Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances
A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefi...
Saved in:
| Published in | IEEE access Vol. 8; pp. 84777 - 84791 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.2989460 |
Cover
| Abstract | A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefined dimensionless indicators and multi-scale analysis called multi-scale redefined dimensionless indicators. Then, density peak clustering with geodesic distances is utilized to automatically find the important multi-scale redefined dimensionless indicators. To the best of our knowledge, this is the first study to use density peak clustering with geodesic distances to explore unsupervised feature selection in the fault diagnosis field. Finally, the selected multi-scale redefined dimensionless indicators are fed into a quadratic discriminant analysis classifier to simultaneously identify 12 different conditions of rolling bearings. Experimental results demonstrated that the proposed method can successfully differentiate 12 localized fault types, fault severities, and fault orientations of rolling bearings. |
|---|---|
| AbstractList | A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefined dimensionless indicators and multi-scale analysis called multi-scale redefined dimensionless indicators. Then, density peak clustering with geodesic distances is utilized to automatically find the important multi-scale redefined dimensionless indicators. To the best of our knowledge, this is the first study to use density peak clustering with geodesic distances to explore unsupervised feature selection in the fault diagnosis field. Finally, the selected multi-scale redefined dimensionless indicators are fed into a quadratic discriminant analysis classifier to simultaneously identify 12 different conditions of rolling bearings. Experimental results demonstrated that the proposed method can successfully differentiate 12 localized fault types, fault severities, and fault orientations of rolling bearings. |
| Author | Zhang, Qi Si, Xiao-Sheng Zhang, Qing-Hua Qin, Ai-Song Hu, Qin |
| Author_xml | – sequence: 1 givenname: Qin orcidid: 0000-0002-6446-1151 surname: Hu fullname: Hu, Qin organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China – sequence: 2 givenname: Qi orcidid: 0000-0002-1387-0289 surname: Zhang fullname: Zhang, Qi organization: Department of Automation, Rocket Force University of Engineering, Xi'an, China – sequence: 3 givenname: Xiao-Sheng orcidid: 0000-0001-5226-9923 surname: Si fullname: Si, Xiao-Sheng email: sxs09@mails.tsinghua.edu.cn organization: Department of Automation, Rocket Force University of Engineering, Xi'an, China – sequence: 4 givenname: Ai-Song orcidid: 0000-0002-7365-4502 surname: Qin fullname: Qin, Ai-Song organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China – sequence: 5 givenname: Qing-Hua surname: Zhang fullname: Zhang, Qing-Hua organization: Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China |
| BookMark | eNqFkVuLFDEQhRtZwXXdX7AvAZ97zKVveVx7Lw6sKI7iY6hOqseMvcmYpJHBP2_GXhZZHwyEFHXqfKE4L4sT5x0WxQWjK8aofHPZ99ebzYpTTldcdrJq6LPilLNGlqIWzclf9YviPMYdzafLrbo9LX7dwDwlcmVh63y0kbyFiIZ4R97nvi03GiYkn9DgaF0Wruw9umi9mzBGsnbGakg-RAIui0cpHchHhO-kn-aYMFi3JV9t-kZu0RuMVmdETOA0xlfF8xGmiOcP71nx5eb6c_-uvPtwu-4v70pd0S6VeoCqY8Z0zVAzw-RIQRpoBIVmkC2rBeW1aRDlkO_YcF1z5EMjhtEY3TIUZ8V64RoPO7UP9h7CQXmw6k_Dh62CkKyeUFWZTg1ltKGs4hQH1lHBuk4ywdvWsMyqFtbs9nD4CdP0CGRUHfNQoPNuUR3zUA95ZNvrxbYP_seMMamdn4PLWyte1RWjvBIyT4llSgcfY8DxH_aS9VO2fOLSNkHKGaUAdvqP92LxWkR8_E3StpayFr8BGWa38A |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3056595 crossref_primary_10_1088_1361_6501_ac9db1 crossref_primary_10_1016_j_psep_2025_106941 crossref_primary_10_1016_j_psep_2022_12_018 crossref_primary_10_1109_ACCESS_2023_3283561 crossref_primary_10_1109_ACCESS_2022_3208587 crossref_primary_10_1016_j_bspc_2021_103003 |
| Cites_doi | 10.1109/TIE.2018.2873546 10.1109/TII.2018.2810226 10.1109/TII.2019.2929743 10.1109/JSEN.2015.2497545 10.1109/TIE.2018.2847704 10.1016/j.ymssp.2018.05.019 10.1016/j.ymssp.2017.06.012 10.1126/science.290.5500.2319 10.1109/TIE.2016.2519325 10.1145/367766.368168 10.1109/ACCESS.2020.2976832 10.1103/PhysRevE.71.021906 10.1016/j.ymssp.2019.106609 10.1016/j.ymssp.2012.09.015 10.1109/ACCESS.2018.2873782 10.1007/978-3-030-20521-8_45 10.1109/TIE.2014.2327589 10.1109/JSEN.2018.2885377 10.1109/JSEN.2018.2866708 10.1109/TIE.2018.2886789 10.1109/ICME.2017.8019357 10.1109/TIE.2017.2762623 10.1109/TIM.2004.834070 10.1109/ACCESS.2019.2904254 10.1016/j.knosys.2018.09.004 10.1016/j.knosys.2016.02.001 10.1109/TIM.2017.2751878 10.1109/TMECH.2017.2759791 10.1016/j.eswa.2016.11.024 10.1007/s13042-017-0648-x 10.1126/science.1242072 10.1109/TR.2019.2930195 10.1109/TPAMI.2010.215 10.1016/j.eswa.2017.11.020 10.1016/j.ymssp.2017.02.013 10.1109/TIE.2012.2218559 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.2989460 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: UniTN - DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 84791 |
| ExternalDocumentID | oai_doaj_org_article_49f00d010601420eb1803188913277d1 10.1109/access.2020.2989460 10_1109_ACCESS_2020_2989460 9075995 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Young Innovative Talents Program of Guangdong University grantid: 2019KQNCX088 – fundername: Young Innovative Talents Program of Guangdong University of Petrochemical Technology grantid: 2016qn17 funderid: 10.13039/100008963 – fundername: National Natural Science Foundation of China grantid: 61922089; 61773386; 61673311; 61573366; 61673127; 61473094 funderid: 10.13039/501100001809 – fundername: Young Elite Scientists Sponsorship Program of China Association for Science and Technology grantid: 2016QNRC001 – fundername: Key Project of Natural Science Foundation of Guangdong grantid: 2018B030311054 funderid: 10.13039/501100003453 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2018YFB1306100 funderid: 10.13039/501100012166 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-cba481dd86b51d19f0a9da630a6b97153025d6ee9bee9f62c52e2b63bfddc71e3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 15:06:47 EDT 2025 Tue Aug 19 18:31:13 EDT 2025 Sun Jun 29 16:41:53 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Oct 01 02:06:31 EDT 2025 Wed Aug 27 02:39:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-cba481dd86b51d19f0a9da630a6b97153025d6ee9bee9f62c52e2b63bfddc71e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7365-4502 0000-0002-6446-1151 0000-0001-5226-9923 0000-0002-1387-0289 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9075995 |
| PQID | 2454102439 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_49f00d010601420eb1803188913277d1 ieee_primary_9075995 proquest_journals_2454102439 crossref_primary_10_1109_ACCESS_2020_2989460 unpaywall_primary_10_1109_access_2020_2989460 crossref_citationtrail_10_1109_ACCESS_2020_2989460 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 rodriguez (ref23) 2014; 344 ref18 anderson (ref36) 2003 he (ref38) 2005; 18 ref24 ref26 (ref33) 2012 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 yang (ref39) 2011 |
| References_xml | – start-page: 1589 year: 2011 ident: ref39 article-title: L2, 1-norm regularized discriminative feature selection for unsupervised publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref11 doi: 10.1109/TIE.2018.2873546 – ident: ref27 doi: 10.1109/TII.2018.2810226 – ident: ref24 doi: 10.1109/TII.2019.2929743 – volume: 18 start-page: 507 year: 2005 ident: ref38 article-title: Laplacian score for feature selection publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/JSEN.2015.2497545 – ident: ref13 doi: 10.1109/TIE.2018.2847704 – ident: ref6 doi: 10.1016/j.ymssp.2018.05.019 – ident: ref1 doi: 10.1016/j.ymssp.2017.06.012 – ident: ref28 doi: 10.1126/science.290.5500.2319 – year: 2012 ident: ref33 publication-title: Bearings Vibration Data Set Case Western Reserve University – ident: ref2 doi: 10.1109/TIE.2016.2519325 – ident: ref32 doi: 10.1145/367766.368168 – ident: ref31 doi: 10.1109/ACCESS.2020.2976832 – ident: ref34 doi: 10.1103/PhysRevE.71.021906 – ident: ref35 doi: 10.1016/j.ymssp.2019.106609 – ident: ref7 doi: 10.1016/j.ymssp.2012.09.015 – ident: ref10 doi: 10.1109/ACCESS.2018.2873782 – ident: ref5 doi: 10.1007/978-3-030-20521-8_45 – ident: ref12 doi: 10.1109/TIE.2014.2327589 – ident: ref16 doi: 10.1109/JSEN.2018.2885377 – ident: ref18 doi: 10.1109/JSEN.2018.2866708 – ident: ref4 doi: 10.1109/TIE.2018.2886789 – ident: ref40 doi: 10.1109/ICME.2017.8019357 – ident: ref14 doi: 10.1109/TIE.2017.2762623 – ident: ref19 doi: 10.1109/TIM.2004.834070 – ident: ref25 doi: 10.1109/ACCESS.2019.2904254 – ident: ref20 doi: 10.1016/j.knosys.2018.09.004 – ident: ref26 doi: 10.1016/j.knosys.2016.02.001 – start-page: 260 year: 2003 ident: ref36 publication-title: An Introduction to Multivariate Statistical Analysis – ident: ref8 doi: 10.1109/TIM.2017.2751878 – ident: ref15 doi: 10.1109/TMECH.2017.2759791 – ident: ref22 doi: 10.1016/j.eswa.2016.11.024 – ident: ref29 doi: 10.1007/s13042-017-0648-x – volume: 344 start-page: 1492 year: 2014 ident: ref23 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – ident: ref3 doi: 10.1109/TR.2019.2930195 – ident: ref37 doi: 10.1109/TPAMI.2010.215 – ident: ref30 doi: 10.1016/j.eswa.2017.11.020 – ident: ref9 doi: 10.1016/j.ymssp.2017.02.013 – ident: ref21 doi: 10.1109/TIE.2012.2218559 |
| SSID | ssj0000816957 |
| Score | 2.2053359 |
| Snippet | A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 84777 |
| SubjectTerms | Clustering clustering algorithms Complexity theory Density Dimensionless analysis Discriminant analysis Fault diagnosis Feature extraction Indicators knowledge engineering machine learning mechanical engineering Multiscale analysis nearest neighbor searches pattern recognition Petrochemicals Roller bearings Rolling bearings unsupervised learning Vibration measurement Vibrations |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQURKMgHjpjajh_xsV1YChIcgIreLDt2RNWQrWhWqOLPM-Oky1ZIcOGQS_zIxN94PBM73xDyXIsokXaFRV1bpjoXWGPqxHRoXCeMjG3Jn_L-gzk6Vu9O9MlWqi88EzbRA08Dt69cx3nCyAWcecnBtDSoh7i7Jq1NJfDhjdsKpooNboRx2s40Q4K7_YPFAt4IAkLJXxbW8UJK-XspKoz9c4qVa97mzfVwHi5_hL7fWniWd8md2WOkB5Ok98iNPNwnt7d4BHfJz2VY9yN9NR2bO72gh7A2JboaaPm_ln0CIDL9mFPuoFGCit_w3Ppq6MHO0bcD7tVg1h0aBijEovGSgrE8o4t-jUwK8BT65XT8St_kVcoALHSBbiUYmQfkePn68-KIzVkVWKt4M7I2BgVOampM1CIJGN7gUjA1DyY6KzCLkE4mZxfh6oxstcwymjp2KbVW5Poh2RlWQ35E6ISN1l1tuQqtgn60lSZZmZRUdayIvBpg386U45j5ovcl9ODOT6h4RMXPqFTkxabR-cS48ffqh4jcpirSZZcboER-ViL_LyWqyC7ivunEgSPlnK7I3pUe-HlqX3iptBLI4-gqwja68YeooeS7vCbq4_8h6hNyC_ucvgLtkZ3x-zo_Bb9ojM_KFPgFahwC5Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs4thOfNwuLAWJCgEryimyY0esGrIrmggKf54Zx7u0ICHBIVIUP-J4xp6ZzPgbQp6IzDCEXYmNyIuYN0rHpcxtLHSpmkwyU_v8Ka-P5dGSvzoRJ-GHmz8L45zzwWcuwVvvy1-59lsxlQzB09S0VBx2VLDlwaxDtKxkY5urZE8K0MUnZG95_Gb2ETPKZVLFufdNPgzAmlPtcxCCUcjSxCOPe2DKX-LIo_aHNCuXNM5rQ7fR5191214QPoubpNoOe4w5OU2G3iT1998QHf__u26RG0EvpbORkW6TK667Q65fQCvcJz8Wemh7-mwMzlud0UOQgJauO-pP8cbvgNyOvnXWNdDIQsXPGB2_7lqYDvqyQ48Q5vahuoNCLOrPKWzJp3TeDojXAG-hH1b9J_rCra0D9oEuUHmF6bxLlovn7-dHccjdENc8Lfu4NpqDKmxLaURmM9WkWlkt81RLo4oMcxUJK51TBq5Gslowx4zMTWNtXWQuv0cm3bpz9wnl0Di1QjR5kXJdc-hHFEzaglnOeG4iwrYkrOoAbI75NdrKGzipqmbzOXBzhXSvAt0j8nTXaDPievy9-iHyxq4qgnL7B0DHKqzxahwoGtlgd7IUpGCJWyY6gllR2Cwi-0j7XSeB0BE52HJaFTaQs4pxwTNEi1QRiXfc98dQR46-NNQH_1j_gEz6L4N7BLpVbx6HBfQT_XAdag priority: 102 providerName: Unpaywall |
| Title | Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances |
| URI | https://ieeexplore.ieee.org/document/9075995 https://www.proquest.com/docview/2454102439 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09075995.pdf https://doaj.org/article/49f00d010601420eb1803188913277d1 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: UniTN - DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacoAeeBXEQln5wLHZJo4f8XG7sBSkVghYUU6RHTuiakiqNhEq_HlmnGxoASEOkaJ4_NJMxjNj-xtCXojEMoRdiaxIVcRLbaJMpi4SJtNlIpktQv6Uo2N5uOJvT8TJBtkb78J478PhMz_D17CX75qiw1DZPjhyiI-1STZVJvu7WmM8BRNIaKEGYKEk1vvzxQLmAC4gi2cBZzzAUP5afAJG_5BU5YZ9eburz83VN1NV15aa5T1ytB5kf8LkbNa1dlZ8_w2_8X9ncZ_cHWxOOu-F5AHZ8PVDsn0NiXCH_Fiarmrpy_7g3eklPYDVzdGmpuGGbvQBWOnpe-98CZUcEH7Fk-9NXYGmpG9q3O3BvD3U1FCIRe0VBXV7RhdVh1gM0Av9dNp-oa994zyIBjSBhimoqUdktXz1cXEYDXkZooLHWRsV1nAwc10mrUhcosvYaGdkGhtptUowD5Fw0ntt4SklKwTzzMrUls4VKvHpY7JVN7V_QiiHyrETokxVzE3BoR2hmHSKOc54aieErRmWFwNoOebOqPLgvMQ677mcI5fzgcsTsjdWOu8xO_5NfoCSMJIi4Hb4AFzLh_837weKDjT4lCyGFS5DdYibvEwpl0zIDnJ6bGRg8oTsruUqH5TDZc644AkiQeoJiUZZ-2OoJmTMvDHUp3_v5Rm5g1R9ZGiXbLUXnX8OtlJrpyHGMA2_ypTcWh2_m3_-CT26Edo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvEpFoIAPHJtt4tjO-tguLFvo9gCt6M2yY0dUDUlFE6HCn2fGyYYWEOIQKYo9fmgm8_DjG0JeidQyhF2JrcjymJfKxFOZuViYqSpTyWwR8qcsj-TihL87FadrZGe8C-O9D4fP_ARfw16-a4oOl8p2IZBDfKxb5LbgnIv-tta4ooIpJJTIB2ihNFG7e7MZzAKCQJZMAtJ4AKL8ZX4CSv-QVuWGh7nR1Rfm6pupqmvGZn6fLFfD7M-YnE-61k6K778hOP7vPB6Qe4PXSfd6MXlI1nz9iNy9hkW4SX7MTVe19HV_9O7sku6DfXO0qWm4oxt_BGZ6-sE7XwKRg4pf8Ox7U1egK-lBjfs9mLmHmhoKsai9oqBwz-ms6hCNAXqhn87az_Stb5wH4YAm0DUFRfWYnMzfHM8W8ZCZIS54Mm3jwhoOjq6bSitSl6oyMcoZmSVGWpWnmIlIOOm9svCUkhWCeWZlZkvnijz12RZZr5vaPyGUA3HihCizPOGm4NCOyJl0OXOc8cxGhK0YposBthyzZ1Q6hC-J0j2XNXJZD1yOyM5IdNGjdvy7-j5KwlgVIbfDB-CaHv5g3Q8UQ2iIKlkCNm6KChG3eVmeuzQim8jpsZGByRHZXsmVHtTDpWZc8BSxIFVE4lHW_hiqCTkzbwz16d97eUk2FsfLQ314cPT-GbmDFP060TZZb792_jl4Tq19EX6Yn6g2EoI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs4thOfNwuLAWJCgEryimyY0esGrIrmggKf54Zx7u0ICHBIVIUP-J4xp6ZzPgbQp6IzDCEXYmNyIuYN0rHpcxtLHSpmkwyU_v8Ka-P5dGSvzoRJ-GHmz8L45zzwWcuwVvvy1-59lsxlQzB09S0VBx2VLDlwaxDtKxkY5urZE8K0MUnZG95_Gb2ETPKZVLFufdNPgzAmlPtcxCCUcjSxCOPe2DKX-LIo_aHNCuXNM5rQ7fR5191214QPoubpNoOe4w5OU2G3iT1998QHf__u26RG0EvpbORkW6TK667Q65fQCvcJz8Wemh7-mwMzlud0UOQgJauO-pP8cbvgNyOvnXWNdDIQsXPGB2_7lqYDvqyQ48Q5vahuoNCLOrPKWzJp3TeDojXAG-hH1b9J_rCra0D9oEuUHmF6bxLlovn7-dHccjdENc8Lfu4NpqDKmxLaURmM9WkWlkt81RLo4oMcxUJK51TBq5Gslowx4zMTWNtXWQuv0cm3bpz9wnl0Di1QjR5kXJdc-hHFEzaglnOeG4iwrYkrOoAbI75NdrKGzipqmbzOXBzhXSvAt0j8nTXaDPievy9-iHyxq4qgnL7B0DHKqzxahwoGtlgd7IUpGCJWyY6gllR2Cwi-0j7XSeB0BE52HJaFTaQs4pxwTNEi1QRiXfc98dQR46-NNQH_1j_gEz6L4N7BLpVbx6HBfQT_XAdag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+Based+on+Multi-Scale+Redefined+Dimensionless+Indicators+and+Density+Peak+Clustering+With+Geodesic+Distances&rft.jtitle=IEEE+access&rft.au=Hu%2C+Qin&rft.au=Zhang%2C+Qi&rft.au=Si%2C+Xiao-Sheng&rft.au=Qin%2C+Ai-Song&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=84777&rft.epage=84791&rft_id=info:doi/10.1109%2FACCESS.2020.2989460&rft.externalDocID=9075995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |