Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam’s Mekong River Delta

Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 29; pp. 74340 - 74357
Main Authors Nguyen, Huu Duy, Van, Chien Pham, Nguyen, Tien Giang, Dang, Dinh Kha, Pham, Thi Thuy Nga, Nguyen, Quoc-Huy, Bui, Quang-Thanh
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-27516-x

Cover

Abstract Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination ( R 2 ) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R 2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R 2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA ( R 2 = 0.931, RMSE = 0.055), XGR-MSA ( R 2 = 0.928, RMSE = 0.06), XGR-BSA ( R 2 = 0.926, RMSE = 0.062), XGR-SSA ( R 2 = 0.917, 0.07), XGR-PSO ( R 2 = 0.916, RMSE = 0.08), XGR ( R 2 = 0.867, RMSE = 0.1), CatBoost ( R 2 = 0.78, RMSE = 0.12), and RF ( R 2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
AbstractList Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R ) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R = 0.931, RMSE = 0.055), XGR-MSA (R = 0.928, RMSE = 0.06), XGR-BSA (R = 0.926, RMSE = 0.062), XGR-SSA (R = 0.917, 0.07), XGR-PSO (R = 0.916, RMSE = 0.08), XGR (R = 0.867, RMSE = 0.1), CatBoost (R = 0.78, RMSE = 0.12), and RF (R = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination ( R 2 ) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R 2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R 2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA ( R 2 = 0.931, RMSE = 0.055), XGR-MSA ( R 2 = 0.928, RMSE = 0.06), XGR-BSA ( R 2 = 0.926, RMSE = 0.062), XGR-SSA ( R 2 = 0.917, 0.07), XGR-PSO ( R 2 = 0.916, RMSE = 0.08), XGR ( R 2 = 0.867, RMSE = 0.1), CatBoost ( R 2 = 0.78, RMSE = 0.12), and RF ( R 2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R2 value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R2 of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R2 = 0.931, RMSE = 0.055), XGR-MSA (R2 = 0.928, RMSE = 0.06), XGR-BSA (R2 = 0.926, RMSE = 0.062), XGR-SSA (R2 = 0.917, 0.07), XGR-PSO (R2 = 0.916, RMSE = 0.08), XGR (R2 = 0.867, RMSE = 0.1), CatBoost (R2 = 0.78, RMSE = 0.12), and RF (R2 = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam’s Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R²) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R² value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R² of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R² = 0.931, RMSE = 0.055), XGR-MSA (R² = 0.928, RMSE = 0.06), XGR-BSA (R² = 0.926, RMSE = 0.062), XGR-SSA (R² = 0.917, 0.07), XGR-PSO (R² = 0.916, RMSE = 0.08), XGR (R² = 0.867, RMSE = 0.1), CatBoost (R² = 0.78, RMSE = 0.12), and RF (R² = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.
Author Van, Chien Pham
Nguyen, Quoc-Huy
Pham, Thi Thuy Nga
Nguyen, Tien Giang
Bui, Quang-Thanh
Dang, Dinh Kha
Nguyen, Huu Duy
Author_xml – sequence: 1
  givenname: Huu Duy
  orcidid: 0000-0001-9306-4641
  surname: Nguyen
  fullname: Nguyen, Huu Duy
  organization: Faculty of Geography, VNU University of Science, Vietnam National University
– sequence: 2
  givenname: Chien Pham
  surname: Van
  fullname: Van, Chien Pham
  organization: Thuyloi University
– sequence: 3
  givenname: Tien Giang
  surname: Nguyen
  fullname: Nguyen, Tien Giang
  email: giangnt@vnu.edu.vn
  organization: Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University
– sequence: 4
  givenname: Dinh Kha
  surname: Dang
  fullname: Dang, Dinh Kha
  organization: Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University
– sequence: 5
  givenname: Thi Thuy Nga
  surname: Pham
  fullname: Pham, Thi Thuy Nga
  organization: Center for Environmental Fluid Dynamics, VNU University of Science, Vietnam National University
– sequence: 6
  givenname: Quoc-Huy
  surname: Nguyen
  fullname: Nguyen, Quoc-Huy
  organization: Faculty of Geography, VNU University of Science, Vietnam National University
– sequence: 7
  givenname: Quang-Thanh
  surname: Bui
  fullname: Bui, Quang-Thanh
  organization: Faculty of Geography, VNU University of Science, Vietnam National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37204580$$D View this record in MEDLINE/PubMed
BookMark eNqFkclu1TAYhS1URAd4ARbIEhs2KR7iIUsoo1SEBIWt5Th_WpfEbm2n6l3Ba_B6PEl9e1uBuigrW9Z3jo717aKtEAMg9JSSfUqIepkp5UI2hPGGKUFlc_kA7VBJ20a1Xbf1z30b7eZ8SggjHVOP0DZXjLRCkx3082v0E8528sGXFT5LMHhXfAx4yT4c45NVn_yAZ-tOfAA8gU1h_W7DgBPMsQDOEK5RH_BrCPgoQa2JFz44wLXnu4cS7Pzn1--MP8GPWMkv_gISfgNTsY_Rw9FOGZ7cnHvo27u3RwcfmsPP7z8evDpsXEt0aZxjlKuejNL1zMqR81FoRRXre9ENgvdMqt4C0b3kTEvmJBm0ksrJEZilgu-hF5veOu18gVzM7LODabIB4pINrwwjohXtf1GmqVRSdFpV9Pkd9DQuKdSPVIpp0dYNtFLPbqiln2EwZ8nPNq3MrYUK6A3gUsw5wWicL3ZtoSTrJ0OJWQs3G-GmCjfXws1ljbI70dv2e0N8E8oVDseQ_s6-J3UFzJG-pg
CitedBy_id crossref_primary_10_1016_j_compag_2025_109970
crossref_primary_10_2166_ws_2025_007
crossref_primary_10_1016_j_dwt_2024_100930
crossref_primary_10_3390_rs16091565
crossref_primary_10_1007_s10489_024_05502_1
crossref_primary_10_3390_hydrology11110183
crossref_primary_10_1038_s41598_025_89124_8
Cites_doi 10.1038/s41598-018-37186-2
10.1016/j.future.2019.02.028
10.4236/ars.2013.24040
10.3390/rs14030512
10.1016/j.geoderma.2014.09.011
10.3390/rs13020250
10.1039/C1EE01029H
10.1080/0952813X.2015.1042530
10.1016/j.fcr.2011.01.016
10.1016/j.jhydrol.2020.125133
10.1016/j.measurement.2017.11.004
10.1016/j.scitotenv.2021.148651
10.1080/21642583.2019.1708830
10.1023/A:1010933404324
10.1016/j.geodrs.2021.e00424
10.1016/j.geoderma.2010.12.018
10.1016/j.ecolind.2016.11.043
10.3390/rs14184448
10.1007/s40333-019-0059-9
10.1007/s10462-019-09704-9
10.1080/10106049.2021.1975832
10.1016/j.trgeo.2021.100579
10.1016/j.knosys.2021.107239
10.1016/S0034-4257(02)00188-8
10.7717/peerj.10585
10.1016/j.geoderma.2014.08.008
10.1155/2021/3946958
10.1117/12.668335
10.1016/j.geoderma.2020.114233
10.1007/s00254-007-0951-z
10.1016/j.proeps.2015.08.062
10.3390/rs13020305
10.3390/ijgi9100569
10.1029/94WR02179
10.1007/s12665-018-7995-0
10.1080/03650340.2016.1193162
10.1371/journal.pone.0266915
10.1016/j.ecolind.2020.106173
10.1016/j.jhydrol.2021.127384
10.1080/22797254.2019.1571870
10.1016/j.enconman.2021.115102
10.1016/j.future.2021.07.033
10.1002/ldr.3148
10.1007/s12293-016-0212-3
10.1007/s11629-019-5567-8
10.1016/j.compag.2009.12.002
10.1080/10106049.2021.1948109
