse, Dang, Menzies, Dalal (CR77) 2022 Gorji, Tanik, Sertel (CR23) 2015; 15 Hui, Park, Loc, Tien (CR35) 2022; 7 Wang, Peng, Li, Yin, Liu, Wang, Zhang (CR87) 2021; 13 Breiman (CR6) 2001; 45 Nosrati, Collins (CR57) 2019; 16 Lesch, Strauss, Rhoades (CR42) 1995; 31 Pradhan, Kim (CR60) 2020; 9 Wang, Yang, Wei, Shi, Ding (CR81) 2021; 754 Kennedy, Eberhart (CR38) 1995 Scudiero, Skaggs, Corwin (CR68) 2014; 2 Cui, Al-Sudani, Hassan, Afan, Ahammed, Yaseen (CR12) 2022; 606 Hengl, Heuvelink, Rossiter (CR30) 2007; 33 Samat, Li, Wang, Liu, Lin, Abuduwaili (CR65) 2020; 12 Taghizadeh-Mehrjardi, Ayoubi, Namazi, Malone, Zolfaghari, Sadrabadi (CR71) 2016; 30 Wang (CR83) 2018; 10 Halder, Bandyopadhyay, Islam (CR27) 2022 Naimi, Ayoubi, Zeraatpisheh, Dematte (CR52) 2021; 13 Varol Altay, Alatas (CR79) 2020; 53 Costache, Arabameri, Moayedi, Pham, Santosh, Nguyen, Pandey, Pham (CR11) 2022; 37 Wang, Ding, Yu, Ma, Zhang, Ge, Teng, Li, Liang, Lizaga (CR85) 2019; 353 Tho, Vromant, Hung, Hens (CR75) 2008; 54 Lesch, Strauss, Rhoades (CR41) 1995; 31 Tran, Kim (CR78) 2022; 609 Wang, Yang, Yang, Yang, Jianli (CR82) 2019; 52 Gorji, Yildirim, Hamzehpour, Tanik, Sertel (CR24) 2020; 112 Kılıc, Budak, Gunal, Acır, Halbac-Cotoara-Zamfir, Alfarraj, Ansari (CR40) 2022; 17 Ding, Nguyen, Mohammed, Armaghani, Hasanipanah, Van Bui, Pham (CR14) 2021; 29 Fernandez-Buces, Siebe, Cram, Palacio (CR19) 2006; 65 Lv, Peng (CR46) 2021; 228 CR58 Meraihi, Gabis, Mirjalili, Ramdane-Cherif (CR48) 2021; 9 CR55 Zhu, Sun, Zhao, Yang, Tian, Lai, Zhu, Long (CR98) 2021; 13 CR53 Wang, Li (CR84) 2019; 9 Khormali, Ajami, Ayoubi, Srinivasarao, Wani (CR39) 2009; 134 Chen, Qiu, Zhang, Zhang, Chen, Han, Liu (CR9) 2020; 8 Calixto, Neto, Wu, Kliemann, de Castro, Yamanaka (CR8) 2010; 71 CR63 CR62 Taghadosi, Hasanlou, Eftekhari (CR70) 2019; 52 Meng, Gao, Lu, Liu, Zhang (CR47) 2016; 28 Han, Yue, Dong, Xu, Xie, Xu (CR28) 2020; 76 Loc, Lixian, Park, Dung, Shrestha, Yoon (CR45) 2021; 794 Ge, Ding, Teng, Wang, Huo, Jin, Wang, He, Han (CR21) 2022; 212 Jiang, Xue (CR37) 2022; 14 Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (CR76) 2020; 589 Li, Lu, Zheng, Yang, Li (CR43) 2019; 11 Quiroz, Mariun, Mehrjou, Izadi, Misron, Radzi (CR61) 2018; 116 Wei, Ding, Yang, Wang, Wang (CR90) 2021; 196 Vermeulen, Van Niekerk (CR80) 2017; 299 Wei, Nurmemet, Gao, Xie (CR89) 2022; 14 Tajik, Ayoubi, Zeraatpisheh (CR74) 2020; 20 Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (CR7) 2020; 581 Li, Webster, Shi (CR44) 2015; 237 Xue, Shen (CR93) 2020; 8 Yahiaoui, Douaoui, Zhang, Ziane (CR94) 2015; 7 Nguyen, Tran, Vu, Nguyen, Nguyen, Bui (CR56) 2021; 27 Hua, Zhang, Peng, Ji, Nazir (CR34) 2022; 252 Wang, Xue, Peng, Biswas, He, Shi (CR88) 2020; 12 Fathizad, Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (CR17) 2020; 365 Zeraatpisheh, Ayoubi, Sulieman, Rodrigo-Comino (CR96) 2019; 11 Guo, Yang, Fan, Han, Chen, Yang (CR25) 2019; 78 Sándor, Tállai, Kincses, László, Kátai, Vágó (CR66) 2020; 1 Shahabi, Jafarzadeh, Neyshabouri, Ghorbani, Valizadeh Kamran (CR69) 2017; 63 Band, Janizadeh, Chandra Pal, Saha, Chakrabortty, Shokri, Mosavi (CR5) 2020; 20 Jiang, Rusuli, Amuti, He (CR36) 2019; 40 Dai, Huo, Wang (CR13) 2011; 121 Hu, Peng, Zhou, Xu, Zhao, Jiang, Fu, Wang, Shi (CR33) 2019; 11 Aldabaa, Weindorf, Chakraborty, Sharma, Li (CR3) 2015; 239 CR15 Wu, Zucca, Muhaimeed, Al-Shafie, Fadhil Al-Quraishi, Nangia, Zhu, Liu (CR92) 2018; 29 Wang, Ding, Yu, Teng, He, Chen, Ge, Zhang, Wang, Yang (CR86) 2020; 707 CR97 Eldeiry, Garcia (CR16) 2008; 72 Wicke, Smeets, Dornburg, Vashev, Gaiser, Turkenburg, Faaij (CR91) 2011; 4 Taghizadeh-Mehrjardi, Sarmadian, Minasny, Triantafilis, Omid (CR72) 2014; 28 Sahin (CR64) 2020; 2 Allbed, Kumar (CR4) 2013; 2 Yan, Zhou, Wu, Li, Feng (CR95) 2007; 6 Gorji, Sertel, Tanik (CR22) 2017; 74 Metternicht, Zinck (CR49) 2003; 85 Saremi, Mirjalili, Lewis (CR67) 2017; 105 Alabool, Al- Arabiat, Abualigah, Heidari (CR2) 2021; 33 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR29) 2019; 97 Corwin (CR10) 2021; 72 Freund, Schapire (CR20) 1996; 96 Horning (CR31) 2010 Hai Ly, Nguyen, Loubiere, Van Tran, Șerban, Zelenakova, Brețcan, Laffly (CR26) 2022; 27 Moayedi, Nguyen, Kok Foong (CR50) 2021; 37 J Kennedy (27516_CR38) 1995 EH Houssein (27516_CR32) 2020; 133 EK Sahin (27516_CR64) 2020; 2 WP Calixto (27516_CR8) 2010; 71 Y Tikhamarine (27516_CR76) 2020; 589 T Gorji (27516_CR24) 2020; 112 N Hai Ly (27516_CR26) 2022; 27 OM Kılıc (27516_CR40) 2022; 17 MM Taghadosi (27516_CR70) 2019; 52 L Yan (27516_CR95) 2007; 6 27516_CR15 H Jiang (27516_CR36) 2019; 40 HH Loc (27516_CR45) 2021; 794 N Wang (27516_CR88) 2020; 12 W Ding (27516_CR14) 2021; 29 H Alabool (27516_CR2) 2021; 33 T Gorji (27516_CR23) 2015; 15 Y Meraihi (27516_CR48) 2021; 9 27516_CR97 AAA Aldabaa (27516_CR3) 2015; 239 S Saremi (27516_CR67) 2017; 105 J Hu (27516_CR33) 2019; 11 DL Corwin (27516_CR10) 2021; 72 J Wang (27516_CR86) 2020; 707 I Yahiaoui (27516_CR94) 2015; 7 K Nosrati (27516_CR57) 2019; 16 Q-T Bui (27516_CR7) 2020; 581 E Scudiero (27516_CR68) 2014; 2 T Hengl (27516_CR30) 2007; 33 TR Hui (27516_CR35) 2022; 7 L Hua (27516_CR34) 2022; 252 Y Feng (27516_CR18) 2022; 126 Z Sándor (27516_CR66) 2020; 1 A Allbed (27516_CR4) 2013; 2 SM Lesch (27516_CR41) 1995; 31 J Wang (27516_CR85) 2019; 353 Y Wei (27516_CR90) 2021; 196 X Jiang (27516_CR37) 2022; 14 X-B Meng (27516_CR47) 2016; 28 J Peng (27516_CR59) 2022; 14 F Wang (27516_CR82) 2019; 52 M Tilse (27516_CR77) 2022 M Shahabi (27516_CR69) 2017; 63 F Khormali (27516_CR39) 2009; 134 VN Tran (27516_CR78) 2022; 609 J Xue (27516_CR93) 2020; 8 M Abd Elaziz (27516_CR1) 2019; 169 SM Lesch (27516_CR42) 1995; 31 A Samat (27516_CR65) 2020; 12 27516_CR63 27516_CR62 X Dai (27516_CR13) 2011; 121 VL Mulder (27516_CR51) 2011; 162 E Varol Altay (27516_CR79) 2020; 53 R Costache (27516_CR11) 2022; 37 AMS Pradhan (27516_CR60) 2020; 9 H Li (27516_CR44) 2015; 237 F Wang (27516_CR81) 2021; 754 T Gorji (27516_CR22) 2017; 74 Z Lv (27516_CR46) 2021; 228 J Wang (27516_CR87) 2021; 13 H Moayedi (27516_CR50) 2021; 37 M Zeraatpisheh (27516_CR96) 2019; 11 F Cui (27516_CR12) 2022; 606 27516_CR55 27516_CR58 27516_CR53 S Naimi (27516_CR52) 2021; 13 R Taghizadeh-Mehrjardi (27516_CR72) 2014; 28 TG Nguyen (27516_CR56) 2021; 27 R Taghizadeh-Mehrjardi (27516_CR71) 2016; 30 N Horning (27516_CR31) 2010 AA Heidari (27516_CR29) 2019; 97 S Tajik (27516_CR74) 2020; 20 N Tho (27516_CR75) 2008; 54 Y Freund (27516_CR20) 1996; 96 X Ge (27516_CR21) 2022; 212 J-S Wang (27516_CR84) 2019; 9 T Tajgardan (27516_CR73) 2010; 4 B Wicke (27516_CR91) 2011; 4 W Wu (27516_CR92) 2018; 29 Y Chen (27516_CR9) 2020; 8 N Fernandez-Buces (27516_CR19) 2006; 65 SS Band (27516_CR5) 2020; 20 B Halder (27516_CR27) 2022 X Han (27516_CR28) 2020; 76 D Vermeulen (27516_CR80) 2017; 299 B Guo (27516_CR25) 2019; 78 H Li (27516_CR43) 2019; 11 H Fathizad (27516_CR17) 2020; 365 JC Quiroz (27516_CR61) 2018; 116 GI Metternicht (27516_CR49) 2003; 85 K Zhu (27516_CR98) 2021; 13 Q Wei (27516_CR89) 2022; 14 L Breiman (27516_CR6) 2001; 45 G-G Wang (27516_CR83) 2018; 10 A Eldeiry (27516_CR16) 2008; 72 HD Nguyen (27516_CR54) 2022; 15 |
| References_xml | – volume: 299 start-page: 1 year: 2017 end-page: 12 ident: CR80 article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates publication-title: Geoderma – ident: CR97 – volume: 7 start-page: 794 year: 2015 end-page: 805 ident: CR94 article-title: Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis publication-title: J Arid Land – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: CR83 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing – volume: 162 start-page: 1 year: 2011 end-page: 19 ident: CR51 article-title: The use of remote sensing in soil and terrain mapping — a review publication-title: Geoderma – volume: 33 start-page: 8939 year: 2021 end-page: 8980 ident: CR2 article-title: Harris hawks optimization: a comprehensive review of recent variants and applications publication-title: Neural Comput & Applic – volume: 40 start-page: 284 year: 2019 end-page: 306 ident: CR36 article-title: Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network publication-title: Int J Remote Sens – volume: 20 start-page: 5609 year: 2020 ident: CR5 article-title: Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility publication-title: Sensors – volume: 606 start-page: 127384 year: 2022 ident: CR12 article-title: Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: comparative study and insight for federated learning technology publication-title: J Hydrol – volume: 15 start-page: 507 year: 2015 end-page: 512 ident: CR23 article-title: Soil salinity prediction, monitoring and mapping using modern technologies publication-title: Procedia Earth and Planetary Science – volume: 72 start-page: 201 year: 2008 end-page: 211 ident: CR16 article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing publication-title: Soil Sci Soc Am J – volume: 4 start-page: 2669 year: 2011 end-page: 2681 ident: CR91 article-title: The global technical and economic potential of bioenergy from salt-affected soils publication-title: Energy Environ Sci – volume: 30 start-page: 49 year: 2016 end-page: 64 ident: CR71 article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming publication-title: Arid Land Res Manag – volume: 54 start-page: 1739 year: 2008 end-page: 1746 ident: CR75 article-title: Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta publication-title: Vietnam Environ Geol – volume: 29 start-page: 100579 year: 2021 ident: CR14 article-title: A new development of ANFIS-Based Henry gas solubility optimization technique for prediction of soil shear strength publication-title: Transport Geotechnics – start-page: 1942 year: 1995 end-page: 1948 ident: CR38 publication-title: Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks – volume: 16 start-page: 2577 year: 2019 end-page: 2590 ident: CR57 article-title: A soil quality index for evaluation of degradation under land use and soil erosion categories in a small mountainous catchment publication-title: Iran J Mountain Sci – volume: 15 start-page: 2369 year: 2022 end-page: 2386 ident: CR54 article-title: GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed publication-title: Vietnam Earth Science Informatics – volume: 71 start-page: 1 year: 2010 end-page: 6 ident: CR8 article-title: Calculation of soil electrical conductivity using a genetic algorithm publication-title: Comput Electron Agric – volume: 9 start-page: 569 year: 2020 ident: CR60 article-title: Rainfall-induced shallow landslide susceptibility mapping at two adjacent catchments using advanced machine learning algorithms publication-title: ISPRS Int J Geo Inf – year: 2022 ident: CR77 article-title: Soil constraint diagnosis and mapping publication-title: Soil constraints on crop production – volume: 4 start-page: 457 year: 2010 end-page: 467 ident: CR73 article-title: Soil surface salinity prediction using ASTER data: comparing statistical and geostatistical models publication-title: Aust J Basic Appl Sci – volume: 52 start-page: 138 year: 2019 end-page: 154 ident: CR70 article-title: Retrieval of soil salinity from Sentinel-2 multispectral imagery publication-title: European J Remote Sensing – volume: 581 start-page: 124379 year: 2020 ident: CR7 article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping publication-title: J Hydrol – ident: CR63 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR6 article-title: Random forests publication-title: Mach Learn – volume: 134 start-page: 178 year: 2009 end-page: 189 ident: CR39 article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province publication-title: Iran Agric, Ecosyst Environ – volume: 78 start-page: 1 year: 2019 end-page: 10 ident: CR25 article-title: Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images publication-title: Environ Earth Sci – volume: 65 start-page: 644 year: 2006 end-page: 667 ident: CR19 article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico publication-title: J Arid Environ – volume: 12 start-page: 1973 year: 2020 ident: CR65 article-title: Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles publication-title: Remote Sens – volume: 14 start-page: 4448 year: 2022 ident: CR59 article-title: Proximal Soil Sensing of Low Salinity in Southern Xinjiang publication-title: China Remote Sensing – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: CR93 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Sys Sci Control Eng – volume: 365 start-page: 114233 year: 2020 ident: CR17 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma – volume: 76 start-page: 9404 year: 2020 end-page: 9429 ident: CR28 article-title: Efficient hybrid algorithm based on moth search and fireworks algorithm for solving numerical and constrained engineering optimization problems publication-title: J Supercomput – ident: CR55 – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: CR49 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens Environ – volume: 63 start-page: 151 year: 2017 end-page: 160 ident: CR69 article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods publication-title: Arch Agron Soil Sci – volume: 8 start-page: e10585 year: 2020 ident: CR9 article-title: Estimating salt content of vegetated soil at different depths with Sentinel-2 data publication-title: PeerJ – volume: 28 start-page: 147 year: 2014 end-page: 168 ident: CR72 article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region publication-title: Iran Arid Land Res Manage – volume: 239 start-page: 34 year: 2015 end-page: 46 ident: CR3 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – volume: 707 start-page: 136092 year: 2020 ident: CR86 article-title: Machine learning-based detection of soil salinity in an arid desert region, Northwest China: a comparison between Landsat-8 OLI and Sentinel-2 MSI publication-title: Sci Total Environ – volume: 11 start-page: 860 year: 2019 ident: CR43 article-title: Groundwater level prediction for the arid oasis of Northwest China based on the artificial bee colony algorithm and a back-propagation neural network with double hidden layers publication-title: Water – volume: 589 start-page: 125133 year: 2020 ident: CR76 article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization publication-title: J Hydrol – volume: 9 start-page: 1 year: 2019 end-page: 21 ident: CR84 article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism publication-title: Sci Rep – volume: 196 start-page: 104939 year: 2021 ident: CR90 article-title: Soil salinity prediction based on scale-dependent relationships with environmental variables by discrete wavelet transform in the Tarim Basin publication-title: Catena – volume: 31 start-page: 373 year: 1995 end-page: 386 ident: CR41 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: a comparison of multiple linear regression and cokriging publication-title: Water Resour Res – volume: 754 start-page: 142030 year: 2021 ident: CR81 article-title: Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: a case study in Tarim River Basin of southern Xinjiang publication-title: China Sci Total Environ – volume: 74 start-page: 384 year: 2017 end-page: 391 ident: CR22 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol Indic – volume: 17 start-page: e0266915 year: 2022 ident: CR40 article-title: Soil salinity assessment of a natural pasture using remote sensing techniques in central Anatolia publication-title: Turkey PloS one – volume: 6 start-page: 832 year: 2007 end-page: 841 ident: CR95 article-title: Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods publication-title: Agric Sci China – volume: 228 start-page: 107239 year: 2021 ident: CR46 article-title: A novel periodic learning ontology matching model based on interactive grasshopper optimization algorithm publication-title: Knowl-Based Syst – volume: 53 start-page: 1373 year: 2020 end-page: 1414 ident: CR79 article-title: Bird swarm algorithms with chaotic mapping publication-title: Artif Intell Rev – volume: 237 start-page: 71 year: 2015 end-page: 77 ident: CR44 article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited publication-title: Geoderma – volume: 252 start-page: 115102 year: 2022 ident: CR34 article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction publication-title: Energy Convers Manag – volume: 14 start-page: 5719 year: 2022 ident: CR37 article-title: Comparing Gaofen-5, Ground, and Huanjing-1A spectra for the monitoring of soil salinity with the BP neural network improved by particle swarm optimization publication-title: Remote Sens – volume: 12 start-page: 4118 year: 2020 ident: CR88 article-title: Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: a case study from Southern Xinjiang publication-title: China Remote Sensing – ident: CR58 – volume: 2 start-page: 1 year: 2020 end-page: 17 ident: CR64 article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest publication-title: SN Applied Sciences – volume: 7 start-page: 100454 year: 2022 ident: CR35 article-title: Long-term hydrological alterations and the agricultural landscapes in the Mekong Delta: insights from remote sensing and national statistics publication-title: Environ Challenges – volume: 20 start-page: e00256 year: 2020 ident: CR74 article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran publication-title: Geoderma Reg – volume: 72 start-page: 842 year: 2021 end-page: 862 ident: CR10 article-title: Climate change impacts on soil salinity in agricultural areas publication-title: Eur J Soil Sci – volume: 121 start-page: 441 year: 2011 end-page: 449 ident: CR13 article-title: Simulation for response of crop yield to soil moisture and salinity with artificial neural network publication-title: Field Crop Res – volume: 13 start-page: 4825 year: 2021 ident: CR52 article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach publication-title: Remote Sens – volume: 11 start-page: 551 year: 2019 end-page: 566 ident: CR96 article-title: Determining the spatial distribution of soil properties using the environmental covariates and multivariate statistical analysis: a case study in semi-arid regions of Iran publication-title: J Arid Land – ident: CR15 – volume: 9 start-page: 50001 year: 2021 end-page: 50024 ident: CR48 article-title: Grasshopper optimization algorithm: theory, variants, and applications publication-title: IEEE Access – volume: 52 start-page: 256 year: 2019 end-page: 276 ident: CR82 article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China publication-title: European J Remote Sensing – volume: 14 start-page: 512 year: 2022 ident: CR89 article-title: Inversion of soil salinity using multisource remote sensing data and particle swarm machine learning models in Keriya Oasis publication-title: Northwestern China Remote Sensing – volume: 126 start-page: 48 year: 2022 end-page: 64 ident: CR18 article-title: A binary moth search algorithm based on self-learning for multidimensional knapsack problems publication-title: Futur Gener Comput Syst – start-page: 1 year: 2010 end-page: 6 ident: CR31 publication-title: Random Forests: An algorithm for image classification and generation of continuous fields data sets – volume: 33 start-page: 1301 year: 2007 end-page: 1315 ident: CR30 article-title: About regression-kriging: from equations to case studies publication-title: Comput Geosci – volume: 28 start-page: 673 year: 2016 end-page: 687 ident: CR47 article-title: A new bio-inspired optimisation algorithm: Bird Swarm Algorithm publication-title: Journal of Experimental & Theoretical Artificial Intelligence – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: CR67 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv Eng Softw – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR29 article-title: Harris hawks optimization: algorithm and applications publication-title: Futur Gener Comput Syst – volume: 609 start-page: 127716 year: 2022 ident: CR78 article-title: Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging publication-title: J Hydrol – volume: 2 start-page: 373 issue: 4 year: 2013 end-page: 385 ident: CR4 article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review publication-title: Adv Remote Sens – ident: CR53 – volume: 353 start-page: 172 year: 2019 end-page: 187 ident: CR85 article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China publication-title: Geoderma – volume: 212 start-page: 106054 year: 2022 ident: CR21 article-title: Updated soil salinity with fine spatial resolution and high accuracy: the synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches publication-title: Catena – volume: 11 start-page: 736 year: 2019 ident: CR33 article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images publication-title: Remote Sens – volume: 31 start-page: 387 year: 1995 end-page: 398 ident: CR42 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques: 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation publication-title: Water Resour Res – volume: 794 start-page: 148651 year: 2021 ident: CR45 article-title: How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review publication-title: Sci Total Environ – volume: 112 start-page: 106173 year: 2020 ident: CR24 article-title: Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements publication-title: Ecol Indic – volume: 13 start-page: 305 year: 2021 ident: CR87 article-title: Soil salinity mapping using machine learning algorithms with the sentinel-2 MSI in Arid Areas publication-title: China Remote Sensing – volume: 96 start-page: 148 year: 1996 end-page: 156 ident: CR20 article-title: Experiments with a new boosting algorithm publication-title: Citeseer – volume: 1 start-page: 14 year: 2020 end-page: 20 ident: CR66 article-title: Effect of various soil cultivation methods on some microbial soil properties publication-title: DRC Sustainable Future – volume: 13 start-page: 250 year: 2021 ident: CR98 article-title: Relating hyperspectral vegetation indices with soil salinity at different depths for the diagnosis of winter wheat salt stress publication-title: Remote Sens – volume: 27 start-page: 2 year: 2022 ident: CR26 article-title: The composition of time-series images and using the technique SMOTE ENN for balancing datasets in land use/cover mapping publication-title: Acta Montan Slovaca – volume: 2 start-page: 82 year: 2014 end-page: 90 ident: CR68 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg – volume: 37 start-page: 6780 year: 2022 end-page: 6807 ident: CR11 article-title: Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree publication-title: Geocarto Int – volume: 29 start-page: 4005 year: 2018 end-page: 4014 ident: CR92 article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq publication-title: Land Degrad Dev – start-page: 97 year: 2022 end-page: 125 ident: CR27 article-title: Climate change impact on soil salinity dynamics at the gosaba cd block in india by integrating geospatial indicators and regression techniques publication-title: Climate change impacts, mitigation and adaptation in developing countries – volume: 116 start-page: 273 year: 2018 end-page: 280 ident: CR61 article-title: Fault detection of broken rotor bar in LS-PMSM using random forests publication-title: Measurement – volume: 169 start-page: 39 year: 2019 end-page: 52 ident: CR1 article-title: Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution publication-title: Knowl-Based Syst – volume: 133 start-page: 106656 year: 2020 ident: CR32 article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery publication-title: Comput Chem Eng – volume: 37 start-page: 1265 year: 2021 end-page: 1275 ident: CR50 article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network publication-title: Eng Comput – ident: CR62 – volume: 27 start-page: e00424 year: 2021 ident: CR56 article-title: Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: a case study in Vietnam’s Mekong Delta publication-title: Geoderma Reg – volume-title: Soil constraints on crop production year: 2022 ident: 27516_CR77 – volume: 9 start-page: 1 year: 2019 ident: 27516_CR84 publication-title: Sci Rep doi: 10.1038/s41598-018-37186-2 – volume: 96 start-page: 148 year: 1996 ident: 27516_CR20 publication-title: Citeseer – volume: 97 start-page: 849 year: 2019 ident: 27516_CR29 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 2 start-page: 373 issue: 4 year: 2013 ident: 27516_CR4 publication-title: Adv Remote Sens doi: 10.4236/ars.2013.24040 – volume: 14 start-page: 512 year: 2022 ident: 27516_CR89 publication-title: Northwestern China Remote Sensing doi: 10.3390/rs14030512 – volume: 239 start-page: 34 year: 2015 ident: 27516_CR3 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – volume: 13 start-page: 250 year: 2021 ident: 27516_CR98 publication-title: Remote Sens doi: 10.3390/rs13020250 – volume: 4 start-page: 2669 year: 2011 ident: 27516_CR91 publication-title: Energy Environ Sci doi: 10.1039/C1EE01029H – volume: 28 start-page: 673 year: 2016 ident: 27516_CR47 publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1042530 – volume: 121 start-page: 441 year: 2011 ident: 27516_CR13 publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.01.016 – volume: 589 start-page: 125133 year: 2020 ident: 27516_CR76 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125133 – volume: 116 start-page: 273 year: 2018 ident: 27516_CR61 publication-title: Measurement doi: 10.1016/j.measurement.2017.11.004 – volume: 794 start-page: 148651 year: 2021 ident: 27516_CR45 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148651 – volume: 8 start-page: 22 year: 2020 ident: 27516_CR93 publication-title: Sys Sci Control Eng doi: 10.1080/21642583.2019.1708830 – volume: 45 start-page: 5 year: 2001 ident: 27516_CR6 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 27 start-page: e00424 year: 2021 ident: 27516_CR56 publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2021.e00424 – volume: 162 start-page: 1 year: 2011 ident: 27516_CR51 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – volume: 4 start-page: 457 year: 2010 ident: 27516_CR73 publication-title: Aust J Basic Appl Sci – volume: 74 start-page: 384 year: 2017 ident: 27516_CR22 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2016.11.043 – volume: 14 start-page: 4448 year: 2022 ident: 27516_CR59 publication-title: China Remote Sensing doi: 10.3390/rs14184448 – volume: 11 start-page: 551 year: 2019 ident: 27516_CR96 publication-title: J Arid Land doi: 10.1007/s40333-019-0059-9 – volume: 53 start-page: 1373 year: 2020 ident: 27516_CR79 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09704-9 – ident: 27516_CR55 doi: 10.1080/10106049.2021.1975832 – volume: 29 start-page: 100579 year: 2021 ident: 27516_CR14 publication-title: Transport Geotechnics doi: 10.1016/j.trgeo.2021.100579 – volume: 228 start-page: 107239 year: 2021 ident: 27516_CR46 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107239 – volume: 85 start-page: 1 year: 2003 ident: 27516_CR49 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(02)00188-8 – volume: 8 start-page: e10585 year: 2020 ident: 27516_CR9 publication-title: PeerJ doi: 10.7717/peerj.10585 – volume: 237 start-page: 71 year: 2015 ident: 27516_CR44 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.008 – ident: 27516_CR58 doi: 10.1155/2021/3946958 – ident: 27516_CR62 doi: 10.1117/12.668335 – start-page: 97 volume-title: Climate change impacts, mitigation and adaptation in developing countries year: 2022 ident: 27516_CR27 – volume: 365 start-page: 114233 year: 2020 ident: 27516_CR17 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114233 – volume: 54 start-page: 1739 year: 2008 ident: 27516_CR75 publication-title: Vietnam Environ Geol doi: 10.1007/s00254-007-0951-z – volume: 15 start-page: 507 year: 2015 ident: 27516_CR23 publication-title: Procedia Earth and Planetary Science doi: 10.1016/j.proeps.2015.08.062 – volume: 13 start-page: 305 year: 2021 ident: 27516_CR87 publication-title: China Remote Sensing doi: 10.3390/rs13020305 – volume: 9 start-page: 569 year: 2020 ident: 27516_CR60 publication-title: ISPRS Int J Geo Inf doi: 10.3390/ijgi9100569 – volume: 31 start-page: 373 year: 1995 ident: 27516_CR41 publication-title: Water Resour Res doi: 10.1029/94WR02179 – volume: 1 start-page: 14 year: 2020 ident: 27516_CR66 publication-title: DRC Sustainable Future – volume: 78 start-page: 1 year: 2019 ident: 27516_CR25 publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7995-0 – volume: 63 start-page: 151 year: 2017 ident: 27516_CR69 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2016.1193162 – volume: 17 start-page: e0266915 year: 2022 ident: 27516_CR40 publication-title: Turkey PloS one doi: 10.1371/journal.pone.0266915 – volume: 112 start-page: 106173 year: 2020 ident: 27516_CR24 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2020.106173 – volume: 606 start-page: 127384 year: 2022 ident: 27516_CR12 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127384 – volume: 52 start-page: 138 year: 2019 ident: 27516_CR70 publication-title: European J Remote Sensing doi: 10.1080/22797254.2019.1571870 – volume: 252 start-page: 115102 year: 2022 ident: 27516_CR34 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.115102 – volume: 126 start-page: 48 year: 2022 ident: 27516_CR18 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.07.033 – volume: 29 start-page: 4005 year: 2018 ident: 27516_CR92 publication-title: Land Degrad Dev doi: 10.1002/ldr.3148 – volume: 10 start-page: 151 year: 2018 ident: 27516_CR83 publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 16 start-page: 2577 year: 2019 ident: 27516_CR57 publication-title: Iran J Mountain Sci doi: 10.1007/s11629-019-5567-8 – volume: 71 start-page: 1 year: 2010 ident: 27516_CR8 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2009.12.002 – volume: 37 start-page: 6780 year: 2022 ident: 27516_CR11 publication-title: Geocarto Int doi: 10.1080/10106049.2021.1948109 – volume: 33 start-page: 1301 year: 2007 ident: 27516_CR30 publication-title: Comput Geosci doi: 10.1016/j.cageo.2007.05.001 – volume: 2 start-page: 1 year: 2020 ident: 27516_CR64 publication-title: SN Applied Sciences doi: 10.1007/s42452-020-3060-1 – volume: 133 start-page: 106656 year: 2020 ident: 27516_CR32 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106656 – volume: 37 start-page: 1265 year: 2021 ident: 27516_CR50 publication-title: Eng Comput doi: 10.1007/s00366-019-00882-2 – volume: 76 start-page: 9404 year: 2020 ident: 27516_CR28 publication-title: J Supercomput doi: 10.1007/s11227-020-03212-2 – volume: 11 start-page: 860 year: 2019 ident: 27516_CR43 publication-title: Water doi: 10.3390/w11040860 – ident: 27516_CR15 – volume: 105 start-page: 30 year: 2017 ident: 27516_CR67 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – ident: 27516_CR53 doi: 10.1111/tgis.12980 – volume: 581 start-page: 124379 year: 2020 ident: 27516_CR7 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124379 – volume: 72 start-page: 201 year: 2008 ident: 27516_CR16 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0013 – volume: 9 start-page: 50001 year: 2021 ident: 27516_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067597 – volume: 20 start-page: e00256 year: 2020 ident: 27516_CR74 publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2020.e00256 – volume: 30 start-page: 49 year: 2016 ident: 27516_CR71 publication-title: Arid Land Res Manag doi: 10.1080/15324982.2015.1046092 – volume: 31 start-page: 387 year: 1995 ident: 27516_CR42 publication-title: Water Resour Res doi: 10.1029/94WR02180 – volume: 12 start-page: 4118 year: 2020 ident: 27516_CR88 publication-title: China Remote Sensing doi: 10.3390/rs12244118 – volume: 212 start-page: 106054 year: 2022 ident: 27516_CR21 publication-title: Catena doi: 10.1016/j.catena.2022.106054 – volume: 72 start-page: 842 year: 2021 ident: 27516_CR10 publication-title: Eur J Soil Sci doi: 10.1111/ejss.13010 – volume: 2 start-page: 82 year: 2014 ident: 27516_CR68 publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2014.10.004 – volume: 52 start-page: 256 year: 2019 ident: 27516_CR82 publication-title: European J Remote Sensing doi: 10.1080/22797254.2019.1596756 – volume: 40 start-page: 284 year: 2019 ident: 27516_CR36 publication-title: Int J Remote Sens doi: 10.1080/01431161.2018.1513180 – volume: 65 start-page: 644 year: 2006 ident: 27516_CR19 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2005.08.005 – start-page: 1 volume-title: Random Forests: An algorithm for image classification and generation of continuous fields data sets year: 2010 ident: 27516_CR31 – volume: 196 start-page: 104939 year: 2021 ident: 27516_CR90 publication-title: Catena doi: 10.1016/j.catena.2020.104939 – volume: 609 start-page: 127716 year: 2022 ident: 27516_CR78 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.127716 – volume: 6 start-page: 832 year: 2007 ident: 27516_CR95 publication-title: Agric Sci China doi: 10.1016/S1671-2927(07)60119-9 – volume: 7 start-page: 100454 year: 2022 ident: 27516_CR35 publication-title: Environ Challenges doi: 10.1016/j.envc.2022.100454 – volume: 707 start-page: 136092 year: 2020 ident: 27516_CR86 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.136092 – volume: 27 start-page: 2 year: 2022 ident: 27516_CR26 publication-title: Acta Montan Slovaca – volume: 20 start-page: 5609 year: 2020 ident: 27516_CR5 publication-title: Sensors doi: 10.3390/s20195609 – volume: 11 start-page: 736 year: 2019 ident: 27516_CR33 publication-title: Remote Sens doi: 10.3390/rs11070736 – volume: 28 start-page: 147 year: 2014 ident: 27516_CR72 publication-title: Iran Arid Land Res Manage doi: 10.1080/15324982.2013.828801 – start-page: 1942 volume-title: Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks year: 1995 ident: 27516_CR38 doi: 10.1109/ICNN.1995.488968 – volume: 7 start-page: 794 year: 2015 ident: 27516_CR94 publication-title: J Arid Land doi: 10.1007/s40333-015-0053-9 – volume: 13 start-page: 4825 year: 2021 ident: 27516_CR52 publication-title: Remote Sens doi: 10.3390/rs13234825 – volume: 14 start-page: 5719 year: 2022 ident: 27516_CR37 publication-title: Remote Sens doi: 10.3390/rs14225719 – volume: 169 start-page: 39 year: 2019 ident: 27516_CR1 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.01.023 – ident: 27516_CR63 doi: 10.1080/10106049.2021.1974959 – volume: 33 start-page: 8939 year: 2021 ident: 27516_CR2 publication-title: Neural Comput & Applic doi: 10.1007/s00521-021-05720-5 – volume: 299 start-page: 1 year: 2017 ident: 27516_CR80 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.013 – volume: 353 start-page: 172 year: 2019 ident: 27516_CR85 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.040 – volume: 15 start-page: 2369 year: 2022 ident: 27516_CR54 publication-title: Vietnam Earth Science Informatics doi: 10.1007/s12145-022-00825-4 – volume: 754 start-page: 142030 year: 2021 ident: 27516_CR81 publication-title: China Sci Total Environ doi: 10.1016/j.scitotenv.2020.142030 – ident: 27516_CR97 doi: 10.1007/s10462-022-10140-5 – volume: 134 start-page: 178 year: 2009 ident: 27516_CR39 publication-title: Iran Agric, Ecosyst Environ doi: 10.1016/j.agee.2009.06.017 – volume: 12 start-page: 1973 year: 2020 ident: 27516_CR65 publication-title: Remote Sens doi: 10.3390/rs12121973 |
| SSID | ssj0020927 |
| Score | 2.4440963 |
| Snippet | Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 74340 |
| SubjectTerms | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution birds Climate change Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental monitoring Environmental science Food security grasshoppers Learning algorithms Machine learning Mekong River model validation Monitoring Optimization algorithms Particle swarm optimization Passeriformes prediction Prediction models Remote sensing Research Article river deltas Rivers Root-mean-square errors Salinity Salinity effects Salinization sea level Sea level rise Search algorithms Soil salinity soil salinization Soils swarms Vietnam Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0ELbCxfehUBBRuIGrhI7tpNjgS0VqBygi8opsh1nu2KbrTZZiXKB3-D3-BJmEmdXUIrUazy2JuMZe8bzIuSZMLnIQaAZFzZlqaxKlpexY6BqlFZwlCjMdz58rw4m6dtjeRySwpoh2n1wSXYn9SbZLRESA2YF41omioHmuNXV2xqRrb03n9-N14ZWnHMdEmT-PfPPS-iCZnnBK9pdNvs3yWRAs48x-bK7au2u-_ZXBcer_sctciNon3SvZ5fb5Jqv75Dt8SbZDQaDtDd3yfePi9mcNgaTJ9tzerZEpw5uJMVo-Sk9Ocd0L3raxWN6GhpQTKmpS7r0wAOeNhgfD59mNX3pa3q09LR_xHCewjqfZr6tzemvHz8beuhBV53SDxgoQl_7eWvukcn--OjVAQsNG5hL46xlzvFEaBtXylluVCVEJcEg09xamZdSWK60NT7OrBIcTCmn4hJOY-1U5bmBs3ebjOpF7R8QmrgczPyqrHQFBg9PLC6bpi7TqRVK-Ygkww4WLlQzx6Ya82JThxnpXACdi47OxdeIPF_POetrefwXemdgjCLIdVOggYo2nkoi8nQ9DBKJbhZT-8UKYRKllcwzfTmMSLAhB2ivaUTu90y3RqnrGySzOCIvBgbaIHA5vg-vBv6IXOfIg92D0g4ZtcuVfwz6VWufBHH6DTEeIBI priority: 102 providerName: Springer Nature |
| Title | Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam’s Mekong River Delta |
| URI | https://link.springer.com/article/10.1007/s11356-023-27516-x https://www.ncbi.nlm.nih.gov/pubmed/37204580 https://www.proquest.com/docview/2828548761 https://www.proquest.com/docview/2816765987 https://www.proquest.com/docview/3153205454 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a2hdeELdBYVRG4g0s4kvs5AGhbnRMoFVorKg8RbHjdJW6tLSZtD3B3-Dv8UvwyaUVmraXPDiOZeXzsc_xuXwAr0Uai9gLNOXCSCrDPKNxFljqVY3MCI4ShfnOJyN1PJafJ-FkB0ZtLgyGVbZ7YrVRZwuLd-Tv0DRA7VqxD8ufFFmj0LvaUmikDbVC9r4qMbYLXY6VsTrQPRiOvp5uTLAgrklcYykpE1I2aTR1Mh0TIQbkCsp1yBS9-v-ouqF_3vCdVkfS0QO43-iSZFCD_xB2XPEI9obb1DX_spHd9WP49W0xm5N1iqmQ5TVZrtBFg7AQjH2fkvNrTN4iF1V0pSMNncSUpEVGVs4j6sgao91906wgB64gZytH6isJ64gf5_vMlUV68ff3nzU5cV7znJJTDPsgH928TJ_A-Gh4dnhMG_oFamUQldRazoQ2Qa6s4anKhchDb15pbkwYZ6EwXGmTuiAySnBvGFkVZB4fbVXueOp30j3oFIvCPQPCbOyN9jzLde7NF84MDiuljbQ0QinXA9b-6cQ2tcmRImOebKsqIzqJRyep0EmuevBm882yrsxxZ-_9FsCkkdJ1sl1TPXi1ee3lC50maeEWl9iHKa3CONK39xEM6TW8Lip78LReHJspVSxAYRT04G27WrYTuH2-z--e7wu4h7z3dczaPnTK1aV76bWj0vRhV0-0f0aHrA_dwacfX4b9Rgx865gP_gEHUhH5 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXxKuwUMBIcAKL-BE7OSAEfWhLuz3AFvUWYsfZrrTNLptUdE_wN_gT_Ch-CZ48doWq9tZr7DijzMMznhl_AC9FGovYKzTlwkgqwzyjcRZY6l2NzAiOGoX9zoND1T-Sn47D4zX40_XCYFllZxNrQ51NLZ6Rv8XQAL1rxd7PvlNEjcLsageh0YjFvlv88CFb-W5v2_P3Fee7O8OtPm1RBaiVQVRRazkT2gS5soanKhciD33UoLkxYZyFwnClTeqCyCjBvb9vVZD5z2qrcsdThigR3uTfkIJrNATR1rKkhAdxAxEbS0mZkLJt0mla9ZgIsdxXUK5Dpuj5_xvhBe_2Qma23vB278Dt1lMlHxrRugtrrrgHGzurxjg_2FqG8j78_DIdT0iZYqNltSCzOSaAkOkEK-tH5GSBrWHktK7ddKQFqxiRtMjI3Hl5caTEWnr_aFyQj64gw7kjzYGHdcSv83XsqiI9_fvrd0kGzvu1I_IZi0rItptU6QM4uhY2bMB6MS3cIyDMxs6IPMt17oMjzgwuK6WNtDRCKdcD1v3pxLY3nyMAxyRZ3dmM3Ek8d5KaO8l5D14v35k1935cOXuzY2DS2oAyWUlsD14sh732YkomLdz0DOcwpVUYR_ryOYIheIf3dGUPHjbCsSSpxhgKo6AHbzppWRFwOb2Pr6b3OdzsDwcHycHe4f4TuMVRauuDp01Yr-Zn7qn3wyrzrBZ-At-uW9v-ASH_Q0k |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiEuiL9CoICR4ARW4__kgBCwXbWUVghatLc0dpxlpW122aSie4LX4FV4HJ4ET342QlV76zV2rFHmm8mMPeMPoec8jXnsDZowbgQRMs9InIWW-FAjM5yBRUG_8_6B2jkSH0ZytIb-dL0wUFbZ-cTaUWczC3vkW5AaQHSt6FbelkV8GgzfzL8TYJCCk9aOTqOByJ5b_vDpW_l6d-B1_YKx4fbh-x3SMgwQK8KoItYyyrUJc2UNS1XOeS59BqGZMTLOJDdMaZO6MDKKMx_7WxVmXgRtVe5YSoExwrv_a5rzGMoJ9ahP9sK4oYuNhSCUC9E27DRte5RLKP3lhGlJFTn7_6d4LtI9d0pb__yGt9DNNmrFbxuY3UZrrriDNrb7Jjk_2HqJ8i76-WU2meIyhabLaonnCzgMAgBgqLIf429LaBPDJ3Udp8MtccUYp0WGF85jx-ES6ur9o0mB37kCHy4cbjY_rMN-na8TVxXpyd9fv0u873yMO8afocAED9y0Su-hoytRwwZaL2aFe4AwtbEzPM9ynftEiVEDywphIy0MV8oFiHZfOrHtLehAxjFN-vubQTuJ105Sayc5C9DL1Tvz5g6QS2dvdgpMWn9QJj16A_RsNewtGY5n0sLNTmEOVVrJONIXz-EUiDx81CsCdL8Bx0qkmm9IRmGAXnVo6QW4WN6Hl8v7FF33dpZ83D3Ye4RuMABtvQe1idarxal77EOyyjypsY_R8VUb2z-3B0e4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+salinity+prediction+using+hybrid+machine+learning+and+remote+sensing+in+Ben+Tre+province+on+Vietnam%E2%80%99s+Mekong+River+Delta&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Nguyen%2C+Huu+Duy&rft.au=Van%2C+Chien+Pham&rft.au=Nguyen%2C+Tien+Giang&rft.au=Dang%2C+Dinh+Kha&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=29&rft.spage=74340&rft.epage=74357&rft_id=info:doi/10.1007%2Fs11356-023-27516-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |