A Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm
K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monito...
Saved in:
| Published in | IEEE access Vol. 9; pp. 28753 - 28768 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3059221 |
Cover
| Abstract | K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means clustering algorithm is implemented on a Spark platform, which can make full use of the computing resources of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training efficiency and fault diagnosis efficiency in a big data environment. |
|---|---|
| AbstractList | K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means clustering algorithm is implemented on a Spark platform, which can make full use of the computing resources of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training efficiency and fault diagnosis efficiency in a big data environment. |
| Author | Wan, Lanjun Li, Hongyang Zhang, Gen Li, Changyun |
| Author_xml | – sequence: 1 givenname: Lanjun orcidid: 0000-0001-7236-3589 surname: Wan fullname: Wan, Lanjun email: wanlanjun@hut.edu.cn organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China – sequence: 2 givenname: Gen surname: Zhang fullname: Zhang, Gen organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China – sequence: 3 givenname: Hongyang surname: Li fullname: Li, Hongyang organization: School of Computer Science, Hunan University of Technology, Zhuzhou, China – sequence: 4 givenname: Changyun surname: Li fullname: Li, Changyun organization: Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou, China |
| BookMark | eNqFkk1P3DAQQKOKSqWUX8AlUs_Zxl-JfQwpFFQolbacrYkzWbwN8dZ2WvHv8RKEKnqoL7bG895oxn6fHUxuwiw7IeWKkFJ9atr2bL1e0ZKSFSuFopS8yQ4pqVTBBKsO_jq_y45D2JZpyRQS9WHWNfk39xvH_BTB22mTn8M8xvyzhc3kgg35NcY71-e3YX-53oH_WZxCwD7_Dh7GMZFNe1N8La4RppC34xwiPomaceO8jXf3H7K3A4wBj5_3o-z2_OxHe1Fc3Xy5bJurwvBSxsJAxXvkEnhVDlLVqECKGsoKlZCkM5TSfqhZz0THSsbVgL1UKEQnE1gxZEfZ5eLtHWz1ztt78A_agdVPAec3Gny0ZkQtsDYDDpR3PeF0kB32QhqQqVZfd1wlF19c87SDhz-p0RchKfV-7BqMwRD0fuz6eewJ-7hgO-9-zRii3rrZT6lrTbmiUnAlRcpiS5bxLgSPwz_u5Ulfu9UrytgI0boperDjf9iThbWI-FJNpS8hOGGP9yaucw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11042_023_16233_9 crossref_primary_10_1007_s11227_021_04072_0 crossref_primary_10_1088_1361_6501_ad28ee crossref_primary_10_3390_machines11010012 crossref_primary_10_1007_s13042_024_02369_z crossref_primary_10_1088_1361_6501_ad051c crossref_primary_10_3390_s23062952 crossref_primary_10_3390_s23136143 crossref_primary_10_1080_03772063_2023_2248944 crossref_primary_10_3390_machines12030207 crossref_primary_10_1109_ACCESS_2023_3344576 crossref_primary_10_1007_s40435_023_01157_x crossref_primary_10_1109_TKDE_2024_3386401 crossref_primary_10_3934_era_2023359 crossref_primary_10_1016_j_ymssp_2022_110010 crossref_primary_10_1016_j_asoc_2021_108058 |
| Cites_doi | 10.1016/j.ins.2019.04.050 10.1109/MCI.2006.329691 10.1109/IITSI.2010.74 10.1109/TIM.2017.2759418 10.1109/IGARSS.2017.8128067 10.1016/j.neucom.2018.05.002 10.3390/s19071520 10.1109/ACCESS.2019.2907131 10.1007/978-981-15-1209-4_1 10.1109/CVPR.2016.90 10.3390/s20061693 10.1007/s00521-019-04097-w 10.1088/1361-6501/aab945 10.3390/bdcc3010004 10.1109/TKDE.2020.2975652 10.1186/s10033-019-0356-4 10.1109/ACCESS.2017.2731945 10.1109/CADIAG.2018.8751319 10.1016/j.ymssp.2017.03.034 10.3390/en13051094 10.1109/TIE.2017.2774777 10.1145/3230905.3230952 10.1109/TII.2019.2915846 10.1088/1757-899X/336/1/012017 10.3390/e18030070 10.1109/CCDC.2017.7978582 10.1145/3065386 10.3390/a12090184 10.1145/2523616.2523633 10.1016/j.knosys.2018.01.031 10.1109/IRI.2017.32 10.1016/j.isatra.2018.12.025 10.1016/j.ymssp.2018.02.016 10.1109/JSEN.2017.2726011 10.1007/978-3-319-51691-2_17 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2021.3059221 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 28768 |
| ExternalDocumentID | oai_doaj_org_article_5e7cfef24bd142f8bed58ca86e9d7b49 10.1109/access.2021.3059221 10_1109_ACCESS_2021_3059221 9353541 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Research and Development Program of Hunan Province of China; Key Research and Development Project of Hunan Province grantid: 2019GK2133 funderid: 10.13039/501100019091 – fundername: Natural Science Foundation of Hunan Province, China grantid: 2019JJ60048 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation for Young Scientists of China grantid: 61702177 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Project grantid: 2018YFB1700204; 2018YFB1003401 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-ca64de48a460f897e9a857a06e9581bc222df73d35b30349fed89e55b8a6463e3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:32 EDT 2025 Tue Aug 19 22:46:14 EDT 2025 Mon Jun 30 06:42:38 EDT 2025 Wed Oct 01 04:43:53 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Aug 27 02:28:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-ca64de48a460f897e9a857a06e9581bc222df73d35b30349fed89e55b8a6463e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7236-3589 |
| OpenAccessLink | https://doaj.org/article/5e7cfef24bd142f8bed58ca86e9d7b49 |
| PQID | 2492854985 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5e7cfef24bd142f8bed58ca86e9d7b49 unpaywall_primary_10_1109_access_2021_3059221 crossref_primary_10_1109_ACCESS_2021_3059221 proquest_journals_2492854985 ieee_primary_9353541 crossref_citationtrail_10_1109_ACCESS_2021_3059221 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 meng (ref38) 2016; 17 ref37 ref15 ref36 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref16 ref19 ref18 mishra (ref39) 2017; 7 ref24 ref23 ref26 ref25 ref41 (ref32) 2020 ref22 ramos (ref17) 2017 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 bai (ref14) 2019 ref40 zhang (ref20) 2016; 10 |
| References_xml | – ident: ref35 doi: 10.1016/j.ins.2019.04.050 – ident: ref27 doi: 10.1109/MCI.2006.329691 – ident: ref28 doi: 10.1109/IITSI.2010.74 – ident: ref13 doi: 10.1109/TIM.2017.2759418 – ident: ref33 doi: 10.1109/IGARSS.2017.8128067 – ident: ref4 doi: 10.1016/j.neucom.2018.05.002 – volume: 7 start-page: 60 year: 2017 ident: ref39 article-title: Multivariate statistical data analysis-principal component analysis (PCA) publication-title: Int J Livestock Res – ident: ref18 doi: 10.3390/s19071520 – ident: ref8 doi: 10.1109/ACCESS.2019.2907131 – ident: ref37 doi: 10.1007/978-981-15-1209-4_1 – ident: ref41 doi: 10.1109/CVPR.2016.90 – ident: ref6 doi: 10.3390/s20061693 – ident: ref9 doi: 10.1007/s00521-019-04097-w – ident: ref10 doi: 10.1088/1361-6501/aab945 – ident: ref24 doi: 10.3390/bdcc3010004 – ident: ref29 doi: 10.1109/TKDE.2020.2975652 – ident: ref16 doi: 10.1186/s10033-019-0356-4 – ident: ref23 doi: 10.1109/ACCESS.2017.2731945 – ident: ref22 doi: 10.1109/CADIAG.2018.8751319 – ident: ref12 doi: 10.1016/j.ymssp.2017.03.034 – ident: ref5 doi: 10.3390/en13051094 – start-page: 67 year: 2019 ident: ref14 article-title: Rolling bearings fault diagnosis method based on EWT approximate entropy and FCM clustering publication-title: Proc 4th Int Conf Electr Inf Technol Rail Trans (EITRT) – ident: ref7 doi: 10.1109/TIE.2017.2774777 – volume: 10 start-page: 155 year: 2016 ident: ref20 article-title: Rolling bearing fault diagnosis using modified K-means cluster analysis publication-title: Vibroeng PROCEDIA – ident: ref21 doi: 10.1145/3230905.3230952 – ident: ref26 doi: 10.1109/TII.2019.2915846 – ident: ref36 doi: 10.1088/1757-899X/336/1/012017 – volume: 17 start-page: 1235 year: 2016 ident: ref38 article-title: MLlib: Machine learning in Apache spark publication-title: J Mach Learn Res – ident: ref19 doi: 10.3390/e18030070 – ident: ref15 doi: 10.1109/CCDC.2017.7978582 – ident: ref40 doi: 10.1145/3065386 – ident: ref2 doi: 10.3390/a12090184 – ident: ref30 doi: 10.1145/2523616.2523633 – start-page: 217 year: 2017 ident: ref17 article-title: Fault diagnosis in a steam generator applying fuzzy clustering techniques publication-title: Soft Computing for Sustainability Science – ident: ref34 doi: 10.1016/j.knosys.2018.01.031 – ident: ref25 doi: 10.1109/IRI.2017.32 – ident: ref11 doi: 10.1016/j.isatra.2018.12.025 – ident: ref1 doi: 10.1016/j.ymssp.2018.02.016 – year: 2020 ident: ref32 publication-title: CWRU Rolling Bearing Dataset – ident: ref31 doi: 10.1109/JSEN.2017.2726011 – ident: ref3 doi: 10.1007/978-3-319-51691-2_17 |
| SSID | ssj0000816957 |
| Score | 2.3367176 |
| Snippet | K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 28753 |
| SubjectTerms | Algorithms Ant colony optimization Big Data Cluster analysis Clustering Clustering algorithms Eigenvectors Euclidean geometry Fault diagnosis K-Means clustering Machine learning Model accuracy Monitoring Parallel processing Roller bearings rolling bearing Rolling bearings Signal processing algorithms spark Sparks Training Vector quantization wavelet packet decomposition |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbGXoCHDRiIjIH8wOPcpUkc249toJpAHUgwaW-R7ZxhWtZWXTIEv37nxI1WQIi3yDo7tr5z7s45f0fIWzR6VvlI1aoUA5QKgBmROJbH2hkjLbjY3x2en-Wn59mHC36xQ46HuzAA0CWfwcg_dv_yq6Vt_VHZiUp5yv0t9QdC5v1dreE8xReQUFwEYqFxrE4mRYFrwBAwGY9Qq1WSjLeMT8fRH4qqbPmXD9vFSv_8oev6nqmZ7ZP5ZpJ9hsnVqG3MyP76jb_xf1fxhOwFn5NOeiV5SnZg8Yw8vsdEeEDMhJ4tb6GmU9R8bKEz3dYNfdcn4l3e0HlXaZp2GQb0y0qvr9gUDWBFP-u1L8eCwxef2Ec2B7R9tKhbT8DgZSf1t-X6svl-_Zycz95_LU5ZKL_AbBbLhlmdI3aZ1FkeO6kEKC250HEOiqOza9GzqJxIq5Sb1LPcOKikAs6NxI55CukLsrtYLuAlocYpxY0vZofeAAgwKgH0M7XC_txYE5Fkg0tpAze5L5FRl12MEquyB7P0YJYBzIgcD51WPTXHv8WnHvBB1PNqdw0IThm2aclBWAcuyUw1zhInDVRcWi1xzZXABUTkwAM6DBKwjMjRRn3K8A24KT0Xo8TwW_KIsEGl_piq7gpjbk318O9veUUeean-AOiI7DbrFl6jS9SYN91euAPjiQch priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0aRIn9jENVCtQy0pQaTlFtjOGakNbdZNd4NczdtxqCxIS3CJrbNmasWcmHr9HyCt0elrYTFWLBBOUGiBUeWzCLJJGKa7BRPbt8GyenS7Sd-fs3P9wc29hAMAVn8HQfrq7_CU03_NRFlvwNDHCMWN0iyN7g5ewFE-a2twmRxnDWHxAjhbzs-KzZZQbZyJM3N3kcw-sOZKOgxCTwng8RDsXcTw-cEcOtd_TrBxEnHe61Ub-uJZNc8P5TO-TajftvubkYti1aqh__obo-P_rekDu-biUFr0hPSS3YPWI3L2BVnhMVEHn6yto6AR3B7bQqeyalr7pi_WWl3Tm2Kipq0KgHzdyexFO0EnW9ExuLWULDl9-CN-HM0D_SMumsyANVrZovqy3y_brt8dkMX37qTwNPUVDqNOIt6GWGeo35TLNIsNFDkJylssoA8EwINYYfdQmT-qEqcQi4RiouQDGFMeOWQLJEzJYrVfwlFBlhGDKEt5hxAA5KBEDxqJSYH-mtApIvNNUpT1-uaXRaCqXx0SiKsoSjbay6q28egPyet9p08N3_F18Yk1gL2qxt10DqqvyW7likGsDJk5VPU5jwxXUjGvJcc11jgsIyLFV8X4Qr8-AnOwMqvLnxGVl8Ro5puicBSTcG9kfU-0N92Cqz_5R_oQM2m0HLzCEatVLv09-ASNnFTI priority: 102 providerName: Unpaywall |
| Title | A Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm |
| URI | https://ieeexplore.ieee.org/document/9353541 https://www.proquest.com/docview/2492854985 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09353541.pdf https://doaj.org/article/5e7cfef24bd142f8bed58ca86e9d7b49 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamcRgcJthAdBuVDztill9O7GMaqCZQyySoNE6W7TzDRNZWXbqJ_55nJ6taIcGFq2U_vXx-yXsvsr-PkHNMelb6TtXKFBuUGoCZInEsj7QzRlhwkb87PJnml7Ps4zW_3pL68mfCOnrgDrgLDoV14JLM1HGWOGGg5sJqkYOsC5OFq3uRkFvNVPgGiziXvOhphuJIXpRVhU-EDWESv8MYl0kS76SiwNjfS6zsVJsH6_lS_3rQTbOVeMbPyWFfMdKy8_QF2YP5EXm2xSN4TExJp4t7aOgI4xZH6Fivm5a-747R3dzRSdCJpuF8AP2y1KufbITpq6ZXeuXFVNB89Zl9YhPAzEWrZu3pE_zcsvm-WN20P25fktn4w9fqkvXiCcxmkWiZ1Tkinwmd5ZETsgCpBS90hLhxLFUt1gW1K9I65Sb1HDUOaiGBcyNwYZ5C-orszxdzeE2ocVJy46XoMJdDAUYmgFWilrieG2sGJHnEUdmeWdwLXDQqdBiRVB34yoOvevAH5O1m0bIj1vj79JHfoM1Uz4odBjBWVB8r6l-xMiDHfns3RmTKU56h7bPH7Vb9G3ynPJOiwOZZ8AFhmxD4w1UdZC13XD35H66ekqfeZvez54zst6s1vMHypzXDEOnDcFNxSJ7Mplflt990WAIm |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELam7WHwwK-ByBjgBx6XLk3ixH5sA1VhS0Fik_Zm2c55TAtt1SWbtr-ec5JGKyDEW2TZjk_fOXfn-L4j5AMaPSNcpGpEhAFKAeDrNLR-EiirNTdgA5c7nM-S6Vn85Zydb5HDPhcGAJrLZzBwj82__GJhandUdiQiFjGXpb7D4jhmbbZWf6LiSkgIlnbUQsNAHI2yDKXAIDAcDlCvRRgON8xPw9LflVXZ8DB36_lS3d2qsnxgbCZPSb5eZnvH5GpQV3pg7n9jcPxfOZ6RJ53XSUetmjwnWzB_QR4_4CLcI3pEZ4sbKOkYdR9b6ETVZUU_tlfxLq9p3tSaps0dA_p9qVZX_hhNYEG_qZUryILTZ1_9Yz8HtH40K2tHweD6jsqLxeqy-vHzJTmbfDrNpn5XgME3ccAr36gE0Yu5ipPAcpGCUJylKkhAMHR3DfoWhU2jImI6cjw3FgougDHNcWASQfSKbM8Xc3hNqLZCMO3K2aE_ACloEQJ6mkrgeKaN9ki4xkWajp3cFckoZROlBEK2YEoHpuzA9MhhP2jZknP8u_vYAd53dczaTQOCI7uNKhmkxoINY10M49ByDQXjRnGUuUhRAI_sOUD7STosPXKwVh_ZfQWupWNj5BiAc-YRv1epP5aqmtKYG0vd__tb3pPd6Wl-Ik8-z47fkEduRHscdEC2q1UNb9FBqvS7Zl_8AsnmCm4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJG0aRIn9jENVCtQy0pQaTlFtjOGakNbdZNd4NczdtxqCxIS3CJrbNmasWcmHr9HyCt0elrYTFWLBBOUGiBUeWzCLJJGKa7BRPbt8GyenS7Sd-fs3P9wc29hAMAVn8HQfrq7_CU03_NRFlvwNDHCMWN0iyN7g5ewFE-a2twmRxnDWHxAjhbzs-KzZZQbZyJM3N3kcw-sOZKOgxCTwng8RDsXcTw-cEcOtd_TrBxEnHe61Ub-uJZNc8P5TO-TajftvubkYti1aqh__obo-P_rekDu-biUFr0hPSS3YPWI3L2BVnhMVEHn6yto6AR3B7bQqeyalr7pi_WWl3Tm2Kipq0KgHzdyexFO0EnW9ExuLWULDl9-CN-HM0D_SMumsyANVrZovqy3y_brt8dkMX37qTwNPUVDqNOIt6GWGeo35TLNIsNFDkJylssoA8EwINYYfdQmT-qEqcQi4RiouQDGFMeOWQLJEzJYrVfwlFBlhGDKEt5hxAA5KBEDxqJSYH-mtApIvNNUpT1-uaXRaCqXx0SiKsoSjbay6q28egPyet9p08N3_F18Yk1gL2qxt10DqqvyW7likGsDJk5VPU5jwxXUjGvJcc11jgsIyLFV8X4Qr8-AnOwMqvLnxGVl8Ro5puicBSTcG9kfU-0N92Cqz_5R_oQM2m0HLzCEatVLv09-ASNnFTI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Bearing+Fault+Diagnosis+Method+Using+Spark-Based+Parallel+ACO-K-Means+Clustering+Algorithm&rft.jtitle=IEEE+access&rft.au=Wan%2C+Lanjun&rft.au=Zhang%2C+Gen&rft.au=Li%2C+Hongyang&rft.au=Li%2C+Changyun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=28753&rft.epage=28768&rft_id=info:doi/10.1109%2FACCESS.2021.3059221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3059221 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |