Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare

Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 107562 - 107582
Main Authors Li, Jian Ping, Haq, Amin Ul, Din, Salah Ud, Khan, Jalaluddin, Khan, Asif, Saboor, Abdus
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3001149

Cover

Abstract Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease.
AbstractList Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease.
Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease.
Author Li, Jian Ping
Haq, Amin Ul
Din, Salah Ud
Khan, Jalaluddin
Khan, Asif
Saboor, Abdus
Author_xml – sequence: 1
  givenname: Jian Ping
  orcidid: 0000-0003-2192-1450
  surname: Li
  fullname: Li, Jian Ping
  email: jpli2222@uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Amin Ul
  orcidid: 0000-0002-7774-5604
  surname: Haq
  fullname: Haq, Amin Ul
  email: khan.amin50@yahoo.com
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Salah Ud
  orcidid: 0000-0002-4145-7176
  surname: Din
  fullname: Din, Salah Ud
  organization: Data Mining Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Jalaluddin
  orcidid: 0000-0001-7402-6498
  surname: Khan
  fullname: Khan, Jalaluddin
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Asif
  orcidid: 0000-0001-5009-3290
  surname: Khan
  fullname: Khan, Asif
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Abdus
  orcidid: 0000-0002-0582-9761
  surname: Saboor
  fullname: Saboor, Abdus
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNqFkc1O3DAUha2KSlDKE7CJ1HUG_yb2EqVTGGlQF5RFV5bjXDMepfbUzqji7fEQBAgW9cbW0Tnf1T3-go5CDIDQOcELQrC6uOy65e3tgmKKFwxjQrj6hE4oaVTNBGuO3ryP0VnOW1yOLJJoT9DvazBpqr77DCZDtRogTN55ayYfQ3UD0yYO1V324b66MXbjA1TrkggHoRtNzq9mH6plXXDjtLEmwVf02Zkxw9nzfYrufix_ddf1-ufVqrtc15ZjOdVWtUJaS4EK7nAPCnrcS0d7ogAGI6SxA5aC8MY54FY55hossGJ9j8WgFDtFq5k7RLPVu-T_mPSgo_H6SYjpXpcNvR1ByxYrSUFSPDA-HBqA3vVNoyylom2bwuIzax925uGfGccXIMH60LY21kLO-tC2fm67xL7NsV2Kf_eQJ72N-xTK1ppywTkvbllcbHbZFHNO4D6w5598z1bvUtZPT4VPyfjxP9nzOesB4GWaIoQWG3sEmLyrdg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s41870_023_01597_w
crossref_primary_10_1109_ACCESS_2022_3189018
crossref_primary_10_1016_j_iswa_2024_200441
crossref_primary_10_1186_s42492_023_00143_6
crossref_primary_10_1007_s11831_025_10271_2
crossref_primary_10_46604_peti_2021_7217
crossref_primary_10_1080_17469899_2024_2328620
crossref_primary_10_1109_ACCESS_2024_3476164
crossref_primary_10_1108_WJE_10_2020_0537
crossref_primary_10_1007_s11227_023_05356_3
crossref_primary_10_32604_cmc_2022_018613
crossref_primary_10_3390_s21155009
crossref_primary_10_1016_j_ijpharm_2022_122203
crossref_primary_10_1080_10255842_2024_2319706
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1016_j_bspc_2021_103456
crossref_primary_10_1016_j_procs_2022_11_206
crossref_primary_10_33736_jaspe_2639_2020
crossref_primary_10_1109_ACCESS_2023_3339225
crossref_primary_10_1016_j_bspc_2023_104707
crossref_primary_10_3390_electronics12081789
crossref_primary_10_1007_s11042_023_18035_5
crossref_primary_10_2147_CEOR_S407778
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1016_j_ijin_2022_05_002
crossref_primary_10_32604_iasc_2023_032530
crossref_primary_10_3390_s21196584
crossref_primary_10_1016_j_array_2024_100352
crossref_primary_10_1016_j_health_2022_100133
crossref_primary_10_1038_s41598_024_62254_1
crossref_primary_10_1016_j_health_2022_100130
crossref_primary_10_1016_j_micpro_2020_103662
crossref_primary_10_3390_diagnostics13142340
crossref_primary_10_1088_1742_6596_2273_1_012027
crossref_primary_10_3390_app13031911
crossref_primary_10_1080_10255842_2024_2310075
crossref_primary_10_1109_ACCESS_2021_3110604
crossref_primary_10_1109_ACCESS_2023_3328909
crossref_primary_10_2298_SJEE2202207J
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_26599_NBE_2024_9290087
crossref_primary_10_3390_s22031184
crossref_primary_10_1007_s10479_024_06008_2
crossref_primary_10_1038_s41598_024_71932_z
crossref_primary_10_1007_s00521_022_07527_4
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_1016_j_medengphy_2022_103825
crossref_primary_10_21015_vtse_v12i3_1860
crossref_primary_10_3390_tropicalmed7120398
crossref_primary_10_1109_ACCESS_2024_3359910
crossref_primary_10_14801_jkiit_2023_21_8_175
crossref_primary_10_3390_info13100475
crossref_primary_10_36930_40330315
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_3390_s22114132
crossref_primary_10_1140_epjs_s11734_024_01413_x
crossref_primary_10_3389_fpubh_2021_762303
crossref_primary_10_1016_j_compbiolchem_2024_108278
crossref_primary_10_1007_s10916_022_01904_1
crossref_primary_10_1109_TII_2021_3098306
crossref_primary_10_1016_j_bspc_2021_102820
crossref_primary_10_1038_s41598_025_90530_1
crossref_primary_10_2139_ssrn_4121828
crossref_primary_10_4018_IJSI_303582
crossref_primary_10_1016_j_bbe_2022_10_001
crossref_primary_10_3390_electronics12092050
crossref_primary_10_1007_s00521_024_09967_6
crossref_primary_10_3390_app142210516
crossref_primary_10_3390_s20185392
crossref_primary_10_2298_TSCI2406059A
crossref_primary_10_1177_14759217241274335
crossref_primary_10_1007_s11042_023_17051_9
crossref_primary_10_1016_j_dsm_2024_07_004
crossref_primary_10_1016_j_eswa_2024_124399
crossref_primary_10_21015_vtse_v11i2_1487
crossref_primary_10_32604_cmc_2021_014649
crossref_primary_10_1007_s13721_025_00508_2
crossref_primary_10_1142_S0218126623502419
crossref_primary_10_53730_ijhs_v6nS3_6309
crossref_primary_10_1007_s11042_024_19694_8
crossref_primary_10_1186_s40537_025_01108_7
crossref_primary_10_1007_s12652_024_04840_9
crossref_primary_10_1109_ACCESS_2021_3117891
crossref_primary_10_1007_s11227_023_05132_3
crossref_primary_10_1016_j_procs_2023_01_140
crossref_primary_10_1109_COMST_2023_3344808
crossref_primary_10_1007_s11760_023_02656_2
crossref_primary_10_1038_s41598_024_58489_7
crossref_primary_10_4018_IJDWM_316145
crossref_primary_10_1007_s11042_024_19293_7
crossref_primary_10_3390_math9222970
crossref_primary_10_1007_s11042_024_18503_6
crossref_primary_10_1016_j_bspc_2024_106319
crossref_primary_10_1038_s41598_025_88277_w
crossref_primary_10_1109_ACCESS_2023_3336424
crossref_primary_10_1016_j_compbiomed_2022_105274
crossref_primary_10_1007_s11042_023_14834_y
crossref_primary_10_1016_j_saa_2025_125701
crossref_primary_10_1109_ACCESS_2023_3305379
crossref_primary_10_3390_s21093030
crossref_primary_10_48084_etasr_4277
crossref_primary_10_1007_s42600_022_00253_9
crossref_primary_10_52148_ehta_1117769
crossref_primary_10_3233_JIFS_224298
crossref_primary_10_3390_life15030496
crossref_primary_10_1016_j_micpro_2021_103979
crossref_primary_10_2174_0118750362349305250131062510
crossref_primary_10_1007_s42979_024_02927_w
crossref_primary_10_3390_jcm10215016
crossref_primary_10_1007_s00521_021_06124_1
crossref_primary_10_1007_s11042_024_19169_w
crossref_primary_10_1016_j_asoc_2021_108288
crossref_primary_10_3389_fdata_2022_1021518
crossref_primary_10_3390_healthcare11050710
crossref_primary_10_1016_j_advengsoft_2022_103297
crossref_primary_10_3233_JIFS_219376
crossref_primary_10_1080_10255842_2023_2218520
crossref_primary_10_1016_j_bspc_2022_104481
crossref_primary_10_32604_csse_2022_022739
crossref_primary_10_1002_cpe_7259
crossref_primary_10_3390_electronics10192347
crossref_primary_10_1080_21681163_2023_2245927
crossref_primary_10_1007_s11760_023_02624_w
crossref_primary_10_1109_ACCESS_2024_3409077
crossref_primary_10_1016_j_eswa_2022_117882
crossref_primary_10_1016_j_bspc_2023_104742
crossref_primary_10_1080_09537325_2024_2410349
crossref_primary_10_1007_s13721_022_00381_3
crossref_primary_10_2147_DMSO_S312787
crossref_primary_10_7717_peerj_cs_1626
crossref_primary_10_1007_s11042_023_17381_8
crossref_primary_10_1016_j_aeue_2023_154999
crossref_primary_10_1038_s41598_024_78021_1
crossref_primary_10_1007_s12351_024_00875_0
crossref_primary_10_3389_fmed_2024_1362397
crossref_primary_10_32604_iasc_2023_032585
crossref_primary_10_1007_s00607_024_01352_4
crossref_primary_10_1016_j_bspc_2024_107070
crossref_primary_10_1109_ACCESS_2021_3108892
crossref_primary_10_1109_IOTM_003_2100061
crossref_primary_10_1080_10255842_2024_2339475
crossref_primary_10_32604_cmc_2023_032588
crossref_primary_10_1007_s42979_021_00848_6
crossref_primary_10_1186_s12938_022_01038_y
crossref_primary_10_1038_s41598_024_62555_5
crossref_primary_10_1007_s00500_022_07649_w
crossref_primary_10_1371_journal_pone_0307288
crossref_primary_10_1016_j_bspc_2025_107769
crossref_primary_10_1016_j_ymeth_2023_08_008
crossref_primary_10_3390_biomimetics9110662
crossref_primary_10_1007_s42979_023_01711_6
crossref_primary_10_1016_j_compbiolchem_2025_108394
crossref_primary_10_1016_j_suscom_2022_100732
crossref_primary_10_21015_vtse_v10i3_1106
crossref_primary_10_3390_app13106138
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_56809_icujtas_1433853
crossref_primary_10_1080_00051144_2023_2293280
crossref_primary_10_48084_etasr_8171
crossref_primary_10_1109_ACCESS_2022_3153047
crossref_primary_10_1108_SR_03_2022_0136
crossref_primary_10_1007_s11042_023_17238_0
crossref_primary_10_1038_s41598_024_55991_w
crossref_primary_10_1093_ehjdh_ztab096
crossref_primary_10_1080_1206212X_2022_2069643
crossref_primary_10_1007_s11042_021_11259_3
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1007_s12652_022_04373_z
crossref_primary_10_1007_s40747_021_00508_5
crossref_primary_10_1038_s41598_022_19465_1
crossref_primary_10_31642_JoKMC_2018_100104
crossref_primary_10_1080_21681163_2022_2162439
crossref_primary_10_1109_ACCESS_2025_3541750
crossref_primary_10_3390_computers10020024
crossref_primary_10_1111_exsy_13520
crossref_primary_10_1111_exsy_13002
crossref_primary_10_32604_iasc_2023_028903
crossref_primary_10_3390_a17020078
crossref_primary_10_3390_app122312080
crossref_primary_10_1109_ACCESS_2021_3094334
crossref_primary_10_1080_03091902_2022_2080885
crossref_primary_10_1016_j_knosys_2022_109709
crossref_primary_10_1109_ACCESS_2023_3286661
crossref_primary_10_1051_itmconf_20214003007
Cites_doi 10.3233/JIFS-191461
10.1109/ACCESS.2017.2778268
10.1161/CIR.0b013e31824f2173
10.1111/j.0006-341X.2000.00909.x
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0925-2312(03)00373-4
10.1109/TPAMI.2005.159
10.1016/j.eswa.2016.10.020
10.1016/j.eswa.2008.09.013
10.1016/0004-3702(89)90046-5
10.3923/jai.2012.47.55
10.1109/TCYB.2016.2591068
10.1016/j.eswa.2011.01.120
10.1038/nrcardio.2010.165
10.1109/MIS.2017.38
10.1109/ACCESS.2019.2945527
10.1007/s10115-007-0114-2
10.1016/j.ins.2010.05.037
10.4236/jilsa.2013.53019
10.1109/I2CT45611.2019.9033683
10.1145/1961189.1961199
10.1109/ACCESS.2019.2906350
10.1161/CIR.0b013e31820a55f5
10.1017/CBO9780511801389
10.1007/978-3-319-19425-7_13
10.1016/j.jbi.2018.07.014
10.1007/s10115-017-1059-8
10.3390/s20092649
10.1098/rsif.2010.0456
10.1016/0002-9149(89)90524-9
10.1155/2017/8272091
10.5815/ijisa.2015.12.08
10.1515/9783110621105-004
10.1016/j.ins.2014.05.042
10.1109/ICCCT.2010.5640377
10.1109/ICCWAMTIP47768.2019.9067519
10.1109/AICCSA.2008.4493524
10.1016/j.eswa.2007.06.004
10.1155/2018/3860146
10.1109/ACCESS.2019.2923707
10.1016/j.neuroimage.2005.06.070
10.1023/A:1007465528199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3001149
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 107582
ExternalDocumentID oai_doaj_org_article_870982e820d34d1695ebfb669c225776
10.1109/access.2020.3001149
10_1109_ACCESS_2020_3001149
9112202
Genre orig-research
GrantInformation_xml – fundername: National High Technology Research and Development Program of China
  grantid: 2007AA01Z423
– fundername: National Natural Science Foundation of China
  grantid: 61370073
  funderid: 10.13039/501100001809
– fundername: Project of Science and Technology Department of Sichuan Province
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-c9758cc2e254f0be9eb0b8f2b19eeda58acd085146ffe4c9f3f605093bb05d993
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:27 EDT 2025
Tue Aug 19 22:32:01 EDT 2025
Mon Jun 30 06:31:29 EDT 2025
Wed Oct 01 03:37:14 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Wed Aug 27 02:38:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c9758cc2e254f0be9eb0b8f2b19eeda58acd085146ffe4c9f3f605093bb05d993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0582-9761
0000-0001-7402-6498
0000-0002-7774-5604
0000-0001-5009-3290
0000-0003-2192-1450
0000-0002-4145-7176
OpenAccessLink https://doaj.org/article/870982e820d34d1695ebfb669c225776
PQID 2454442028
PQPubID 4845423
PageCount 21
ParticipantIDs unpaywall_primary_10_1109_access_2020_3001149
ieee_primary_9112202
proquest_journals_2454442028
crossref_citationtrail_10_1109_ACCESS_2020_3001149
doaj_primary_oai_doaj_org_article_870982e820d34d1695ebfb669c225776
crossref_primary_10_1109_ACCESS_2020_3001149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
nazir (ref10) 2018; 15
ref11
fleuret (ref37) 2004; 5
ref54
ref17
ref19
ref18
jabbar (ref24) 2013; 13
ref51
ref46
ref45
ref48
raschka (ref16) 2018
ref47
ref42
ref41
haq (ref52) 2018
ref44
ref43
durairaj (ref2) 2016; 9
al-shayea (ref5) 2011; 8
ref49
ref8
ref7
ref4
ref3
ul haq (ref50) 2020; 39
ref35
ref34
ref36
ref31
ref30
ref32
ref1
ref39
ref38
silva (ref33) 2015; 13
ref23
ref26
vapnik (ref40) 2013
ref25
ref20
ref22
lopez-sendon (ref6) 2011; 33
ref21
ref28
ref27
ref29
ansarullah (ref9) 2019; 7
References_xml – ident: ref29
  doi: 10.3233/JIFS-191461
– ident: ref38
  doi: 10.1109/ACCESS.2017.2778268
– ident: ref3
  doi: 10.1161/CIR.0b013e31824f2173
– ident: ref39
  doi: 10.1111/j.0006-341X.2000.00909.x
– ident: ref35
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref42
  doi: 10.1016/S0925-2312(03)00373-4
– ident: ref32
  doi: 10.1109/TPAMI.2005.159
– ident: ref20
  doi: 10.1016/j.eswa.2016.10.020
– ident: ref19
  doi: 10.1016/j.eswa.2008.09.013
– volume: 39
  start-page: 1
  year: 2020
  ident: ref50
  article-title: Recognition of the Parkinson's disease using a hybrid feature selection approach
  publication-title: J Intell Fuzzy Syst
– ident: ref12
  doi: 10.1016/0004-3702(89)90046-5
– ident: ref21
  doi: 10.3923/jai.2012.47.55
– ident: ref15
  doi: 10.1109/TCYB.2016.2591068
– ident: ref45
  doi: 10.1016/j.eswa.2011.01.120
– volume: 13
  start-page: 1
  year: 2015
  ident: ref33
  publication-title: Feature Selection
– ident: ref1
  doi: 10.1038/nrcardio.2010.165
– year: 2013
  ident: ref40
  publication-title: The Nature of Statistical Learning Theory
– ident: ref14
  doi: 10.1109/MIS.2017.38
– ident: ref28
  doi: 10.1109/ACCESS.2019.2945527
– ident: ref41
  doi: 10.1007/s10115-007-0114-2
– ident: ref34
  doi: 10.1016/j.ins.2010.05.037
– ident: ref4
  doi: 10.4236/jilsa.2013.53019
– ident: ref26
  doi: 10.1109/I2CT45611.2019.9033683
– ident: ref44
  doi: 10.1145/1961189.1961199
– ident: ref53
  doi: 10.1109/ACCESS.2019.2906350
– ident: ref7
  doi: 10.1161/CIR.0b013e31820a55f5
– ident: ref43
  doi: 10.1017/CBO9780511801389
– ident: ref36
  doi: 10.1007/978-3-319-19425-7_13
– volume: 33
  start-page: 363
  year: 2011
  ident: ref6
  article-title: The heart failure epidemic
  publication-title: Medicographia
– ident: ref31
  doi: 10.1016/j.jbi.2018.07.014
– volume: 9
  start-page: 255
  year: 2016
  ident: ref2
  article-title: A comparison of the perceptive approaches for preprocessing the data set for predicting fertility success rate
  publication-title: J Control Theory Applied
– ident: ref13
  doi: 10.1007/s10115-017-1059-8
– ident: ref51
  doi: 10.3390/s20092649
– ident: ref8
  doi: 10.1098/rsif.2010.0456
– ident: ref11
  doi: 10.1016/0002-9149(89)90524-9
– volume: 7
  start-page: 1009
  year: 2019
  ident: ref9
  article-title: A systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning method
  publication-title: Int J Recent Technol Eng
– year: 2018
  ident: ref16
  article-title: Model evaluation, model selection, and algorithm selection in machine learning
  publication-title: arXiv 1811 12808
– ident: ref25
  doi: 10.1155/2017/8272091
– ident: ref18
  doi: 10.5815/ijisa.2015.12.08
– volume: 15
  start-page: 224
  year: 2018
  ident: ref10
  article-title: Fuzzy logic based decision support system for component security evaluation
  publication-title: Int Arab J Inf Technol
– ident: ref48
  doi: 10.1515/9783110621105-004
– volume: 13
  start-page: 4
  year: 2013
  ident: ref24
  article-title: Classification of heart disease using artificial neural network and feature subset selection
  publication-title: Glob J Comput Sci Technol Neural Artif Intell
– ident: ref30
  doi: 10.1016/j.ins.2014.05.042
– ident: ref22
  doi: 10.1109/ICCCT.2010.5640377
– volume: 8
  start-page: 150
  year: 2011
  ident: ref5
  article-title: Artificial neural networks in medical diagnosis
  publication-title: Int J Comput Sci Issues
– ident: ref49
  doi: 10.1109/ICCWAMTIP47768.2019.9067519
– ident: ref17
  doi: 10.1109/AICCSA.2008.4493524
– ident: ref23
  doi: 10.1016/j.eswa.2007.06.004
– ident: ref54
  doi: 10.1155/2018/3860146
– ident: ref27
  doi: 10.1109/ACCESS.2019.2923707
– ident: ref46
  doi: 10.1016/j.neuroimage.2005.06.070
– start-page: 101
  year: 2018
  ident: ref52
  article-title: Comparative analysis of the classification performance of machine learning classifiers and deep neural network classifier for prediction of parkinson disease
  publication-title: Proc 15th Int Comput Conf Wavelet Act Media Technol Inf Process (ICCWAMTIP)
– ident: ref47
  doi: 10.1023/A:1007465528199
– volume: 5
  start-page: 1531
  year: 2004
  ident: ref37
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learn Res
SSID ssj0000816957
Score 2.644936
Snippet Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107562
SubjectTerms Algorithms
Artificial neural networks
Cardiology
Cardiovascular disease
Classification
Classifiers
Decision trees
Diagnosis
disease diagnosis
Diseases
Feature extraction
Feature selection
features selection
Health care
Heart
Heart disease classification
Heart diseases
Identification methods
intelligent system
Machine learning
Machine learning algorithms
medical data analytics
Prediction algorithms
Redundancy
Support vector machines
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXiiHUmgRgYJ84NhsE8fxxseytFohLScqtScrdsYIsUormlVVfj3jx4ZuQai3PMaJrZmxZ8bjbwA-OFNaWzQu7xSqXHQlqRTd5xzJdq6kcDE3Z_FFzs_F54v6YguOxrMwiBiSz3DiL8NefndlVz5UdkyKyblHjnwybWQ8qzXGU3wBCVVPE7BQWajjk9mMxkAuICfPNBwaVRuLT8DoT0VVNuzLp6v-ur27bZfLe0vN2XNYrDsZM0x-TFaDmdhfD_AbHzuKPdhNNic7iULyArawfwnP7iER7sPlnCR-YJ_idg2Lx3ddiuexRSgzzUJ6AVuE9EtkCZn1Gwt1Nf8Qf-_ZaT4f08oO4Pzs9OtsnqeqC7kVRTPkVpELYS1Hch1dYVChKUzjuCkVradt3bS283aakM6hsMpVTnoQmcqYou7I3HkF2_1Vj6-BKWc6rE0thbLCcY9FV1UlNSc7s7JYZsDX7NA2QZL7yhhLHVyTQunIQ-15qBMPMzgaG11HRI7_k3_0fB5JPZx2eEA80Uk7NU1aquFI1lBXkbySIKFxRkplabqbTmUG-56P40cSCzM4XEuNTqp_o7mohRD0tskgHyXpr662oR7mRlff_Psvb2HHU8W4zyFsDz9X-I4socG8DyrwG-eWAzk
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9oA48CqIlIJ84Eh2E8fxxsftttUKaSsOrNSerNgZo4pVuoKsePz6jh1v6IKEBLc8xpGjmbG_scffALx1Jrc2q1zaKFSpaHJyKbpPORJ2LqRwfW7O8kIuVuL9ZXkZF9zCWRhEDMlnOPaXYS__GtffpxPJPXmamlRK0IhKsTy5KafQfbxp3H04kCVh8REcrC4-zK58RblcqrQIe5OvIrHmpA41CCko5BSrhmOkam86Cqz9sczKHuJ8sG039Y9v9Xp9Z_I5fwx61-0-5-TzeNuZsf35G6Pj___XE3gUcSmb9Yb0FO5h-wwe3mErPISrBXlFx077LR3WH_F1cc2PLUMpahZSENgypGgii-ytn1iovflL-LplZ-liSD17Dqvzs4_zRRorM6RWZFWXWkVhhrUcKbx0mUGFJjOV4yZXNOfWZVXbxmM5IZ1DYZUrnPREM4UxWdkQJHoBo_amxZfAlDMNlqaUQlnhuOerK4qcmhMWLSzmCfCdgrSNtOW-esZah_AlU3o2n5Otaq9VHbWawLuh0aZn7fi7-InX_CDqKbfDA9KSjh6saWBTFUdCTE1BNi1VicYZKZWlIXE6lQkces0OH4lqTOB4Z0c6Dg9fNRelEILeVgmkg2390dXeXve6evSP8scw6r5s8TUhp868ie5xC__AEXU
  priority: 102
  providerName: Unpaywall
Title Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare
URI https://ieeexplore.ieee.org/document/9112202
https://www.proquest.com/docview/2454442028
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09112202.pdf
https://doaj.org/article/870982e820d34d1695ebfb669c225776
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYQHIAD4inKY8qBIxVtmnbNcQzQhLSJA5PgFDVpgpCmMsEQ4t_jPFY2IcGFY1sndW0nsVPnM8CZkalSSWnimmseszrFIYXXMdXoO2cFMz43ZzgqBmN2-5A_LJT6sjlhHh7YC-4C7YmXVONCVWfYVcFzLY0sCq7QErtdB7adlHwhmHJzcGkpuwFmKE34Ra_fxy_CgJBinOqOkPKlpcgh9ocSK0ve5vp7M60-P6rJZGHhudmGreAxkp7ndAdWdLMLmws4gnvwOEB7nZEr_7OF-MO3JuzGkaErEk1ccgAZuuRJTQKu6hNxVTG_iZ8bch0P2qSwfRjfXN_3B3GomRArlpSzWHEMAJSiGgM_k0jNtUxkaahMOa6GVV5WqrZeFiuM0Uxxk5nCQsBkUiZ5jc7KAaw2L40-BMKNrHUu84JxxQy1SHJZlmJz9BIzpdMI6Fx8QgVAcVvXYiJcYJFw4WUurMxFkHkE522jqcfT-J380uqlJbVg2O4GmogIJiL-MpEI9qxW205wfqf4kghO5loWYeC-Ccpyxhg-LSOIW83_YLVy1SyXWD36D1aPYcP26fd4TmB19vquT9HrmcmOM_COO6DYgbXx6K73-AXkO_tY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA48CqIQAEfODbbxHGy8bEsrQI0PbVSOVmxM0aIVVrRrCr49YwfG7qAELc87MTWzNgz45lvAN5YnRuT1TbtJcpU9DmJFN2nHEl3LiphQ2xOe1o15-LDRXmxBftTLgwi-uAznLlLf5bfX5qVc5UdkGBy7pAj75RCiDJka00eFVdCQpbzCC2UZ_LgcLGgWZARyMk29WmjcmP78Sj9sazKhoa5sxquuu833XJ5a7M5fgDtepghxuTrbDXqmfnxG4Lj_87jIdyPWic7DGzyCLZweAz3bmER7sKnhnh-ZO_CgQ0LCbw2evRY6wtNMx9gwFofgIksYrN-Zr6y5q_GXwZ2lDZTYNkTOD8-Ols0aay7kBqR1WNqJBkRxnAk49FmGiXqTNeW61zSjtqVdWd6p6mJyloURtrCVg5GptA6K3tSeJ7C9nA54DNg0uoeS11WQhphuUOjK4qcupOmWRjME-BrcigTQcldbYyl8sZJJlWgoXI0VJGGCexPna4CJse_m791dJ6aOkBt_4BooqJ8Klq2ZM2R9KG-II4lRkJtdVVJQwvefF4lsOvoOH0kkjCBvTXXqCj814oLx570tk4gnTjpj6F2viLmxlCf__0vr2GnOWtP1Mn7048v4K7rEbxAe7A9flvhS9KLRv3Ki8NPmpwGhg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9oA48CqIlIJ84Eh2E8fxxsftttUKaSsOrNSerNgZo4pVuoKsePz6jh1v6IKEBLc8xpGjmbG_scffALx1Jrc2q1zaKFSpaHJyKbpPORJ2LqRwfW7O8kIuVuL9ZXkZF9zCWRhEDMlnOPaXYS__GtffpxPJPXmamlRK0IhKsTy5KafQfbxp3H04kCVh8REcrC4-zK58RblcqrQIe5OvIrHmpA41CCko5BSrhmOkam86Cqz9sczKHuJ8sG039Y9v9Xp9Z_I5fwx61-0-5-TzeNuZsf35G6Pj___XE3gUcSmb9Yb0FO5h-wwe3mErPISrBXlFx077LR3WH_F1cc2PLUMpahZSENgypGgii-ytn1iovflL-LplZ-liSD17Dqvzs4_zRRorM6RWZFWXWkVhhrUcKbx0mUGFJjOV4yZXNOfWZVXbxmM5IZ1DYZUrnPREM4UxWdkQJHoBo_amxZfAlDMNlqaUQlnhuOerK4qcmhMWLSzmCfCdgrSNtOW-esZah_AlU3o2n5Otaq9VHbWawLuh0aZn7fi7-InX_CDqKbfDA9KSjh6saWBTFUdCTE1BNi1VicYZKZWlIXE6lQkces0OH4lqTOB4Z0c6Dg9fNRelEILeVgmkg2390dXeXve6evSP8scw6r5s8TUhp868ie5xC__AEXU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+Disease+Identification+Method+Using+Machine+Learning+Classification+in+E-Healthcare&rft.jtitle=IEEE+access&rft.au=Li%2C+Jian+Ping&rft.au=Haq%2C+Amin+Ul&rft.au=Din%2C+Salah+Ud&rft.au=Khan%2C+Jalaluddin&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=107562&rft.epage=107582&rft_id=info:doi/10.1109%2FACCESS.2020.3001149&rft.externalDocID=9112202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon