Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances

A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 84777 - 84791
Main Authors Hu, Qin, Zhang, Qi, Si, Xiao-Sheng, Qin, Ai-Song, Zhang, Qing-Hua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2989460

Cover

Abstract A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefined dimensionless indicators and multi-scale analysis called multi-scale redefined dimensionless indicators. Then, density peak clustering with geodesic distances is utilized to automatically find the important multi-scale redefined dimensionless indicators. To the best of our knowledge, this is the first study to use density peak clustering with geodesic distances to explore unsupervised feature selection in the fault diagnosis field. Finally, the selected multi-scale redefined dimensionless indicators are fed into a quadratic discriminant analysis classifier to simultaneously identify 12 different conditions of rolling bearings. Experimental results demonstrated that the proposed method can successfully differentiate 12 localized fault types, fault severities, and fault orientations of rolling bearings.
AbstractList A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefined dimensionless indicators and multi-scale analysis called multi-scale redefined dimensionless indicators. Then, density peak clustering with geodesic distances is utilized to automatically find the important multi-scale redefined dimensionless indicators. To the best of our knowledge, this is the first study to use density peak clustering with geodesic distances to explore unsupervised feature selection in the fault diagnosis field. Finally, the selected multi-scale redefined dimensionless indicators are fed into a quadratic discriminant analysis classifier to simultaneously identify 12 different conditions of rolling bearings. Experimental results demonstrated that the proposed method can successfully differentiate 12 localized fault types, fault severities, and fault orientations of rolling bearings.
Author Zhang, Qi
Si, Xiao-Sheng
Zhang, Qing-Hua
Qin, Ai-Song
Hu, Qin
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0000-0002-6446-1151
  surname: Hu
  fullname: Hu, Qin
  organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China
– sequence: 2
  givenname: Qi
  orcidid: 0000-0002-1387-0289
  surname: Zhang
  fullname: Zhang, Qi
  organization: Department of Automation, Rocket Force University of Engineering, Xi'an, China
– sequence: 3
  givenname: Xiao-Sheng
  orcidid: 0000-0001-5226-9923
  surname: Si
  fullname: Si, Xiao-Sheng
  email: sxs09@mails.tsinghua.edu.cn
  organization: Department of Automation, Rocket Force University of Engineering, Xi'an, China
– sequence: 4
  givenname: Ai-Song
  orcidid: 0000-0002-7365-4502
  surname: Qin
  fullname: Qin, Ai-Song
  organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China
– sequence: 5
  givenname: Qing-Hua
  surname: Zhang
  fullname: Zhang, Qing-Hua
  organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China
BookMark eNqFkVuLFDEQhRtZwXXdX7AvAZ97zKVveVx7Lw6sKI7iY6hOqseMvcmYpJHBP2_GXhZZHwyEFHXqfKE4L4sT5x0WxQWjK8aofHPZ99ebzYpTTldcdrJq6LPilLNGlqIWzclf9YviPMYdzafLrbo9LX7dwDwlcmVh63y0kbyFiIZ4R97nvi03GiYkn9DgaF0Wruw9umi9mzBGsnbGakg-RAIui0cpHchHhO-kn-aYMFi3JV9t-kZu0RuMVmdETOA0xlfF8xGmiOcP71nx5eb6c_-uvPtwu-4v70pd0S6VeoCqY8Z0zVAzw-RIQRpoBIVmkC2rBeW1aRDlkO_YcF1z5EMjhtEY3TIUZ8V64RoPO7UP9h7CQXmw6k_Dh62CkKyeUFWZTg1ltKGs4hQH1lHBuk4ywdvWsMyqFtbs9nD4CdP0CGRUHfNQoPNuUR3zUA95ZNvrxbYP_seMMamdn4PLWyte1RWjvBIyT4llSgcfY8DxH_aS9VO2fOLSNkHKGaUAdvqP92LxWkR8_E3StpayFr8BGWa38A
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3056595
crossref_primary_10_1088_1361_6501_ac9db1
crossref_primary_10_1016_j_psep_2025_106941
crossref_primary_10_1016_j_psep_2022_12_018
crossref_primary_10_1109_ACCESS_2023_3283561
crossref_primary_10_1109_ACCESS_2022_3208587
crossref_primary_10_1016_j_bspc_2021_103003
Cites_doi 10.1109/TIE.2018.2873546
10.1109/TII.2018.2810226
10.1109/TII.2019.2929743
10.1109/JSEN.2015.2497545
10.1109/TIE.2018.2847704
10.1016/j.ymssp.2018.05.019
10.1016/j.ymssp.2017.06.012
10.1126/science.290.5500.2319
10.1109/TIE.2016.2519325
10.1145/367766.368168
10.1109/ACCESS.2020.2976832
10.1103/PhysRevE.71.021906
10.1016/j.ymssp.2019.106609
10.1016/j.ymssp.2012.09.015
10.1109/ACCESS.2018.2873782
10.1007/978-3-030-20521-8_45
10.1109/TIE.2014.2327589
10.1109/JSEN.2018.2885377
10.1109/JSEN.2018.2866708
10.1109/TIE.2018.2886789
10.1109/ICME.2017.8019357
10.1109/TIE.2017.2762623
10.1109/TIM.2004.834070
10.1109/ACCESS.2019.2904254
10.1016/j.knosys.2018.09.004
10.1016/j.knosys.2016.02.001
10.1109/TIM.2017.2751878
10.1109/TMECH.2017.2759791
10.1016/j.eswa.2016.11.024
10.1007/s13042-017-0648-x
10.1126/science.1242072
10.1109/TR.2019.2930195
10.1109/TPAMI.2010.215
10.1016/j.eswa.2017.11.020
10.1016/j.ymssp.2017.02.013
10.1109/TIE.2012.2218559
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.2989460
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: UniTN - DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 84791
ExternalDocumentID oai_doaj_org_article_49f00d010601420eb1803188913277d1
10.1109/access.2020.2989460
10_1109_ACCESS_2020_2989460
9075995
Genre orig-research
GrantInformation_xml – fundername: Young Innovative Talents Program of Guangdong University
  grantid: 2019KQNCX088
– fundername: Young Innovative Talents Program of Guangdong University of Petrochemical Technology
  grantid: 2016qn17
  funderid: 10.13039/100008963
– fundername: National Natural Science Foundation of China
  grantid: 61922089; 61773386; 61673311; 61573366; 61673127; 61473094
  funderid: 10.13039/501100001809
– fundername: Young Elite Scientists Sponsorship Program of China Association for Science and Technology
  grantid: 2016QNRC001
– fundername: Key Project of Natural Science Foundation of Guangdong
  grantid: 2018B030311054
  funderid: 10.13039/501100003453
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFB1306100
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-cba481dd86b51d19f0a9da630a6b97153025d6ee9bee9f62c52e2b63bfddc71e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 14 15:06:47 EDT 2025
Tue Aug 19 18:31:13 EDT 2025
Sun Jun 29 16:41:53 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Oct 01 02:06:31 EDT 2025
Wed Aug 27 02:39:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cba481dd86b51d19f0a9da630a6b97153025d6ee9bee9f62c52e2b63bfddc71e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7365-4502
0000-0002-6446-1151
0000-0001-5226-9923
0000-0002-1387-0289
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9075995
PQID 2454102439
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_49f00d010601420eb1803188913277d1
ieee_primary_9075995
proquest_journals_2454102439
crossref_primary_10_1109_ACCESS_2020_2989460
unpaywall_primary_10_1109_access_2020_2989460
crossref_citationtrail_10_1109_ACCESS_2020_2989460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
rodriguez (ref23) 2014; 344
ref18
anderson (ref36) 2003
he (ref38) 2005; 18
ref24
ref26
(ref33) 2012
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
yang (ref39) 2011
References_xml – start-page: 1589
  year: 2011
  ident: ref39
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref11
  doi: 10.1109/TIE.2018.2873546
– ident: ref27
  doi: 10.1109/TII.2018.2810226
– ident: ref24
  doi: 10.1109/TII.2019.2929743
– volume: 18
  start-page: 507
  year: 2005
  ident: ref38
  article-title: Laplacian score for feature selection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/JSEN.2015.2497545
– ident: ref13
  doi: 10.1109/TIE.2018.2847704
– ident: ref6
  doi: 10.1016/j.ymssp.2018.05.019
– ident: ref1
  doi: 10.1016/j.ymssp.2017.06.012
– ident: ref28
  doi: 10.1126/science.290.5500.2319
– year: 2012
  ident: ref33
  publication-title: Bearings Vibration Data Set Case Western Reserve University
– ident: ref2
  doi: 10.1109/TIE.2016.2519325
– ident: ref32
  doi: 10.1145/367766.368168
– ident: ref31
  doi: 10.1109/ACCESS.2020.2976832
– ident: ref34
  doi: 10.1103/PhysRevE.71.021906
– ident: ref35
  doi: 10.1016/j.ymssp.2019.106609
– ident: ref7
  doi: 10.1016/j.ymssp.2012.09.015
– ident: ref10
  doi: 10.1109/ACCESS.2018.2873782
– ident: ref5
  doi: 10.1007/978-3-030-20521-8_45
– ident: ref12
  doi: 10.1109/TIE.2014.2327589
– ident: ref16
  doi: 10.1109/JSEN.2018.2885377
– ident: ref18
  doi: 10.1109/JSEN.2018.2866708
– ident: ref4
  doi: 10.1109/TIE.2018.2886789
– ident: ref40
  doi: 10.1109/ICME.2017.8019357
– ident: ref14
  doi: 10.1109/TIE.2017.2762623
– ident: ref19
  doi: 10.1109/TIM.2004.834070
– ident: ref25
  doi: 10.1109/ACCESS.2019.2904254
– ident: ref20
  doi: 10.1016/j.knosys.2018.09.004
– ident: ref26
  doi: 10.1016/j.knosys.2016.02.001
– start-page: 260
  year: 2003
  ident: ref36
  publication-title: An Introduction to Multivariate Statistical Analysis
– ident: ref8
  doi: 10.1109/TIM.2017.2751878
– ident: ref15
  doi: 10.1109/TMECH.2017.2759791
– ident: ref22
  doi: 10.1016/j.eswa.2016.11.024
– ident: ref29
  doi: 10.1007/s13042-017-0648-x
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref23
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref3
  doi: 10.1109/TR.2019.2930195
– ident: ref37
  doi: 10.1109/TPAMI.2010.215
– ident: ref30
  doi: 10.1016/j.eswa.2017.11.020
– ident: ref9
  doi: 10.1016/j.ymssp.2017.02.013
– ident: ref21
  doi: 10.1109/TIE.2012.2218559
SSID ssj0000816957
Score 2.2053359
Snippet A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84777
SubjectTerms Clustering
clustering algorithms
Complexity theory
Density
Dimensionless analysis
Discriminant analysis
Fault diagnosis
Feature extraction
Indicators
knowledge engineering
machine learning
mechanical engineering
Multiscale analysis
nearest neighbor searches
pattern recognition
Petrochemicals
Roller bearings
Rolling bearings
unsupervised learning
Vibration measurement
Vibrations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQURKMgHjpjajh_xsV1YChIcgIreLDt2RNWQrWhWqOLPM-Oky1ZIcOGQS_zIxN94PBM73xDyXIsokXaFRV1bpjoXWGPqxHRoXCeMjG3Jn_L-gzk6Vu9O9MlWqi88EzbRA08Dt69cx3nCyAWcecnBtDSoh7i7Jq1NJfDhjdsKpooNboRx2s40Q4K7_YPFAt4IAkLJXxbW8UJK-XspKoz9c4qVa97mzfVwHi5_hL7fWniWd8md2WOkB5Ok98iNPNwnt7d4BHfJz2VY9yN9NR2bO72gh7A2JboaaPm_ln0CIDL9mFPuoFGCit_w3Ppq6MHO0bcD7tVg1h0aBijEovGSgrE8o4t-jUwK8BT65XT8St_kVcoALHSBbiUYmQfkePn68-KIzVkVWKt4M7I2BgVOampM1CIJGN7gUjA1DyY6KzCLkE4mZxfh6oxstcwymjp2KbVW5Poh2RlWQ35E6ISN1l1tuQqtgn60lSZZmZRUdayIvBpg386U45j5ovcl9ODOT6h4RMXPqFTkxabR-cS48ffqh4jcpirSZZcboER-ViL_LyWqyC7ivunEgSPlnK7I3pUe-HlqX3iptBLI4-gqwja68YeooeS7vCbq4_8h6hNyC_ucvgLtkZ3x-zo_Bb9ojM_KFPgFahwC5Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs4thOfNwuLAWJCgEryimyY0esGrIrmggKf54Zx7u0ICHBIVIUP-J4xp6ZzPgbQp6IzDCEXYmNyIuYN0rHpcxtLHSpmkwyU_v8Ka-P5dGSvzoRJ-GHmz8L45zzwWcuwVvvy1-59lsxlQzB09S0VBx2VLDlwaxDtKxkY5urZE8K0MUnZG95_Gb2ETPKZVLFufdNPgzAmlPtcxCCUcjSxCOPe2DKX-LIo_aHNCuXNM5rQ7fR5191214QPoubpNoOe4w5OU2G3iT1998QHf__u26RG0EvpbORkW6TK667Q65fQCvcJz8Wemh7-mwMzlud0UOQgJauO-pP8cbvgNyOvnXWNdDIQsXPGB2_7lqYDvqyQ48Q5vahuoNCLOrPKWzJp3TeDojXAG-hH1b9J_rCra0D9oEuUHmF6bxLlovn7-dHccjdENc8Lfu4NpqDKmxLaURmM9WkWlkt81RLo4oMcxUJK51TBq5Gslowx4zMTWNtXWQuv0cm3bpz9wnl0Di1QjR5kXJdc-hHFEzaglnOeG4iwrYkrOoAbI75NdrKGzipqmbzOXBzhXSvAt0j8nTXaDPievy9-iHyxq4qgnL7B0DHKqzxahwoGtlgd7IUpGCJWyY6gllR2Cwi-0j7XSeB0BE52HJaFTaQs4pxwTNEi1QRiXfc98dQR46-NNQH_1j_gEz6L4N7BLpVbx6HBfQT_XAdag
  priority: 102
  providerName: Unpaywall
Title Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances
URI https://ieeexplore.ieee.org/document/9075995
https://www.proquest.com/docview/2454102439
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09075995.pdf
https://doaj.org/article/49f00d010601420eb1803188913277d1
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: UniTN - DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacoAeeBXEQln5wLHZJo4f8XG7sBSkVghYUU6RHTuiakiqNhEq_HlmnGxoASEOkaJ4_NJMxjNj-xtCXojEMoRdiaxIVcRLbaJMpi4SJtNlIpktQv6Uo2N5uOJvT8TJBtkb78J478PhMz_D17CX75qiw1DZPjhyiI-1STZVJvu7WmM8BRNIaKEGYKEk1vvzxQLmAC4gi2cBZzzAUP5afAJG_5BU5YZ9eburz83VN1NV15aa5T1ytB5kf8LkbNa1dlZ8_w2_8X9ncZ_cHWxOOu-F5AHZ8PVDsn0NiXCH_Fiarmrpy_7g3eklPYDVzdGmpuGGbvQBWOnpe-98CZUcEH7Fk-9NXYGmpG9q3O3BvD3U1FCIRe0VBXV7RhdVh1gM0Av9dNp-oa994zyIBjSBhimoqUdktXz1cXEYDXkZooLHWRsV1nAwc10mrUhcosvYaGdkGhtptUowD5Fw0ntt4SklKwTzzMrUls4VKvHpY7JVN7V_QiiHyrETokxVzE3BoR2hmHSKOc54aieErRmWFwNoOebOqPLgvMQ677mcI5fzgcsTsjdWOu8xO_5NfoCSMJIi4Hb4AFzLh_837weKDjT4lCyGFS5DdYibvEwpl0zIDnJ6bGRg8oTsruUqH5TDZc644AkiQeoJiUZZ-2OoJmTMvDHUp3_v5Rm5g1R9ZGiXbLUXnX8OtlJrpyHGMA2_ypTcWh2_m3_-CT26Edo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvEpFoIAPHJtt4tjO-tguLFvo9gCt6M2yY0dUDUlFE6HCn2fGyYYWEOIQKYo9fmgm8_DjG0JeidQyhF2JrcjymJfKxFOZuViYqSpTyWwR8qcsj-TihL87FadrZGe8C-O9D4fP_ARfw16-a4oOl8p2IZBDfKxb5LbgnIv-tta4ooIpJJTIB2ihNFG7e7MZzAKCQJZMAtJ4AKL8ZX4CSv-QVuWGh7nR1Rfm6pupqmvGZn6fLFfD7M-YnE-61k6K778hOP7vPB6Qe4PXSfd6MXlI1nz9iNy9hkW4SX7MTVe19HV_9O7sku6DfXO0qWm4oxt_BGZ6-sE7XwKRg4pf8Ox7U1egK-lBjfs9mLmHmhoKsai9oqBwz-ms6hCNAXqhn87az_Stb5wH4YAm0DUFRfWYnMzfHM8W8ZCZIS54Mm3jwhoOjq6bSitSl6oyMcoZmSVGWpWnmIlIOOm9svCUkhWCeWZlZkvnijz12RZZr5vaPyGUA3HihCizPOGm4NCOyJl0OXOc8cxGhK0YposBthyzZ1Q6hC-J0j2XNXJZD1yOyM5IdNGjdvy7-j5KwlgVIbfDB-CaHv5g3Q8UQ2iIKlkCNm6KChG3eVmeuzQim8jpsZGByRHZXsmVHtTDpWZc8BSxIFVE4lHW_hiqCTkzbwz16d97eUk2FsfLQ314cPT-GbmDFP060TZZb792_jl4Tq19EX6Yn6g2EoI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs4thOfNwuLAWJCgEryimyY0esGrIrmggKf54Zx7u0ICHBIVIUP-J4xp6ZzPgbQp6IzDCEXYmNyIuYN0rHpcxtLHSpmkwyU_v8Ka-P5dGSvzoRJ-GHmz8L45zzwWcuwVvvy1-59lsxlQzB09S0VBx2VLDlwaxDtKxkY5urZE8K0MUnZG95_Gb2ETPKZVLFufdNPgzAmlPtcxCCUcjSxCOPe2DKX-LIo_aHNCuXNM5rQ7fR5191214QPoubpNoOe4w5OU2G3iT1998QHf__u26RG0EvpbORkW6TK667Q65fQCvcJz8Wemh7-mwMzlud0UOQgJauO-pP8cbvgNyOvnXWNdDIQsXPGB2_7lqYDvqyQ48Q5vahuoNCLOrPKWzJp3TeDojXAG-hH1b9J_rCra0D9oEuUHmF6bxLlovn7-dHccjdENc8Lfu4NpqDKmxLaURmM9WkWlkt81RLo4oMcxUJK51TBq5Gslowx4zMTWNtXWQuv0cm3bpz9wnl0Di1QjR5kXJdc-hHFEzaglnOeG4iwrYkrOoAbI75NdrKGzipqmbzOXBzhXSvAt0j8nTXaDPievy9-iHyxq4qgnL7B0DHKqzxahwoGtlgd7IUpGCJWyY6gllR2Cwi-0j7XSeB0BE52HJaFTaQs4pxwTNEi1QRiXfc98dQR46-NNQH_1j_gEz6L4N7BLpVbx6HBfQT_XAdag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+Based+on+Multi-Scale+Redefined+Dimensionless+Indicators+and+Density+Peak+Clustering+With+Geodesic+Distances&rft.jtitle=IEEE+access&rft.au=Hu%2C+Qin&rft.au=Zhang%2C+Qi&rft.au=Si%2C+Xiao-Sheng&rft.au=Qin%2C+Ai-Song&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=84777&rft.epage=84791&rft_id=info:doi/10.1109%2FACCESS.2020.2989460&rft.externalDocID=9075995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon