Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances

A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 84777 - 84791
Main Authors Hu, Qin, Zhang, Qi, Si, Xiao-Sheng, Qin, Ai-Song, Zhang, Qing-Hua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2989460

Cover

More Information
Summary:A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefined dimensionless indicators and multi-scale analysis called multi-scale redefined dimensionless indicators. Then, density peak clustering with geodesic distances is utilized to automatically find the important multi-scale redefined dimensionless indicators. To the best of our knowledge, this is the first study to use density peak clustering with geodesic distances to explore unsupervised feature selection in the fault diagnosis field. Finally, the selected multi-scale redefined dimensionless indicators are fed into a quadratic discriminant analysis classifier to simultaneously identify 12 different conditions of rolling bearings. Experimental results demonstrated that the proposed method can successfully differentiate 12 localized fault types, fault severities, and fault orientations of rolling bearings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2989460