10.1016/j.cageo.2007.05.001
10.1007/s42452-020-3060-1
10.1016/j.compchemeng.2019.106656
10.1007/s00366-019-00882-2
10.1007/s11227-020-03212-2
10.3390/w11040860
10.1016/j.advengsoft.2017.01.004
10.1111/tgis.12980
10.1016/j.jhydrol.2019.124379
10.2136/sssaj2007.0013
10.1109/ACCESS.2021.3067597
10.1016/j.geodrs.2020.e00256
10.1080/15324982.2015.1046092
10.1029/94WR02180
10.3390/rs12244118
10.1016/j.catena.2022.106054
10.1111/ejss.13010
10.1016/j.geodrs.2014.10.004
10.1080/22797254.2019.1596756
10.1080/01431161.2018.1513180
10.1016/j.jaridenv.2005.08.005
10.1016/j.catena.2020.104939
10.1016/j.jhydrol.2022.127716
10.1016/S1671-2927(07)60119-9
10.1016/j.envc.2022.100454
10.1016/j.scitotenv.2019.136092
10.3390/s20195609
10.3390/rs11070736
10.1080/15324982.2013.828801
10.1109/ICNN.1995.488968
10.1007/s40333-015-0053-9
10.3390/rs13234825
10.3390/rs14225719
10.1016/j.knosys.2019.01.023
10.1080/10106049.2021.1974959
10.1007/s00521-021-05720-5
10.1016/j.geoderma.2017.03.013
10.1016/j.geoderma.2019.06.040
10.1007/s12145-022-00825-4
10.1016/j.scitotenv.2020.142030
10.1007/s10462-022-10140-5
10.1016/j.agee.2009.06.017
10.3390/rs12121973
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-27516-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 74357
ExternalDocumentID 37204580
10_1007_s11356_023_27516_x
Genre Journal Article
GeographicLocations Vietnam
Mekong River Delta
Mekong River
GeographicLocations_xml – name: Vietnam
– name: Mekong River Delta
– name: Mekong River
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-cc2137b0f6cb2a6f33f587172bb59d53b267bae08b632862c60d8767c6fe2a153
IEDL.DBID BENPR
ISSN 1614-7499
0944-1344
IngestDate Fri Sep 05 15:05:18 EDT 2025
Fri Sep 05 14:12:43 EDT 2025
Tue Oct 07 07:06:00 EDT 2025
Wed Feb 19 02:23:17 EST 2025
Thu Apr 24 23:04:56 EDT 2025
Wed Oct 01 04:12:07 EDT 2025
Fri Feb 21 02:43:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Ben Tre
Soil salinity
Remote sensing
Mekong Delta
Machine learning
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cc2137b0f6cb2a6f33f587172bb59d53b267bae08b632862c60d8767c6fe2a153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9306-4641
PMID 37204580
PQID 2828548761
PQPubID 54208
PageCount 18
ParticipantIDs proquest_miscellaneous_3153205454
proquest_miscellaneous_2816765987
proquest_journals_2828548761
pubmed_primary_37204580
crossref_citationtrail_10_1007_s11356_023_27516_x
crossref_primary_10_1007_s11356_023_27516_x
springer_journals_10_1007_s11356_023_27516_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Mulder, de Bruin, Schaepman, Mayr (CR51) 2011; 162
Abd Elaziz, Xiong, Jayasena, Li (CR1) 2019; 169
Feng, Wang (CR18) 2022; 126
Nguyen (CR54) 2022; 15
Peng, Li, Makar, Li, Feng, Luo, Shen, Wang, Jiang, Fang (CR59) 2022; 14
Houssein, Hosney, Oliva, Mohamed, Hassaballah (CR32) 2020; 133
Tajgardan, Ayoubi, Shataee, Sahrawat (CR73) 2010; 4
Tilse, Dang, Menzies, Dalal (CR77) 2022
Gorji, Tanik, Sertel (CR23) 2015; 15
Hui, Park, Loc, Tien (CR35) 2022; 7
Wang, Peng, Li, Yin, Liu, Wang, Zhang (CR87) 2021; 13
Breiman (CR6) 2001; 45
Nosrati, Collins (CR57) 2019; 16
Lesch, Strauss, Rhoades (CR42) 1995; 31
Pradhan, Kim (CR60) 2020; 9
Wang, Yang, Wei, Shi, Ding (CR81) 2021; 754
Kennedy, Eberhart (CR38) 1995
Scudiero, Skaggs, Corwin (CR68) 2014; 2
Cui, Al-Sudani, Hassan, Afan, Ahammed, Yaseen (CR12) 2022; 606
Hengl, Heuvelink, Rossiter (CR30) 2007; 33
Samat, Li, Wang, Liu, Lin, Abuduwaili (CR65) 2020; 12
Taghizadeh-Mehrjardi, Ayoubi, Namazi, Malone, Zolfaghari, Sadrabadi (CR71) 2016; 30
Wang (CR83) 2018; 10
Halder, Bandyopadhyay, Islam (CR27) 2022
Naimi, Ayoubi, Zeraatpisheh, Dematte (CR52) 2021; 13
Varol Altay, Alatas (CR79) 2020; 53
Costache, Arabameri, Moayedi, Pham, Santosh, Nguyen, Pandey, Pham (CR11) 2022; 37
Wang, Ding, Yu, Ma, Zhang, Ge, Teng, Li, Liang, Lizaga (CR85) 2019; 353
Tho, Vromant, Hung, Hens (CR75) 2008; 54
Lesch, Strauss, Rhoades (CR41) 1995; 31
Tran, Kim (CR78) 2022; 609
Wang, Yang, Yang, Yang, Jianli (CR82) 2019; 52
Gorji, Yildirim, Hamzehpour, Tanik, Sertel (CR24) 2020; 112
Kılıc, Budak, Gunal, Acır, Halbac-Cotoara-Zamfir, Alfarraj, Ansari (CR40) 2022; 17
Ding, Nguyen, Mohammed, Armaghani, Hasanipanah, Van Bui, Pham (CR14) 2021; 29
Fernandez-Buces, Siebe, Cram, Palacio (CR19) 2006; 65
Lv, Peng (CR46) 2021; 228
CR58
Meraihi, Gabis, Mirjalili, Ramdane-Cherif (CR48) 2021; 9
CR55
Zhu, Sun, Zhao, Yang, Tian, Lai, Zhu, Long (CR98) 2021; 13
CR53
Wang, Li (CR84) 2019; 9
Khormali, Ajami, Ayoubi, Srinivasarao, Wani (CR39) 2009; 134
Chen, Qiu, Zhang, Zhang, Chen, Han, Liu (CR9) 2020; 8
Calixto, Neto, Wu, Kliemann, de Castro, Yamanaka (CR8) 2010; 71
CR63
CR62
Taghadosi, Hasanlou, Eftekhari (CR70) 2019; 52
Meng, Gao, Lu, Liu, Zhang (CR47) 2016; 28
Han, Yue, Dong, Xu, Xie, Xu (CR28) 2020; 76
Loc, Lixian, Park, Dung, Shrestha, Yoon (CR45) 2021; 794
Ge, Ding, Teng, Wang, Huo, Jin, Wang, He, Han (CR21) 2022; 212
Jiang, Xue (CR37) 2022; 14
Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (CR76) 2020; 589
Li, Lu, Zheng, Yang, Li (CR43) 2019; 11
Quiroz, Mariun, Mehrjou, Izadi, Misron, Radzi (CR61) 2018; 116
Wei, Ding, Yang, Wang, Wang (CR90) 2021; 196
Vermeulen, Van Niekerk (CR80) 2017; 299
Wei, Nurmemet, Gao, Xie (CR89) 2022; 14
Tajik, Ayoubi, Zeraatpisheh (CR74) 2020; 20
Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (CR7) 2020; 581
Li, Webster, Shi (CR44) 2015; 237
Xue, Shen (CR93) 2020; 8
Yahiaoui, Douaoui, Zhang, Ziane (CR94) 2015; 7
Nguyen, Tran, Vu, Nguyen, Nguyen, Bui (CR56) 2021; 27
Hua, Zhang, Peng, Ji, Nazir (CR34) 2022; 252
Wang, Xue, Peng, Biswas, He, Shi (CR88) 2020; 12
Fathizad, Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (CR17) 2020; 365
Zeraatpisheh, Ayoubi, Sulieman, Rodrigo-Comino (CR96) 2019; 11
Guo, Yang, Fan, Han, Chen, Yang (CR25) 2019; 78
Sándor, Tállai, Kincses, László, Kátai, Vágó (CR66) 2020; 1
Shahabi, Jafarzadeh, Neyshabouri, Ghorbani, Valizadeh Kamran (CR69) 2017; 63
Band, Janizadeh, Chandra Pal, Saha, Chakrabortty, Shokri, Mosavi (CR5) 2020; 20
Jiang, Rusuli, Amuti, He (CR36) 2019; 40
Dai, Huo, Wang (CR13) 2011; 121
Hu, Peng, Zhou, Xu, Zhao, Jiang, Fu, Wang, Shi (CR33) 2019; 11
Aldabaa, Weindorf, Chakraborty, Sharma, Li (CR3) 2015; 239
CR15
Wu, Zucca, Muhaimeed, Al-Shafie, Fadhil Al-Quraishi, Nangia, Zhu, Liu (CR92) 2018; 29
Wang, Ding, Yu, Teng, He, Chen, Ge, Zhang, Wang, Yang (CR86) 2020; 707
CR97
Eldeiry, Garcia (CR16) 2008; 72
Wicke, Smeets, Dornburg, Vashev, Gaiser, Turkenburg, Faaij (CR91) 2011; 4
Taghizadeh-Mehrjardi, Sarmadian, Minasny, Triantafilis, Omid (CR72) 2014; 28
Sahin (CR64) 2020; 2
Allbed, Kumar (CR4) 2013; 2
Yan, Zhou, Wu, Li, Feng (CR95) 2007; 6
Gorji, Sertel, Tanik (CR22) 2017; 74
Metternicht, Zinck (CR49) 2003; 85
Saremi, Mirjalili, Lewis (CR67) 2017; 105
Alabool, Al- Arabiat, Abualigah, Heidari (CR2) 2021; 33
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR29) 2019; 97
Corwin (CR10) 2021; 72
Freund, Schapire (CR20) 1996; 96
Horning (CR31) 2010
Hai Ly, Nguyen, Loubiere, Van Tran, Șerban, Zelenakova, Brețcan, Laffly (CR26) 2022; 27
Moayedi, Nguyen, Kok Foong (CR50) 2021; 37
J Kennedy (27516_CR38) 1995
EH Houssein (27516_CR32) 2020; 133
EK Sahin (27516_CR64) 2020; 2
WP Calixto (27516_CR8) 2010; 71
Y Tikhamarine (27516_CR76) 2020; 589
T Gorji (27516_CR24) 2020; 112
N Hai Ly (27516_CR26) 2022; 27
OM Kılıc (27516_CR40) 2022; 17
MM Taghadosi (27516_CR70) 2019; 52
L Yan (27516_CR95) 2007; 6
27516_CR15
H Jiang (27516_CR36) 2019; 40
HH Loc (27516_CR45) 2021; 794
N Wang (27516_CR88) 2020; 12
W Ding (27516_CR14) 2021; 29
H Alabool (27516_CR2) 2021; 33
T Gorji (27516_CR23) 2015; 15
Y Meraihi (27516_CR48) 2021; 9
27516_CR97
AAA Aldabaa (27516_CR3) 2015; 239
S Saremi (27516_CR67) 2017; 105
J Hu (27516_CR33) 2019; 11
DL Corwin (27516_CR10) 2021; 72
J Wang (27516_CR86) 2020; 707
I Yahiaoui (27516_CR94) 2015; 7
K Nosrati (27516_CR57) 2019; 16
Q-T Bui (27516_CR7) 2020; 581
E Scudiero (27516_CR68) 2014; 2
T Hengl (27516_CR30) 2007; 33
TR Hui (27516_CR35) 2022; 7
L Hua (27516_CR34) 2022; 252
Y Feng (27516_CR18) 2022; 126
Z Sándor (27516_CR66) 2020; 1
A Allbed (27516_CR4) 2013; 2
SM Lesch (27516_CR41) 1995; 31
J Wang (27516_CR85) 2019; 353
Y Wei (27516_CR90) 2021; 196
X Jiang (27516_CR37) 2022; 14
X-B Meng (27516_CR47) 2016; 28
J Peng (27516_CR59) 2022; 14
F Wang (27516_CR82) 2019; 52
M Tilse (27516_CR77) 2022
M Shahabi (27516_CR69) 2017; 63
F Khormali (27516_CR39) 2009; 134
VN Tran (27516_CR78) 2022; 609
J Xue (27516_CR93) 2020; 8
M Abd Elaziz (27516_CR1) 2019; 169
SM Lesch (27516_CR42) 1995; 31
A Samat (27516_CR65) 2020; 12
27516_CR63
27516_CR62
X Dai (27516_CR13) 2011; 121
VL Mulder (27516_CR51) 2011; 162
E Varol Altay (27516_CR79) 2020; 53
R Costache (27516_CR11) 2022; 37
AMS Pradhan (27516_CR60) 2020; 9
H Li (27516_CR44) 2015; 237
F Wang (27516_CR81) 2021; 754
T Gorji (27516_CR22) 2017; 74
Z Lv (27516_CR46) 2021; 228
J Wang (27516_CR87) 2021; 13
H Moayedi (27516_CR50) 2021; 37
M Zeraatpisheh (27516_CR96) 2019; 11
F Cui (27516_CR12) 2022; 606
27516_CR55
27516_CR58
27516_CR53
S Naimi (27516_CR52) 2021; 13
R Taghizadeh-Mehrjardi (27516_CR72) 2014; 28
TG Nguyen (27516_CR56) 2021; 27
R Taghizadeh-Mehrjardi (27516_CR71) 2016; 30
N Horning (27516_CR31) 2010
AA Heidari (27516_CR29) 2019; 97
S Tajik (27516_CR74) 2020; 20
N Tho (27516_CR75) 2008; 54
Y Freund (27516_CR20) 1996; 96
X Ge (27516_CR21) 2022; 212
J-S Wang (27516_CR84) 2019; 9
T Tajgardan (27516_CR73) 2010; 4
B Wicke (27516_CR91) 2011; 4
W Wu (27516_CR92) 2018; 29
Y Chen (27516_CR9) 2020; 8
N Fernandez-Buces (27516_CR19) 2006; 65
SS Band (27516_CR5) 2020; 20
B Halder (27516_CR27) 2022
X Han (27516_CR28) 2020; 76
D Vermeulen (27516_CR80) 2017; 299
B Guo (27516_CR25) 2019; 78
H Li (27516_CR43) 2019; 11
H Fathizad (27516_CR17) 2020; 365
JC Quiroz (27516_CR61) 2018; 116
GI Metternicht (27516_CR49) 2003; 85
K Zhu (27516_CR98) 2021; 13
Q Wei (27516_CR89) 2022; 14
L Breiman (27516_CR6) 2001; 45
G-G Wang (27516_CR83) 2018; 10
A Eldeiry (27516_CR16) 2008; 72
HD Nguyen (27516_CR54) 2022; 15
References_xml – volume: 299
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR80
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
– ident: CR97
– volume: 7
  start-page: 794
  year: 2015
  end-page: 805
  ident: CR94
  article-title: Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis
  publication-title: J Arid Land
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: CR83
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
– volume: 162
  start-page: 1
  year: 2011
  end-page: 19
  ident: CR51
  article-title: The use of remote sensing in soil and terrain mapping — a review
  publication-title: Geoderma
– volume: 33
  start-page: 8939
  year: 2021
  end-page: 8980
  ident: CR2
  article-title: Harris hawks optimization: a comprehensive review of recent variants and applications
  publication-title: Neural Comput & Applic
– volume: 40
  start-page: 284
  year: 2019
  end-page: 306
  ident: CR36
  article-title: Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network
  publication-title: Int J Remote Sens
– volume: 20
  start-page: 5609
  year: 2020
  ident: CR5
  article-title: Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility
  publication-title: Sensors
– volume: 606
  start-page: 127384
  year: 2022
  ident: CR12
  article-title: Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: comparative study and insight for federated learning technology
  publication-title: J Hydrol
– volume: 15
  start-page: 507
  year: 2015
  end-page: 512
  ident: CR23
  article-title: Soil salinity prediction, monitoring and mapping using modern technologies
  publication-title: Procedia Earth and Planetary Science
– volume: 72
  start-page: 201
  year: 2008
  end-page: 211
  ident: CR16
  article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing
  publication-title: Soil Sci Soc Am J
– volume: 4
  start-page: 2669
  year: 2011
  end-page: 2681
  ident: CR91
  article-title: The global technical and economic potential of bioenergy from salt-affected soils
  publication-title: Energy Environ Sci
– volume: 30
  start-page: 49
  year: 2016
  end-page: 64
  ident: CR71
  article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming
  publication-title: Arid Land Res Manag
– volume: 54
  start-page: 1739
  year: 2008
  end-page: 1746
  ident: CR75
  article-title: Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta
  publication-title: Vietnam Environ Geol
– volume: 29
  start-page: 100579
  year: 2021
  ident: CR14
  article-title: A new development of ANFIS-Based Henry gas solubility optimization technique for prediction of soil shear strength
  publication-title: Transport Geotechnics
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR38
  publication-title: Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks
– volume: 16
  start-page: 2577
  year: 2019
  end-page: 2590
  ident: CR57
  article-title: A soil quality index for evaluation of degradation under land use and soil erosion categories in a small mountainous catchment
  publication-title: Iran J Mountain Sci
– volume: 15
  start-page: 2369
  year: 2022
  end-page: 2386
  ident: CR54
  article-title: GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed
  publication-title: Vietnam Earth Science Informatics
– volume: 71
  start-page: 1
  year: 2010
  end-page: 6
  ident: CR8
  article-title: Calculation of soil electrical conductivity using a genetic algorithm
  publication-title: Comput Electron Agric
– volume: 9
  start-page: 569
  year: 2020
  ident: CR60
  article-title: Rainfall-induced shallow landslide susceptibility mapping at two adjacent catchments using advanced machine learning algorithms
  publication-title: ISPRS Int J Geo Inf
– year: 2022
  ident: CR77
  article-title: Soil constraint diagnosis and mapping
  publication-title: Soil constraints on crop production
– volume: 4
  start-page: 457
  year: 2010
  end-page: 467
  ident: CR73
  article-title: Soil surface salinity prediction using ASTER data: comparing statistical and geostatistical models
  publication-title: Aust J Basic Appl Sci
– volume: 52
  start-page: 138
  year: 2019
  end-page: 154
  ident: CR70
  article-title: Retrieval of soil salinity from Sentinel-2 multispectral imagery
  publication-title: European J Remote Sensing
– volume: 581
  start-page: 124379
  year: 2020
  ident: CR7
  article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping
  publication-title: J Hydrol
– ident: CR63
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR6
  article-title: Random forests
  publication-title: Mach Learn
– volume: 134
  start-page: 178
  year: 2009
  end-page: 189
  ident: CR39
  article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province
  publication-title: Iran Agric, Ecosyst Environ
– volume: 78
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR25
  article-title: Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images
  publication-title: Environ Earth Sci
– volume: 65
  start-page: 644
  year: 2006
  end-page: 667
  ident: CR19
  article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico
  publication-title: J Arid Environ
– volume: 12
  start-page: 1973
  year: 2020
  ident: CR65
  article-title: Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles
  publication-title: Remote Sens
– volume: 14
  start-page: 4448
  year: 2022
  ident: CR59
  article-title: Proximal Soil Sensing of Low Salinity in Southern Xinjiang
  publication-title: China Remote Sensing
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: CR93
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Sys Sci Control Eng
– volume: 365
  start-page: 114233
  year: 2020
  ident: CR17
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
– volume: 76
  start-page: 9404
  year: 2020
  end-page: 9429
  ident: CR28
  article-title: Efficient hybrid algorithm based on moth search and fireworks algorithm for solving numerical and constrained engineering optimization problems
  publication-title: J Supercomput
– ident: CR55
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: CR49
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens Environ
– volume: 63
  start-page: 151
  year: 2017
  end-page: 160
  ident: CR69
  article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods
  publication-title: Arch Agron Soil Sci
– volume: 8
  start-page: e10585
  year: 2020
  ident: CR9
  article-title: Estimating salt content of vegetated soil at different depths with Sentinel-2 data
  publication-title: PeerJ
– volume: 28
  start-page: 147
  year: 2014
  end-page: 168
  ident: CR72
  article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region
  publication-title: Iran Arid Land Res Manage
– volume: 239
  start-page: 34
  year: 2015
  end-page: 46
  ident: CR3
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– volume: 707
  start-page: 136092
  year: 2020
  ident: CR86
  article-title: Machine learning-based detection of soil salinity in an arid desert region, Northwest China: a comparison between Landsat-8 OLI and Sentinel-2 MSI
  publication-title: Sci Total Environ
– volume: 11
  start-page: 860
  year: 2019
  ident: CR43
  article-title: Groundwater level prediction for the arid oasis of Northwest China based on the artificial bee colony algorithm and a back-propagation neural network with double hidden layers
  publication-title: Water
– volume: 589
  start-page: 125133
  year: 2020
  ident: CR76
  article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization
  publication-title: J Hydrol
– volume: 9
  start-page: 1
  year: 2019
  end-page: 21
  ident: CR84
  article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism
  publication-title: Sci Rep
– volume: 196
  start-page: 104939
  year: 2021
  ident: CR90
  article-title: Soil salinity prediction based on scale-dependent relationships with environmental variables by discrete wavelet transform in the Tarim Basin
  publication-title: Catena
– volume: 31
  start-page: 373
  year: 1995
  end-page: 386
  ident: CR41
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: a comparison of multiple linear regression and cokriging
  publication-title: Water Resour Res
– volume: 754
  start-page: 142030
  year: 2021
  ident: CR81
  article-title: Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: a case study in Tarim River Basin of southern Xinjiang
  publication-title: China Sci Total Environ
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: CR22
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol Indic
– volume: 17
  start-page: e0266915
  year: 2022
  ident: CR40
  article-title: Soil salinity assessment of a natural pasture using remote sensing techniques in central Anatolia
  publication-title: Turkey PloS one
– volume: 6
  start-page: 832
  year: 2007
  end-page: 841
  ident: CR95
  article-title: Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods
  publication-title: Agric Sci China
– volume: 228
  start-page: 107239
  year: 2021
  ident: CR46
  article-title: A novel periodic learning ontology matching model based on interactive grasshopper optimization algorithm
  publication-title: Knowl-Based Syst
– volume: 53
  start-page: 1373
  year: 2020
  end-page: 1414
  ident: CR79
  article-title: Bird swarm algorithms with chaotic mapping
  publication-title: Artif Intell Rev
– volume: 237
  start-page: 71
  year: 2015
  end-page: 77
  ident: CR44
  article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited
  publication-title: Geoderma
– volume: 252
  start-page: 115102
  year: 2022
  ident: CR34
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers Manag
– volume: 14
  start-page: 5719
  year: 2022
  ident: CR37
  article-title: Comparing Gaofen-5, Ground, and Huanjing-1A spectra for the monitoring of soil salinity with the BP neural network improved by particle swarm optimization
  publication-title: Remote Sens
– volume: 12
  start-page: 4118
  year: 2020
  ident: CR88
  article-title: Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: a case study from Southern Xinjiang
  publication-title: China Remote Sensing
– ident: CR58
– volume: 2
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR64
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
  publication-title: SN Applied Sciences
– volume: 7
  start-page: 100454
  year: 2022
  ident: CR35
  article-title: Long-term hydrological alterations and the agricultural landscapes in the Mekong Delta: insights from remote sensing and national statistics
  publication-title: Environ Challenges
– volume: 20
  start-page: e00256
  year: 2020
  ident: CR74
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Reg
– volume: 72
  start-page: 842
  year: 2021
  end-page: 862
  ident: CR10
  article-title: Climate change impacts on soil salinity in agricultural areas
  publication-title: Eur J Soil Sci
– volume: 121
  start-page: 441
  year: 2011
  end-page: 449
  ident: CR13
  article-title: Simulation for response of crop yield to soil moisture and salinity with artificial neural network
  publication-title: Field Crop Res
– volume: 13
  start-page: 4825
  year: 2021
  ident: CR52
  article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach
  publication-title: Remote Sens
– volume: 11
  start-page: 551
  year: 2019
  end-page: 566
  ident: CR96
  article-title: Determining the spatial distribution of soil properties using the environmental covariates and multivariate statistical analysis: a case study in semi-arid regions of Iran
  publication-title: J Arid Land
– ident: CR15
– volume: 9
  start-page: 50001
  year: 2021
  end-page: 50024
  ident: CR48
  article-title: Grasshopper optimization algorithm: theory, variants, and applications
  publication-title: IEEE Access
– volume: 52
  start-page: 256
  year: 2019
  end-page: 276
  ident: CR82
  article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China
  publication-title: European J Remote Sensing
– volume: 14
  start-page: 512
  year: 2022
  ident: CR89
  article-title: Inversion of soil salinity using multisource remote sensing data and particle swarm machine learning models in Keriya Oasis
  publication-title: Northwestern China Remote Sensing
– volume: 126
  start-page: 48
  year: 2022
  end-page: 64
  ident: CR18
  article-title: A binary moth search algorithm based on self-learning for multidimensional knapsack problems
  publication-title: Futur Gener Comput Syst
– start-page: 1
  year: 2010
  end-page: 6
  ident: CR31
  publication-title: Random Forests: An algorithm for image classification and generation of continuous fields data sets
– volume: 33
  start-page: 1301
  year: 2007
  end-page: 1315
  ident: CR30
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput Geosci
– volume: 28
  start-page: 673
  year: 2016
  end-page: 687
  ident: CR47
  article-title: A new bio-inspired optimisation algorithm: Bird Swarm Algorithm
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: CR67
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv Eng Softw
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR29
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Futur Gener Comput Syst
– volume: 609
  start-page: 127716
  year: 2022
  ident: CR78
  article-title: Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging
  publication-title: J Hydrol
– volume: 2
  start-page: 373
  issue: 4
  year: 2013
  end-page: 385
  ident: CR4
  article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review
  publication-title: Adv Remote Sens
– ident: CR53
– volume: 353
  start-page: 172
  year: 2019
  end-page: 187
  ident: CR85
  article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
  publication-title: Geoderma
– volume: 212
  start-page: 106054
  year: 2022
  ident: CR21
  article-title: Updated soil salinity with fine spatial resolution and high accuracy: the synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches
  publication-title: Catena
– volume: 11
  start-page: 736
  year: 2019
  ident: CR33
  article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images
  publication-title: Remote Sens
– volume: 31
  start-page: 387
  year: 1995
  end-page: 398
  ident: CR42
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques: 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation
  publication-title: Water Resour Res
– volume: 794
  start-page: 148651
  year: 2021
  ident: CR45
  article-title: How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review
  publication-title: Sci Total Environ
– volume: 112
  start-page: 106173
  year: 2020
  ident: CR24
  article-title: Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements
  publication-title: Ecol Indic
– volume: 13
  start-page: 305
  year: 2021
  ident: CR87
  article-title: Soil salinity mapping using machine learning algorithms with the sentinel-2 MSI in Arid Areas
  publication-title: China Remote Sensing
– volume: 96
  start-page: 148
  year: 1996
  end-page: 156
  ident: CR20
  article-title: Experiments with a new boosting algorithm
  publication-title: Citeseer
– volume: 1
  start-page: 14
  year: 2020
  end-page: 20
  ident: CR66
  article-title: Effect of various soil cultivation methods on some microbial soil properties
  publication-title: DRC Sustainable Future
– volume: 13
  start-page: 250
  year: 2021
  ident: CR98
  article-title: Relating hyperspectral vegetation indices with soil salinity at different depths for the diagnosis of winter wheat salt stress
  publication-title: Remote Sens
– volume: 27
  start-page: 2
  year: 2022
  ident: CR26
  article-title: The composition of time-series images and using the technique SMOTE ENN for balancing datasets in land use/cover mapping
  publication-title: Acta Montan Slovaca
– volume: 2
  start-page: 82
  year: 2014
  end-page: 90
  ident: CR68
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg
– volume: 37
  start-page: 6780
  year: 2022
  end-page: 6807
  ident: CR11
  article-title: Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree
  publication-title: Geocarto Int
– volume: 29
  start-page: 4005
  year: 2018
  end-page: 4014
  ident: CR92
  article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq
  publication-title: Land Degrad Dev
– start-page: 97
  year: 2022
  end-page: 125
  ident: CR27
  article-title: Climate change impact on soil salinity dynamics at the gosaba cd block in india by integrating geospatial indicators and regression techniques
  publication-title: Climate change impacts, mitigation and adaptation in developing countries
– volume: 116
  start-page: 273
  year: 2018
  end-page: 280
  ident: CR61
  article-title: Fault detection of broken rotor bar in LS-PMSM using random forests
  publication-title: Measurement
– volume: 169
  start-page: 39
  year: 2019
  end-page: 52
  ident: CR1
  article-title: Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution
  publication-title: Knowl-Based Syst
– volume: 133
  start-page: 106656
  year: 2020
  ident: CR32
  article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Comput Chem Eng
– volume: 37
  start-page: 1265
  year: 2021
  end-page: 1275
  ident: CR50
  article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network
  publication-title: Eng Comput
– ident: CR62
– volume: 27
  start-page: e00424
  year: 2021
  ident: CR56
  article-title: Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: a case study in Vietnam’s Mekong Delta
  publication-title: Geoderma Reg
– volume-title: Soil constraints on crop production
  year: 2022
  ident: 27516_CR77
– volume: 9
  start-page: 1
  year: 2019
  ident: 27516_CR84
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37186-2
– volume: 96
  start-page: 148
  year: 1996
  ident: 27516_CR20
  publication-title: Citeseer
– volume: 97
  start-page: 849
  year: 2019
  ident: 27516_CR29
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 2
  start-page: 373
  issue: 4
  year: 2013
  ident: 27516_CR4
  publication-title: Adv Remote Sens
  doi: 10.4236/ars.2013.24040
– volume: 14
  start-page: 512
  year: 2022
  ident: 27516_CR89
  publication-title: Northwestern China Remote Sensing
  doi: 10.3390/rs14030512
– volume: 239
  start-page: 34
  year: 2015
  ident: 27516_CR3
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– volume: 13
  start-page: 250
  year: 2021
  ident: 27516_CR98
  publication-title: Remote Sens
  doi: 10.3390/rs13020250
– volume: 4
  start-page: 2669
  year: 2011
  ident: 27516_CR91
  publication-title: Energy Environ Sci
  doi: 10.1039/C1EE01029H
– volume: 28
  start-page: 673
  year: 2016
  ident: 27516_CR47
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1042530
– volume: 121
  start-page: 441
  year: 2011
  ident: 27516_CR13
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.01.016
– volume: 589
  start-page: 125133
  year: 2020
  ident: 27516_CR76
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125133
– volume: 116
  start-page: 273
  year: 2018
  ident: 27516_CR61
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.004
– volume: 794
  start-page: 148651
  year: 2021
  ident: 27516_CR45
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148651
– volume: 8
  start-page: 22
  year: 2020
  ident: 27516_CR93
  publication-title: Sys Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 45
  start-page: 5
  year: 2001
  ident: 27516_CR6
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 27
  start-page: e00424
  year: 2021
  ident: 27516_CR56
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2021.e00424
– volume: 162
  start-page: 1
  year: 2011
  ident: 27516_CR51
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– volume: 4
  start-page: 457
  year: 2010
  ident: 27516_CR73
  publication-title: Aust J Basic Appl Sci
– volume: 74
  start-page: 384
  year: 2017
  ident: 27516_CR22
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 14
  start-page: 4448
  year: 2022
  ident: 27516_CR59
  publication-title: China Remote Sensing
  doi: 10.3390/rs14184448
– volume: 11
  start-page: 551
  year: 2019
  ident: 27516_CR96
  publication-title: J Arid Land
  doi: 10.1007/s40333-019-0059-9
– volume: 53
  start-page: 1373
  year: 2020
  ident: 27516_CR79
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09704-9
– ident: 27516_CR55
  doi: 10.1080/10106049.2021.1975832
– volume: 29
  start-page: 100579
  year: 2021
  ident: 27516_CR14
  publication-title: Transport Geotechnics
  doi: 10.1016/j.trgeo.2021.100579
– volume: 228
  start-page: 107239
  year: 2021
  ident: 27516_CR46
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107239
– volume: 85
  start-page: 1
  year: 2003
  ident: 27516_CR49
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 8
  start-page: e10585
  year: 2020
  ident: 27516_CR9
  publication-title: PeerJ
  doi: 10.7717/peerj.10585
– volume: 237
  start-page: 71
  year: 2015
  ident: 27516_CR44
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.008
– ident: 27516_CR58
  doi: 10.1155/2021/3946958
– ident: 27516_CR62
  doi: 10.1117/12.668335
– start-page: 97
  volume-title: Climate change impacts, mitigation and adaptation in developing countries
  year: 2022
  ident: 27516_CR27
– volume: 365
  start-page: 114233
  year: 2020
  ident: 27516_CR17
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114233
– volume: 54
  start-page: 1739
  year: 2008
  ident: 27516_CR75
  publication-title: Vietnam Environ Geol
  doi: 10.1007/s00254-007-0951-z
– volume: 15
  start-page: 507
  year: 2015
  ident: 27516_CR23
  publication-title: Procedia Earth and Planetary Science
  doi: 10.1016/j.proeps.2015.08.062
– volume: 13
  start-page: 305
  year: 2021
  ident: 27516_CR87
  publication-title: China Remote Sensing
  doi: 10.3390/rs13020305
– volume: 9
  start-page: 569
  year: 2020
  ident: 27516_CR60
  publication-title: ISPRS Int J Geo Inf
  doi: 10.3390/ijgi9100569
– volume: 31
  start-page: 373
  year: 1995
  ident: 27516_CR41
  publication-title: Water Resour Res
  doi: 10.1029/94WR02179
– volume: 1
  start-page: 14
  year: 2020
  ident: 27516_CR66
  publication-title: DRC Sustainable Future
– volume: 78
  start-page: 1
  year: 2019
  ident: 27516_CR25
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7995-0
– volume: 63
  start-page: 151
  year: 2017
  ident: 27516_CR69
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2016.1193162
– volume: 17
  start-page: e0266915
  year: 2022
  ident: 27516_CR40
  publication-title: Turkey PloS one
  doi: 10.1371/journal.pone.0266915
– volume: 112
  start-page: 106173
  year: 2020
  ident: 27516_CR24
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106173
– volume: 606
  start-page: 127384
  year: 2022
  ident: 27516_CR12
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127384
– volume: 52
  start-page: 138
  year: 2019
  ident: 27516_CR70
  publication-title: European J Remote Sensing
  doi: 10.1080/22797254.2019.1571870
– volume: 252
  start-page: 115102
  year: 2022
  ident: 27516_CR34
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115102
– volume: 126
  start-page: 48
  year: 2022
  ident: 27516_CR18
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2021.07.033
– volume: 29
  start-page: 4005
  year: 2018
  ident: 27516_CR92
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.3148
– volume: 10
  start-page: 151
  year: 2018
  ident: 27516_CR83
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 16
  start-page: 2577
  year: 2019
  ident: 27516_CR57
  publication-title: Iran J Mountain Sci
  doi: 10.1007/s11629-019-5567-8
– volume: 71
  start-page: 1
  year: 2010
  ident: 27516_CR8
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2009.12.002
– volume: 37
  start-page: 6780
  year: 2022
  ident: 27516_CR11
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1948109
– volume: 33
  start-page: 1301
  year: 2007
  ident: 27516_CR30
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2007.05.001
– volume: 2
  start-page: 1
  year: 2020
  ident: 27516_CR64
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-3060-1
– volume: 133
  start-page: 106656
  year: 2020
  ident: 27516_CR32
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 37
  start-page: 1265
  year: 2021
  ident: 27516_CR50
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00882-2
– volume: 76
  start-page: 9404
  year: 2020
  ident: 27516_CR28
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03212-2
– volume: 11
  start-page: 860
  year: 2019
  ident: 27516_CR43
  publication-title: Water
  doi: 10.3390/w11040860
– ident: 27516_CR15
– volume: 105
  start-page: 30
  year: 2017
  ident: 27516_CR67
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: 27516_CR53
  doi: 10.1111/tgis.12980
– volume: 581
  start-page: 124379
  year: 2020
  ident: 27516_CR7
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124379
– volume: 72
  start-page: 201
  year: 2008
  ident: 27516_CR16
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2007.0013
– volume: 9
  start-page: 50001
  year: 2021
  ident: 27516_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067597
– volume: 20
  start-page: e00256
  year: 2020
  ident: 27516_CR74
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2020.e00256
– volume: 30
  start-page: 49
  year: 2016
  ident: 27516_CR71
  publication-title: Arid Land Res Manag
  doi: 10.1080/15324982.2015.1046092
– volume: 31
  start-page: 387
  year: 1995
  ident: 27516_CR42
  publication-title: Water Resour Res
  doi: 10.1029/94WR02180
– volume: 12
  start-page: 4118
  year: 2020
  ident: 27516_CR88
  publication-title: China Remote Sensing
  doi: 10.3390/rs12244118
– volume: 212
  start-page: 106054
  year: 2022
  ident: 27516_CR21
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106054
– volume: 72
  start-page: 842
  year: 2021
  ident: 27516_CR10
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.13010
– volume: 2
  start-page: 82
  year: 2014
  ident: 27516_CR68
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2014.10.004
– volume: 52
  start-page: 256
  year: 2019
  ident: 27516_CR82
  publication-title: European J Remote Sensing
  doi: 10.1080/22797254.2019.1596756
– volume: 40
  start-page: 284
  year: 2019
  ident: 27516_CR36
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2018.1513180
– volume: 65
  start-page: 644
  year: 2006
  ident: 27516_CR19
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2005.08.005
– start-page: 1
  volume-title: Random Forests: An algorithm for image classification and generation of continuous fields data sets
  year: 2010
  ident: 27516_CR31
– volume: 196
  start-page: 104939
  year: 2021
  ident: 27516_CR90
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104939
– volume: 609
  start-page: 127716
  year: 2022
  ident: 27516_CR78
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.127716
– volume: 6
  start-page: 832
  year: 2007
  ident: 27516_CR95
  publication-title: Agric Sci China
  doi: 10.1016/S1671-2927(07)60119-9
– volume: 7
  start-page: 100454
  year: 2022
  ident: 27516_CR35
  publication-title: Environ Challenges
  doi: 10.1016/j.envc.2022.100454
– volume: 707
  start-page: 136092
  year: 2020
  ident: 27516_CR86
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.136092
– volume: 27
  start-page: 2
  year: 2022
  ident: 27516_CR26
  publication-title: Acta Montan Slovaca
– volume: 20
  start-page: 5609
  year: 2020
  ident: 27516_CR5
  publication-title: Sensors
  doi: 10.3390/s20195609
– volume: 11
  start-page: 736
  year: 2019
  ident: 27516_CR33
  publication-title: Remote Sens
  doi: 10.3390/rs11070736
– volume: 28
  start-page: 147
  year: 2014
  ident: 27516_CR72
  publication-title: Iran Arid Land Res Manage
  doi: 10.1080/15324982.2013.828801
– start-page: 1942
  volume-title: Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks
  year: 1995
  ident: 27516_CR38
  doi: 10.1109/ICNN.1995.488968
– volume: 7
  start-page: 794
  year: 2015
  ident: 27516_CR94
  publication-title: J Arid Land
  doi: 10.1007/s40333-015-0053-9
– volume: 13
  start-page: 4825
  year: 2021
  ident: 27516_CR52
  publication-title: Remote Sens
  doi: 10.3390/rs13234825
– volume: 14
  start-page: 5719
  year: 2022
  ident: 27516_CR37
  publication-title: Remote Sens
  doi: 10.3390/rs14225719
– volume: 169
  start-page: 39
  year: 2019
  ident: 27516_CR1
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.01.023
– ident: 27516_CR63
  doi: 10.1080/10106049.2021.1974959
– volume: 33
  start-page: 8939
  year: 2021
  ident: 27516_CR2
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-021-05720-5
– volume: 299
  start-page: 1
  year: 2017
  ident: 27516_CR80
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.013
– volume: 353
  start-page: 172
  year: 2019
  ident: 27516_CR85
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.040
– volume: 15
  start-page: 2369
  year: 2022
  ident: 27516_CR54
  publication-title: Vietnam Earth Science Informatics
  doi: 10.1007/s12145-022-00825-4
– volume: 754
  start-page: 142030
  year: 2021
  ident: 27516_CR81
  publication-title: China Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142030
– ident: 27516_CR97
  doi: 10.1007/s10462-022-10140-5
– volume: 134
  start-page: 178
  year: 2009
  ident: 27516_CR39
  publication-title: Iran Agric, Ecosyst Environ
  doi: 10.1016/j.agee.2009.06.017
– volume: 12
  start-page: 1973
  year: 2020
  ident: 27516_CR65
  publication-title: Remote Sens
  doi: 10.3390/rs12121973
SSID ssj0020927
Score 2.4440963
Snippet Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74340
SubjectTerms Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
birds
Climate change
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental monitoring
Environmental science
Food security
grasshoppers
Learning algorithms
Machine learning
Mekong River
model validation
Monitoring
Optimization algorithms
Particle swarm optimization
Passeriformes
prediction
Prediction models
Remote sensing
Research Article
river deltas
Rivers
Root-mean-square errors
Salinity
Salinity effects
Salinization
sea level
Sea level rise
Search algorithms
Soil salinity
soil salinization
Soils
swarms
Vietnam
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0ELbCxfehUBBRuIGrhI7tpNjgS0VqBygi8opsh1nu2KbrTZZiXKB3-D3-BJmEmdXUIrUazy2JuMZe8bzIuSZMLnIQaAZFzZlqaxKlpexY6BqlFZwlCjMdz58rw4m6dtjeRySwpoh2n1wSXYn9SbZLRESA2YF41omioHmuNXV2xqRrb03n9-N14ZWnHMdEmT-PfPPS-iCZnnBK9pdNvs3yWRAs48x-bK7au2u-_ZXBcer_sctciNon3SvZ5fb5Jqv75Dt8SbZDQaDtDd3yfePi9mcNgaTJ9tzerZEpw5uJMVo-Sk9Ocd0L3raxWN6GhpQTKmpS7r0wAOeNhgfD59mNX3pa3q09LR_xHCewjqfZr6tzemvHz8beuhBV53SDxgoQl_7eWvukcn--OjVAQsNG5hL46xlzvFEaBtXylluVCVEJcEg09xamZdSWK60NT7OrBIcTCmn4hJOY-1U5bmBs3ebjOpF7R8QmrgczPyqrHQFBg9PLC6bpi7TqRVK-Ygkww4WLlQzx6Ya82JThxnpXACdi47OxdeIPF_POetrefwXemdgjCLIdVOggYo2nkoi8nQ9DBKJbhZT-8UKYRKllcwzfTmMSLAhB2ivaUTu90y3RqnrGySzOCIvBgbaIHA5vg-vBv6IXOfIg92D0g4ZtcuVfwz6VWufBHH6DTEeIBI
  priority: 102
  providerName: Springer Nature
Title Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam’s Mekong River Delta
URI https://link.springer.com/article/10.1007/s11356-023-27516-x
https://www.ncbi.nlm.nih.gov/pubmed/37204580
https://www.proquest.com/docview/2828548761
https://www.proquest.com/docview/2816765987
https://www.proquest.com/docview/3153205454
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a2hdeELdBYVRG4g0s4kvs5AGhbnRMoFVorKg8RbHjdJW6tLSZtD3B3-Dv8UvwyaUVmraXPDiOZeXzsc_xuXwAr0Uai9gLNOXCSCrDPKNxFljqVY3MCI4ShfnOJyN1PJafJ-FkB0ZtLgyGVbZ7YrVRZwuLd-Tv0DRA7VqxD8ufFFmj0LvaUmikDbVC9r4qMbYLXY6VsTrQPRiOvp5uTLAgrklcYykpE1I2aTR1Mh0TIQbkCsp1yBS9-v-ouqF_3vCdVkfS0QO43-iSZFCD_xB2XPEI9obb1DX_spHd9WP49W0xm5N1iqmQ5TVZrtBFg7AQjH2fkvNrTN4iF1V0pSMNncSUpEVGVs4j6sgao91906wgB64gZytH6isJ64gf5_vMlUV68ff3nzU5cV7znJJTDPsgH928TJ_A-Gh4dnhMG_oFamUQldRazoQ2Qa6s4anKhchDb15pbkwYZ6EwXGmTuiAySnBvGFkVZB4fbVXueOp30j3oFIvCPQPCbOyN9jzLde7NF84MDiuljbQ0QinXA9b-6cQ2tcmRImOebKsqIzqJRyep0EmuevBm882yrsxxZ-_9FsCkkdJ1sl1TPXi1ee3lC50maeEWl9iHKa3CONK39xEM6TW8Lip78LReHJspVSxAYRT04G27WrYTuH2-z--e7wu4h7z3dczaPnTK1aV76bWj0vRhV0-0f0aHrA_dwacfX4b9Rgx865gP_gEHUhH5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXxKuwUMBIcAKL-BE7OSAEfWhLuz3AFvUWYsfZrrTNLptUdE_wN_gT_Ch-CZ48doWq9tZr7DijzMMznhl_AC9FGovYKzTlwkgqwzyjcRZY6l2NzAiOGoX9zoND1T-Sn47D4zX40_XCYFllZxNrQ51NLZ6Rv8XQAL1rxd7PvlNEjcLsageh0YjFvlv88CFb-W5v2_P3Fee7O8OtPm1RBaiVQVRRazkT2gS5soanKhciD33UoLkxYZyFwnClTeqCyCjBvb9vVZD5z2qrcsdThigR3uTfkIJrNATR1rKkhAdxAxEbS0mZkLJt0mla9ZgIsdxXUK5Dpuj5_xvhBe_2Qma23vB278Dt1lMlHxrRugtrrrgHGzurxjg_2FqG8j78_DIdT0iZYqNltSCzOSaAkOkEK-tH5GSBrWHktK7ddKQFqxiRtMjI3Hl5caTEWnr_aFyQj64gw7kjzYGHdcSv83XsqiI9_fvrd0kGzvu1I_IZi0rItptU6QM4uhY2bMB6MS3cIyDMxs6IPMt17oMjzgwuK6WNtDRCKdcD1v3pxLY3nyMAxyRZ3dmM3Ek8d5KaO8l5D14v35k1935cOXuzY2DS2oAyWUlsD14sh732YkomLdz0DOcwpVUYR_ryOYIheIf3dGUPHjbCsSSpxhgKo6AHbzppWRFwOb2Pr6b3OdzsDwcHycHe4f4TuMVRauuDp01Yr-Zn7qn3wyrzrBZ-At-uW9v-ASH_Q0k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiEuiL9CoICR4ARW4__kgBCwXbWUVghatLc0dpxlpW122aSie4LX4FV4HJ4ET342QlV76zV2rFHmm8mMPeMPoec8jXnsDZowbgQRMs9InIWW-FAjM5yBRUG_8_6B2jkSH0ZytIb-dL0wUFbZ-cTaUWczC3vkW5AaQHSt6FbelkV8GgzfzL8TYJCCk9aOTqOByJ5b_vDpW_l6d-B1_YKx4fbh-x3SMgwQK8KoItYyyrUJc2UNS1XOeS59BqGZMTLOJDdMaZO6MDKKMx_7WxVmXgRtVe5YSoExwrv_a5rzGMoJ9ahP9sK4oYuNhSCUC9E27DRte5RLKP3lhGlJFTn7_6d4LtI9d0pb__yGt9DNNmrFbxuY3UZrrriDNrb7Jjk_2HqJ8i76-WU2meIyhabLaonnCzgMAgBgqLIf429LaBPDJ3Udp8MtccUYp0WGF85jx-ES6ur9o0mB37kCHy4cbjY_rMN-na8TVxXpyd9fv0u873yMO8afocAED9y0Su-hoytRwwZaL2aFe4AwtbEzPM9ynftEiVEDywphIy0MV8oFiHZfOrHtLehAxjFN-vubQTuJ105Sayc5C9DL1Tvz5g6QS2dvdgpMWn9QJj16A_RsNewtGY5n0sLNTmEOVVrJONIXz-EUiDx81CsCdL8Bx0qkmm9IRmGAXnVo6QW4WN6Hl8v7FF33dpZ83D3Ye4RuMABtvQe1idarxal77EOyyjypsY_R8VUb2z-3B0e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+salinity+prediction+using+hybrid+machine+learning+and+remote+sensing+in+Ben+Tre+province+on+Vietnam%E2%80%99s+Mekong+River+Delta&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Nguyen%2C+Huu+Duy&rft.au=Van%2C+Chien+Pham&rft.au=Nguyen%2C+Tien+Giang&rft.au=Dang%2C+Dinh+Kha&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=29&rft.spage=74340&rft.epage=74357&rft_id=info:doi/10.1007%2Fs11356-023-27516-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon