A Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm

K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monito...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 28753 - 28768
Main Authors Wan, Lanjun, Zhang, Gen, Li, Hongyang, Li, Changyun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3059221

Cover

Abstract K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means clustering algorithm is implemented on a Spark platform, which can make full use of the computing resources of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training efficiency and fault diagnosis efficiency in a big data environment.
AbstractList K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means clustering algorithm is implemented on a Spark platform, which can make full use of the computing resources of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training efficiency and fault diagnosis efficiency in a big data environment.
Author Wan, Lanjun
Li, Hongyang
Zhang, Gen
Li, Changyun
Author_xml – sequence: 1
  givenname: Lanjun
  orcidid: 0000-0001-7236-3589
  surname: Wan
  fullname: Wan, Lanjun
  email: wanlanjun@hut.edu.cn
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China
– sequence: 2
  givenname: Gen
  surname: Zhang
  fullname: Zhang, Gen
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China
– sequence: 3
  givenname: Hongyang
  surname: Li
  fullname: Li, Hongyang
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China
– sequence: 4
  givenname: Changyun
  surname: Li
  fullname: Li, Changyun
  organization: Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou, China
BookMark eNqFkk1P3DAQQKOKSqWUX8AlUs_Zxl-JfQwpFFQolbacrYkzWbwN8dZ2WvHv8RKEKnqoL7bG895oxn6fHUxuwiw7IeWKkFJ9atr2bL1e0ZKSFSuFopS8yQ4pqVTBBKsO_jq_y45D2JZpyRQS9WHWNfk39xvH_BTB22mTn8M8xvyzhc3kgg35NcY71-e3YX-53oH_WZxCwD7_Dh7GMZFNe1N8La4RppC34xwiPomaceO8jXf3H7K3A4wBj5_3o-z2_OxHe1Fc3Xy5bJurwvBSxsJAxXvkEnhVDlLVqECKGsoKlZCkM5TSfqhZz0THSsbVgL1UKEQnE1gxZEfZ5eLtHWz1ztt78A_agdVPAec3Gny0ZkQtsDYDDpR3PeF0kB32QhqQqVZfd1wlF19c87SDhz-p0RchKfV-7BqMwRD0fuz6eewJ-7hgO-9-zRii3rrZT6lrTbmiUnAlRcpiS5bxLgSPwz_u5Ulfu9UrytgI0boperDjf9iThbWI-FJNpS8hOGGP9yaucw
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_023_16233_9
crossref_primary_10_1007_s11227_021_04072_0
crossref_primary_10_1088_1361_6501_ad28ee
crossref_primary_10_3390_machines11010012
crossref_primary_10_1007_s13042_024_02369_z
crossref_primary_10_1088_1361_6501_ad051c
crossref_primary_10_3390_s23062952
crossref_primary_10_3390_s23136143
crossref_primary_10_1080_03772063_2023_2248944
crossref_primary_10_3390_machines12030207
crossref_primary_10_1109_ACCESS_2023_3344576
crossref_primary_10_1007_s40435_023_01157_x
crossref_primary_10_1109_TKDE_2024_3386401
crossref_primary_10_3934_era_2023359
crossref_primary_10_1016_j_ymssp_2022_110010
crossref_primary_10_1016_j_asoc_2021_108058
Cites_doi 10.1016/j.ins.2019.04.050
10.1109/MCI.2006.329691
10.1109/IITSI.2010.74
10.1109/TIM.2017.2759418
10.1109/IGARSS.2017.8128067
10.1016/j.neucom.2018.05.002
10.3390/s19071520
10.1109/ACCESS.2019.2907131
10.1007/978-981-15-1209-4_1
10.1109/CVPR.2016.90
10.3390/s20061693
10.1007/s00521-019-04097-w
10.1088/1361-6501/aab945
10.3390/bdcc3010004
10.1109/TKDE.2020.2975652
10.1186/s10033-019-0356-4
10.1109/ACCESS.2017.2731945
10.1109/CADIAG.2018.8751319
10.1016/j.ymssp.2017.03.034
10.3390/en13051094
10.1109/TIE.2017.2774777
10.1145/3230905.3230952
10.1109/TII.2019.2915846
10.1088/1757-899X/336/1/012017
10.3390/e18030070
10.1109/CCDC.2017.7978582
10.1145/3065386
10.3390/a12090184
10.1145/2523616.2523633
10.1016/j.knosys.2018.01.031
10.1109/IRI.2017.32
10.1016/j.isatra.2018.12.025
10.1016/j.ymssp.2018.02.016
10.1109/JSEN.2017.2726011
10.1007/978-3-319-51691-2_17
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3059221
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 28768
ExternalDocumentID oai_doaj_org_article_5e7cfef24bd142f8bed58ca86e9d7b49
10.1109/access.2021.3059221
10_1109_ACCESS_2021_3059221
9353541
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Hunan Province of China; Key Research and Development Project of Hunan Province
  grantid: 2019GK2133
  funderid: 10.13039/501100019091
– fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2019JJ60048
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation for Young Scientists of China
  grantid: 61702177
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Project
  grantid: 2018YFB1700204; 2018YFB1003401
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-ca64de48a460f897e9a857a06e9581bc222df73d35b30349fed89e55b8a6463e3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:32 EDT 2025
Tue Aug 19 22:46:14 EDT 2025
Mon Jun 30 06:42:38 EDT 2025
Wed Oct 01 04:43:53 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Aug 27 02:28:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ca64de48a460f897e9a857a06e9581bc222df73d35b30349fed89e55b8a6463e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7236-3589
OpenAccessLink https://doaj.org/article/5e7cfef24bd142f8bed58ca86e9d7b49
PQID 2492854985
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_5e7cfef24bd142f8bed58ca86e9d7b49
unpaywall_primary_10_1109_access_2021_3059221
crossref_primary_10_1109_ACCESS_2021_3059221
proquest_journals_2492854985
ieee_primary_9353541
crossref_citationtrail_10_1109_ACCESS_2021_3059221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
meng (ref38) 2016; 17
ref37
ref15
ref36
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref16
ref19
ref18
mishra (ref39) 2017; 7
ref24
ref23
ref26
ref25
ref41
(ref32) 2020
ref22
ramos (ref17) 2017
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bai (ref14) 2019
ref40
zhang (ref20) 2016; 10
References_xml – ident: ref35
  doi: 10.1016/j.ins.2019.04.050
– ident: ref27
  doi: 10.1109/MCI.2006.329691
– ident: ref28
  doi: 10.1109/IITSI.2010.74
– ident: ref13
  doi: 10.1109/TIM.2017.2759418
– ident: ref33
  doi: 10.1109/IGARSS.2017.8128067
– ident: ref4
  doi: 10.1016/j.neucom.2018.05.002
– volume: 7
  start-page: 60
  year: 2017
  ident: ref39
  article-title: Multivariate statistical data analysis-principal component analysis (PCA)
  publication-title: Int J Livestock Res
– ident: ref18
  doi: 10.3390/s19071520
– ident: ref8
  doi: 10.1109/ACCESS.2019.2907131
– ident: ref37
  doi: 10.1007/978-981-15-1209-4_1
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– ident: ref6
  doi: 10.3390/s20061693
– ident: ref9
  doi: 10.1007/s00521-019-04097-w
– ident: ref10
  doi: 10.1088/1361-6501/aab945
– ident: ref24
  doi: 10.3390/bdcc3010004
– ident: ref29
  doi: 10.1109/TKDE.2020.2975652
– ident: ref16
  doi: 10.1186/s10033-019-0356-4
– ident: ref23
  doi: 10.1109/ACCESS.2017.2731945
– ident: ref22
  doi: 10.1109/CADIAG.2018.8751319
– ident: ref12
  doi: 10.1016/j.ymssp.2017.03.034
– ident: ref5
  doi: 10.3390/en13051094
– start-page: 67
  year: 2019
  ident: ref14
  article-title: Rolling bearings fault diagnosis method based on EWT approximate entropy and FCM clustering
  publication-title: Proc 4th Int Conf Electr Inf Technol Rail Trans (EITRT)
– ident: ref7
  doi: 10.1109/TIE.2017.2774777
– volume: 10
  start-page: 155
  year: 2016
  ident: ref20
  article-title: Rolling bearing fault diagnosis using modified K-means cluster analysis
  publication-title: Vibroeng PROCEDIA
– ident: ref21
  doi: 10.1145/3230905.3230952
– ident: ref26
  doi: 10.1109/TII.2019.2915846
– ident: ref36
  doi: 10.1088/1757-899X/336/1/012017
– volume: 17
  start-page: 1235
  year: 2016
  ident: ref38
  article-title: MLlib: Machine learning in Apache spark
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.3390/e18030070
– ident: ref15
  doi: 10.1109/CCDC.2017.7978582
– ident: ref40
  doi: 10.1145/3065386
– ident: ref2
  doi: 10.3390/a12090184
– ident: ref30
  doi: 10.1145/2523616.2523633
– start-page: 217
  year: 2017
  ident: ref17
  article-title: Fault diagnosis in a steam generator applying fuzzy clustering techniques
  publication-title: Soft Computing for Sustainability Science
– ident: ref34
  doi: 10.1016/j.knosys.2018.01.031
– ident: ref25
  doi: 10.1109/IRI.2017.32
– ident: ref11
  doi: 10.1016/j.isatra.2018.12.025
– ident: ref1
  doi: 10.1016/j.ymssp.2018.02.016
– year: 2020
  ident: ref32
  publication-title: CWRU Rolling Bearing Dataset
– ident: ref31
  doi: 10.1109/JSEN.2017.2726011
– ident: ref3
  doi: 10.1007/978-3-319-51691-2_17
SSID ssj0000816957
Score 2.3367176
Snippet K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28753
SubjectTerms Algorithms
Ant colony optimization
Big Data
Cluster analysis
Clustering
Clustering algorithms
Eigenvectors
Euclidean geometry
Fault diagnosis
K-Means clustering
Machine learning
Model accuracy
Monitoring
Parallel processing
Roller bearings
rolling bearing
Rolling bearings
Signal processing algorithms
spark
Sparks
Training
Vector quantization
wavelet packet decomposition
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbGXoCHDRiIjIH8wOPcpUkc249toJpAHUgwaW-R7ZxhWtZWXTIEv37nxI1WQIi3yDo7tr5z7s45f0fIWzR6VvlI1aoUA5QKgBmROJbH2hkjLbjY3x2en-Wn59mHC36xQ46HuzAA0CWfwcg_dv_yq6Vt_VHZiUp5yv0t9QdC5v1dreE8xReQUFwEYqFxrE4mRYFrwBAwGY9Qq1WSjLeMT8fRH4qqbPmXD9vFSv_8oev6nqmZ7ZP5ZpJ9hsnVqG3MyP76jb_xf1fxhOwFn5NOeiV5SnZg8Yw8vsdEeEDMhJ4tb6GmU9R8bKEz3dYNfdcn4l3e0HlXaZp2GQb0y0qvr9gUDWBFP-u1L8eCwxef2Ec2B7R9tKhbT8DgZSf1t-X6svl-_Zycz95_LU5ZKL_AbBbLhlmdI3aZ1FkeO6kEKC250HEOiqOza9GzqJxIq5Sb1LPcOKikAs6NxI55CukLsrtYLuAlocYpxY0vZofeAAgwKgH0M7XC_txYE5Fkg0tpAze5L5FRl12MEquyB7P0YJYBzIgcD51WPTXHv8WnHvBB1PNqdw0IThm2aclBWAcuyUw1zhInDVRcWi1xzZXABUTkwAM6DBKwjMjRRn3K8A24KT0Xo8TwW_KIsEGl_piq7gpjbk318O9veUUeean-AOiI7DbrFl6jS9SYN91euAPjiQch
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0aRIn9jENVCtQy0pQaTlFtjOGakNbdZNd4NczdtxqCxIS3CJrbNmasWcmHr9HyCt0elrYTFWLBBOUGiBUeWzCLJJGKa7BRPbt8GyenS7Sd-fs3P9wc29hAMAVn8HQfrq7_CU03_NRFlvwNDHCMWN0iyN7g5ewFE-a2twmRxnDWHxAjhbzs-KzZZQbZyJM3N3kcw-sOZKOgxCTwng8RDsXcTw-cEcOtd_TrBxEnHe61Ub-uJZNc8P5TO-TajftvubkYti1aqh__obo-P_rekDu-biUFr0hPSS3YPWI3L2BVnhMVEHn6yto6AR3B7bQqeyalr7pi_WWl3Tm2Kipq0KgHzdyexFO0EnW9ExuLWULDl9-CN-HM0D_SMumsyANVrZovqy3y_brt8dkMX37qTwNPUVDqNOIt6GWGeo35TLNIsNFDkJylssoA8EwINYYfdQmT-qEqcQi4RiouQDGFMeOWQLJEzJYrVfwlFBlhGDKEt5hxAA5KBEDxqJSYH-mtApIvNNUpT1-uaXRaCqXx0SiKsoSjbay6q28egPyet9p08N3_F18Yk1gL2qxt10DqqvyW7likGsDJk5VPU5jwxXUjGvJcc11jgsIyLFV8X4Qr8-AnOwMqvLnxGVl8Ro5puicBSTcG9kfU-0N92Cqz_5R_oQM2m0HLzCEatVLv09-ASNnFTI
  priority: 102
  providerName: Unpaywall
Title A Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm
URI https://ieeexplore.ieee.org/document/9353541
https://www.proquest.com/docview/2492854985
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09353541.pdf
https://doaj.org/article/5e7cfef24bd142f8bed58ca86e9d7b49
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamcRgcJthAdBuVDztill9O7GMaqCZQyySoNE6W7TzDRNZWXbqJ_55nJ6taIcGFq2U_vXx-yXsvsr-PkHNMelb6TtXKFBuUGoCZInEsj7QzRlhwkb87PJnml7Ps4zW_3pL68mfCOnrgDrgLDoV14JLM1HGWOGGg5sJqkYOsC5OFq3uRkFvNVPgGiziXvOhphuJIXpRVhU-EDWESv8MYl0kS76SiwNjfS6zsVJsH6_lS_3rQTbOVeMbPyWFfMdKy8_QF2YP5EXm2xSN4TExJp4t7aOgI4xZH6Fivm5a-747R3dzRSdCJpuF8AP2y1KufbITpq6ZXeuXFVNB89Zl9YhPAzEWrZu3pE_zcsvm-WN20P25fktn4w9fqkvXiCcxmkWiZ1Tkinwmd5ZETsgCpBS90hLhxLFUt1gW1K9I65Sb1HDUOaiGBcyNwYZ5C-orszxdzeE2ocVJy46XoMJdDAUYmgFWilrieG2sGJHnEUdmeWdwLXDQqdBiRVB34yoOvevAH5O1m0bIj1vj79JHfoM1Uz4odBjBWVB8r6l-xMiDHfns3RmTKU56h7bPH7Vb9G3ynPJOiwOZZ8AFhmxD4w1UdZC13XD35H66ekqfeZvez54zst6s1vMHypzXDEOnDcFNxSJ7Mplflt990WAIm
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELam7WHwwK-ByBjgBx6XLk3ixH5sA1VhS0Fik_Zm2c55TAtt1SWbtr-ec5JGKyDEW2TZjk_fOXfn-L4j5AMaPSNcpGpEhAFKAeDrNLR-EiirNTdgA5c7nM-S6Vn85Zydb5HDPhcGAJrLZzBwj82__GJhandUdiQiFjGXpb7D4jhmbbZWf6LiSkgIlnbUQsNAHI2yDKXAIDAcDlCvRRgON8xPw9LflVXZ8DB36_lS3d2qsnxgbCZPSb5eZnvH5GpQV3pg7n9jcPxfOZ6RJ53XSUetmjwnWzB_QR4_4CLcI3pEZ4sbKOkYdR9b6ETVZUU_tlfxLq9p3tSaps0dA_p9qVZX_hhNYEG_qZUryILTZ1_9Yz8HtH40K2tHweD6jsqLxeqy-vHzJTmbfDrNpn5XgME3ccAr36gE0Yu5ipPAcpGCUJylKkhAMHR3DfoWhU2jImI6cjw3FgougDHNcWASQfSKbM8Xc3hNqLZCMO3K2aE_ACloEQJ6mkrgeKaN9ki4xkWajp3cFckoZROlBEK2YEoHpuzA9MhhP2jZknP8u_vYAd53dczaTQOCI7uNKhmkxoINY10M49ByDQXjRnGUuUhRAI_sOUD7STosPXKwVh_ZfQWupWNj5BiAc-YRv1epP5aqmtKYG0vd__tb3pPd6Wl-Ik8-z47fkEduRHscdEC2q1UNb9FBqvS7Zl_8AsnmCm4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0aRIn9jENVCtQy0pQaTlFtjOGakNbdZNd4NczdtxqCxIS3CJrbNmasWcmHr9HyCt0elrYTFWLBBOUGiBUeWzCLJJGKa7BRPbt8GyenS7Sd-fs3P9wc29hAMAVn8HQfrq7_CU03_NRFlvwNDHCMWN0iyN7g5ewFE-a2twmRxnDWHxAjhbzs-KzZZQbZyJM3N3kcw-sOZKOgxCTwng8RDsXcTw-cEcOtd_TrBxEnHe61Ub-uJZNc8P5TO-TajftvubkYti1aqh__obo-P_rekDu-biUFr0hPSS3YPWI3L2BVnhMVEHn6yto6AR3B7bQqeyalr7pi_WWl3Tm2Kipq0KgHzdyexFO0EnW9ExuLWULDl9-CN-HM0D_SMumsyANVrZovqy3y_brt8dkMX37qTwNPUVDqNOIt6GWGeo35TLNIsNFDkJylssoA8EwINYYfdQmT-qEqcQi4RiouQDGFMeOWQLJEzJYrVfwlFBlhGDKEt5hxAA5KBEDxqJSYH-mtApIvNNUpT1-uaXRaCqXx0SiKsoSjbay6q28egPyet9p08N3_F18Yk1gL2qxt10DqqvyW7likGsDJk5VPU5jwxXUjGvJcc11jgsIyLFV8X4Qr8-AnOwMqvLnxGVl8Ro5puicBSTcG9kfU-0N92Cqz_5R_oQM2m0HLzCEatVLv09-ASNnFTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Bearing+Fault+Diagnosis+Method+Using+Spark-Based+Parallel+ACO-K-Means+Clustering+Algorithm&rft.jtitle=IEEE+access&rft.au=Wan%2C+Lanjun&rft.au=Zhang%2C+Gen&rft.au=Li%2C+Hongyang&rft.au=Li%2C+Changyun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=28753&rft.epage=28768&rft_id=info:doi/10.1109%2FACCESS.2021.3059221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3059221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon