Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare
Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis...
Saved in:
| Published in | IEEE access Vol. 8; pp. 107562 - 107582 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3001149 |
Cover
| Abstract | Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease. |
|---|---|
| AbstractList | Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease. Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a key role in healthcare, particularly in the field of cardiology. In this article, we proposed an efficient and accurate system to diagnosis heart disease and the system is based on machine learning techniques. The system is developed based on classification algorithms includes Support vector machine, Logistic regression, Artificial neural network, K-nearest neighbor, Naïve bays, and Decision tree while standard features selection algorithms have been used such as Relief, Minimal redundancy maximal relevance, Least absolute shrinkage selection operator and Local learning for removing irrelevant and redundant features. We also proposed novel fast conditional mutual information feature selection algorithm to solve feature selection problem. The features selection algorithms are used for features selection to increase the classification accuracy and reduce the execution time of classification system. Furthermore, the leave one subject out cross-validation method has been used for learning the best practices of model assessment and for hyperparameter tuning. The performance measuring metrics are used for assessment of the performances of the classifiers. The performances of the classifiers have been checked on the selected features as selected by features selection algorithms. The experimental results show that the proposed feature selection algorithm (FCMIM) is feasible with classifier support vector machine for designing a high-level intelligent system to identify heart disease. The suggested diagnosis system (FCMIM-SVM) achieved good accuracy as compared to previously proposed methods. Additionally, the proposed system can easily be implemented in healthcare for the identification of heart disease. |
| Author | Li, Jian Ping Haq, Amin Ul Din, Salah Ud Khan, Jalaluddin Khan, Asif Saboor, Abdus |
| Author_xml | – sequence: 1 givenname: Jian Ping orcidid: 0000-0003-2192-1450 surname: Li fullname: Li, Jian Ping email: jpli2222@uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Amin Ul orcidid: 0000-0002-7774-5604 surname: Haq fullname: Haq, Amin Ul email: khan.amin50@yahoo.com organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Salah Ud orcidid: 0000-0002-4145-7176 surname: Din fullname: Din, Salah Ud organization: Data Mining Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Jalaluddin orcidid: 0000-0001-7402-6498 surname: Khan fullname: Khan, Jalaluddin organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Asif orcidid: 0000-0001-5009-3290 surname: Khan fullname: Khan, Asif organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Abdus orcidid: 0000-0002-0582-9761 surname: Saboor fullname: Saboor, Abdus organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNqFkc1O3DAUha2KSlDKE7CJ1HUG_yb2EqVTGGlQF5RFV5bjXDMepfbUzqji7fEQBAgW9cbW0Tnf1T3-go5CDIDQOcELQrC6uOy65e3tgmKKFwxjQrj6hE4oaVTNBGuO3ryP0VnOW1yOLJJoT9DvazBpqr77DCZDtRogTN55ayYfQ3UD0yYO1V324b66MXbjA1TrkggHoRtNzq9mH6plXXDjtLEmwVf02Zkxw9nzfYrufix_ddf1-ufVqrtc15ZjOdVWtUJaS4EK7nAPCnrcS0d7ogAGI6SxA5aC8MY54FY55hossGJ9j8WgFDtFq5k7RLPVu-T_mPSgo_H6SYjpXpcNvR1ByxYrSUFSPDA-HBqA3vVNoyylom2bwuIzax925uGfGccXIMH60LY21kLO-tC2fm67xL7NsV2Kf_eQJ72N-xTK1ppywTkvbllcbHbZFHNO4D6w5598z1bvUtZPT4VPyfjxP9nzOesB4GWaIoQWG3sEmLyrdg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s41870_023_01597_w crossref_primary_10_1109_ACCESS_2022_3189018 crossref_primary_10_1016_j_iswa_2024_200441 crossref_primary_10_1186_s42492_023_00143_6 crossref_primary_10_1007_s11831_025_10271_2 crossref_primary_10_46604_peti_2021_7217 crossref_primary_10_1080_17469899_2024_2328620 crossref_primary_10_1109_ACCESS_2024_3476164 crossref_primary_10_1108_WJE_10_2020_0537 crossref_primary_10_1007_s11227_023_05356_3 crossref_primary_10_32604_cmc_2022_018613 crossref_primary_10_3390_s21155009 crossref_primary_10_1016_j_ijpharm_2022_122203 crossref_primary_10_1080_10255842_2024_2319706 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1016_j_bspc_2021_103456 crossref_primary_10_1016_j_procs_2022_11_206 crossref_primary_10_33736_jaspe_2639_2020 crossref_primary_10_1109_ACCESS_2023_3339225 crossref_primary_10_1016_j_bspc_2023_104707 crossref_primary_10_3390_electronics12081789 crossref_primary_10_1007_s11042_023_18035_5 crossref_primary_10_2147_CEOR_S407778 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_1016_j_ijin_2022_05_002 crossref_primary_10_32604_iasc_2023_032530 crossref_primary_10_3390_s21196584 crossref_primary_10_1016_j_array_2024_100352 crossref_primary_10_1016_j_health_2022_100133 crossref_primary_10_1038_s41598_024_62254_1 crossref_primary_10_1016_j_health_2022_100130 crossref_primary_10_1016_j_micpro_2020_103662 crossref_primary_10_3390_diagnostics13142340 crossref_primary_10_1088_1742_6596_2273_1_012027 crossref_primary_10_3390_app13031911 crossref_primary_10_1080_10255842_2024_2310075 crossref_primary_10_1109_ACCESS_2021_3110604 crossref_primary_10_1109_ACCESS_2023_3328909 crossref_primary_10_2298_SJEE2202207J crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_26599_NBE_2024_9290087 crossref_primary_10_3390_s22031184 crossref_primary_10_1007_s10479_024_06008_2 crossref_primary_10_1038_s41598_024_71932_z crossref_primary_10_1007_s00521_022_07527_4 crossref_primary_10_1109_ACCESS_2023_3289584 crossref_primary_10_1016_j_medengphy_2022_103825 crossref_primary_10_21015_vtse_v12i3_1860 crossref_primary_10_3390_tropicalmed7120398 crossref_primary_10_1109_ACCESS_2024_3359910 crossref_primary_10_14801_jkiit_2023_21_8_175 crossref_primary_10_3390_info13100475 crossref_primary_10_36930_40330315 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_3390_s22114132 crossref_primary_10_1140_epjs_s11734_024_01413_x crossref_primary_10_3389_fpubh_2021_762303 crossref_primary_10_1016_j_compbiolchem_2024_108278 crossref_primary_10_1007_s10916_022_01904_1 crossref_primary_10_1109_TII_2021_3098306 crossref_primary_10_1016_j_bspc_2021_102820 crossref_primary_10_1038_s41598_025_90530_1 crossref_primary_10_2139_ssrn_4121828 crossref_primary_10_4018_IJSI_303582 crossref_primary_10_1016_j_bbe_2022_10_001 crossref_primary_10_3390_electronics12092050 crossref_primary_10_1007_s00521_024_09967_6 crossref_primary_10_3390_app142210516 crossref_primary_10_3390_s20185392 crossref_primary_10_2298_TSCI2406059A crossref_primary_10_1177_14759217241274335 crossref_primary_10_1007_s11042_023_17051_9 crossref_primary_10_1016_j_dsm_2024_07_004 crossref_primary_10_1016_j_eswa_2024_124399 crossref_primary_10_21015_vtse_v11i2_1487 crossref_primary_10_32604_cmc_2021_014649 crossref_primary_10_1007_s13721_025_00508_2 crossref_primary_10_1142_S0218126623502419 crossref_primary_10_53730_ijhs_v6nS3_6309 crossref_primary_10_1007_s11042_024_19694_8 crossref_primary_10_1186_s40537_025_01108_7 crossref_primary_10_1007_s12652_024_04840_9 crossref_primary_10_1109_ACCESS_2021_3117891 crossref_primary_10_1007_s11227_023_05132_3 crossref_primary_10_1016_j_procs_2023_01_140 crossref_primary_10_1109_COMST_2023_3344808 crossref_primary_10_1007_s11760_023_02656_2 crossref_primary_10_1038_s41598_024_58489_7 crossref_primary_10_4018_IJDWM_316145 crossref_primary_10_1007_s11042_024_19293_7 crossref_primary_10_3390_math9222970 crossref_primary_10_1007_s11042_024_18503_6 crossref_primary_10_1016_j_bspc_2024_106319 crossref_primary_10_1038_s41598_025_88277_w crossref_primary_10_1109_ACCESS_2023_3336424 crossref_primary_10_1016_j_compbiomed_2022_105274 crossref_primary_10_1007_s11042_023_14834_y crossref_primary_10_1016_j_saa_2025_125701 crossref_primary_10_1109_ACCESS_2023_3305379 crossref_primary_10_3390_s21093030 crossref_primary_10_48084_etasr_4277 crossref_primary_10_1007_s42600_022_00253_9 crossref_primary_10_52148_ehta_1117769 crossref_primary_10_3233_JIFS_224298 crossref_primary_10_3390_life15030496 crossref_primary_10_1016_j_micpro_2021_103979 crossref_primary_10_2174_0118750362349305250131062510 crossref_primary_10_1007_s42979_024_02927_w crossref_primary_10_3390_jcm10215016 crossref_primary_10_1007_s00521_021_06124_1 crossref_primary_10_1007_s11042_024_19169_w crossref_primary_10_1016_j_asoc_2021_108288 crossref_primary_10_3389_fdata_2022_1021518 crossref_primary_10_3390_healthcare11050710 crossref_primary_10_1016_j_advengsoft_2022_103297 crossref_primary_10_3233_JIFS_219376 crossref_primary_10_1080_10255842_2023_2218520 crossref_primary_10_1016_j_bspc_2022_104481 crossref_primary_10_32604_csse_2022_022739 crossref_primary_10_1002_cpe_7259 crossref_primary_10_3390_electronics10192347 crossref_primary_10_1080_21681163_2023_2245927 crossref_primary_10_1007_s11760_023_02624_w crossref_primary_10_1109_ACCESS_2024_3409077 crossref_primary_10_1016_j_eswa_2022_117882 crossref_primary_10_1016_j_bspc_2023_104742 crossref_primary_10_1080_09537325_2024_2410349 crossref_primary_10_1007_s13721_022_00381_3 crossref_primary_10_2147_DMSO_S312787 crossref_primary_10_7717_peerj_cs_1626 crossref_primary_10_1007_s11042_023_17381_8 crossref_primary_10_1016_j_aeue_2023_154999 crossref_primary_10_1038_s41598_024_78021_1 crossref_primary_10_1007_s12351_024_00875_0 crossref_primary_10_3389_fmed_2024_1362397 crossref_primary_10_32604_iasc_2023_032585 crossref_primary_10_1007_s00607_024_01352_4 crossref_primary_10_1016_j_bspc_2024_107070 crossref_primary_10_1109_ACCESS_2021_3108892 crossref_primary_10_1109_IOTM_003_2100061 crossref_primary_10_1080_10255842_2024_2339475 crossref_primary_10_32604_cmc_2023_032588 crossref_primary_10_1007_s42979_021_00848_6 crossref_primary_10_1186_s12938_022_01038_y crossref_primary_10_1038_s41598_024_62555_5 crossref_primary_10_1007_s00500_022_07649_w crossref_primary_10_1371_journal_pone_0307288 crossref_primary_10_1016_j_bspc_2025_107769 crossref_primary_10_1016_j_ymeth_2023_08_008 crossref_primary_10_3390_biomimetics9110662 crossref_primary_10_1007_s42979_023_01711_6 crossref_primary_10_1016_j_compbiolchem_2025_108394 crossref_primary_10_1016_j_suscom_2022_100732 crossref_primary_10_21015_vtse_v10i3_1106 crossref_primary_10_3390_app13106138 crossref_primary_10_1007_s40883_022_00273_y crossref_primary_10_56809_icujtas_1433853 crossref_primary_10_1080_00051144_2023_2293280 crossref_primary_10_48084_etasr_8171 crossref_primary_10_1109_ACCESS_2022_3153047 crossref_primary_10_1108_SR_03_2022_0136 crossref_primary_10_1007_s11042_023_17238_0 crossref_primary_10_1038_s41598_024_55991_w crossref_primary_10_1093_ehjdh_ztab096 crossref_primary_10_1080_1206212X_2022_2069643 crossref_primary_10_1007_s11042_021_11259_3 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1007_s12652_022_04373_z crossref_primary_10_1007_s40747_021_00508_5 crossref_primary_10_1038_s41598_022_19465_1 crossref_primary_10_31642_JoKMC_2018_100104 crossref_primary_10_1080_21681163_2022_2162439 crossref_primary_10_1109_ACCESS_2025_3541750 crossref_primary_10_3390_computers10020024 crossref_primary_10_1111_exsy_13520 crossref_primary_10_1111_exsy_13002 crossref_primary_10_32604_iasc_2023_028903 crossref_primary_10_3390_a17020078 crossref_primary_10_3390_app122312080 crossref_primary_10_1109_ACCESS_2021_3094334 crossref_primary_10_1080_03091902_2022_2080885 crossref_primary_10_1016_j_knosys_2022_109709 crossref_primary_10_1109_ACCESS_2023_3286661 crossref_primary_10_1051_itmconf_20214003007 |
| Cites_doi | 10.3233/JIFS-191461 10.1109/ACCESS.2017.2778268 10.1161/CIR.0b013e31824f2173 10.1111/j.0006-341X.2000.00909.x 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0925-2312(03)00373-4 10.1109/TPAMI.2005.159 10.1016/j.eswa.2016.10.020 10.1016/j.eswa.2008.09.013 10.1016/0004-3702(89)90046-5 10.3923/jai.2012.47.55 10.1109/TCYB.2016.2591068 10.1016/j.eswa.2011.01.120 10.1038/nrcardio.2010.165 10.1109/MIS.2017.38 10.1109/ACCESS.2019.2945527 10.1007/s10115-007-0114-2 10.1016/j.ins.2010.05.037 10.4236/jilsa.2013.53019 10.1109/I2CT45611.2019.9033683 10.1145/1961189.1961199 10.1109/ACCESS.2019.2906350 10.1161/CIR.0b013e31820a55f5 10.1017/CBO9780511801389 10.1007/978-3-319-19425-7_13 10.1016/j.jbi.2018.07.014 10.1007/s10115-017-1059-8 10.3390/s20092649 10.1098/rsif.2010.0456 10.1016/0002-9149(89)90524-9 10.1155/2017/8272091 10.5815/ijisa.2015.12.08 10.1515/9783110621105-004 10.1016/j.ins.2014.05.042 10.1109/ICCCT.2010.5640377 10.1109/ICCWAMTIP47768.2019.9067519 10.1109/AICCSA.2008.4493524 10.1016/j.eswa.2007.06.004 10.1155/2018/3860146 10.1109/ACCESS.2019.2923707 10.1016/j.neuroimage.2005.06.070 10.1023/A:1007465528199 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3001149 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 107582 |
| ExternalDocumentID | oai_doaj_org_article_870982e820d34d1695ebfb669c225776 10.1109/access.2020.3001149 10_1109_ACCESS_2020_3001149 9112202 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National High Technology Research and Development Program of China grantid: 2007AA01Z423 – fundername: National Natural Science Foundation of China grantid: 61370073 funderid: 10.13039/501100001809 – fundername: Project of Science and Technology Department of Sichuan Province |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-c9758cc2e254f0be9eb0b8f2b19eeda58acd085146ffe4c9f3f605093bb05d993 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:27 EDT 2025 Tue Aug 19 22:32:01 EDT 2025 Mon Jun 30 06:31:29 EDT 2025 Wed Oct 01 03:37:14 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Wed Aug 27 02:38:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c9758cc2e254f0be9eb0b8f2b19eeda58acd085146ffe4c9f3f605093bb05d993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0582-9761 0000-0001-7402-6498 0000-0002-7774-5604 0000-0001-5009-3290 0000-0003-2192-1450 0000-0002-4145-7176 |
| OpenAccessLink | https://doaj.org/article/870982e820d34d1695ebfb669c225776 |
| PQID | 2454442028 |
| PQPubID | 4845423 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2020_3001149 ieee_primary_9112202 proquest_journals_2454442028 crossref_citationtrail_10_1109_ACCESS_2020_3001149 doaj_primary_oai_doaj_org_article_870982e820d34d1695ebfb669c225776 crossref_primary_10_1109_ACCESS_2020_3001149 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 nazir (ref10) 2018; 15 ref11 fleuret (ref37) 2004; 5 ref54 ref17 ref19 ref18 jabbar (ref24) 2013; 13 ref51 ref46 ref45 ref48 raschka (ref16) 2018 ref47 ref42 ref41 haq (ref52) 2018 ref44 ref43 durairaj (ref2) 2016; 9 al-shayea (ref5) 2011; 8 ref49 ref8 ref7 ref4 ref3 ul haq (ref50) 2020; 39 ref35 ref34 ref36 ref31 ref30 ref32 ref1 ref39 ref38 silva (ref33) 2015; 13 ref23 ref26 vapnik (ref40) 2013 ref25 ref20 ref22 lopez-sendon (ref6) 2011; 33 ref21 ref28 ref27 ref29 ansarullah (ref9) 2019; 7 |
| References_xml | – ident: ref29 doi: 10.3233/JIFS-191461 – ident: ref38 doi: 10.1109/ACCESS.2017.2778268 – ident: ref3 doi: 10.1161/CIR.0b013e31824f2173 – ident: ref39 doi: 10.1111/j.0006-341X.2000.00909.x – ident: ref35 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref42 doi: 10.1016/S0925-2312(03)00373-4 – ident: ref32 doi: 10.1109/TPAMI.2005.159 – ident: ref20 doi: 10.1016/j.eswa.2016.10.020 – ident: ref19 doi: 10.1016/j.eswa.2008.09.013 – volume: 39 start-page: 1 year: 2020 ident: ref50 article-title: Recognition of the Parkinson's disease using a hybrid feature selection approach publication-title: J Intell Fuzzy Syst – ident: ref12 doi: 10.1016/0004-3702(89)90046-5 – ident: ref21 doi: 10.3923/jai.2012.47.55 – ident: ref15 doi: 10.1109/TCYB.2016.2591068 – ident: ref45 doi: 10.1016/j.eswa.2011.01.120 – volume: 13 start-page: 1 year: 2015 ident: ref33 publication-title: Feature Selection – ident: ref1 doi: 10.1038/nrcardio.2010.165 – year: 2013 ident: ref40 publication-title: The Nature of Statistical Learning Theory – ident: ref14 doi: 10.1109/MIS.2017.38 – ident: ref28 doi: 10.1109/ACCESS.2019.2945527 – ident: ref41 doi: 10.1007/s10115-007-0114-2 – ident: ref34 doi: 10.1016/j.ins.2010.05.037 – ident: ref4 doi: 10.4236/jilsa.2013.53019 – ident: ref26 doi: 10.1109/I2CT45611.2019.9033683 – ident: ref44 doi: 10.1145/1961189.1961199 – ident: ref53 doi: 10.1109/ACCESS.2019.2906350 – ident: ref7 doi: 10.1161/CIR.0b013e31820a55f5 – ident: ref43 doi: 10.1017/CBO9780511801389 – ident: ref36 doi: 10.1007/978-3-319-19425-7_13 – volume: 33 start-page: 363 year: 2011 ident: ref6 article-title: The heart failure epidemic publication-title: Medicographia – ident: ref31 doi: 10.1016/j.jbi.2018.07.014 – volume: 9 start-page: 255 year: 2016 ident: ref2 article-title: A comparison of the perceptive approaches for preprocessing the data set for predicting fertility success rate publication-title: J Control Theory Applied – ident: ref13 doi: 10.1007/s10115-017-1059-8 – ident: ref51 doi: 10.3390/s20092649 – ident: ref8 doi: 10.1098/rsif.2010.0456 – ident: ref11 doi: 10.1016/0002-9149(89)90524-9 – volume: 7 start-page: 1009 year: 2019 ident: ref9 article-title: A systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning method publication-title: Int J Recent Technol Eng – year: 2018 ident: ref16 article-title: Model evaluation, model selection, and algorithm selection in machine learning publication-title: arXiv 1811 12808 – ident: ref25 doi: 10.1155/2017/8272091 – ident: ref18 doi: 10.5815/ijisa.2015.12.08 – volume: 15 start-page: 224 year: 2018 ident: ref10 article-title: Fuzzy logic based decision support system for component security evaluation publication-title: Int Arab J Inf Technol – ident: ref48 doi: 10.1515/9783110621105-004 – volume: 13 start-page: 4 year: 2013 ident: ref24 article-title: Classification of heart disease using artificial neural network and feature subset selection publication-title: Glob J Comput Sci Technol Neural Artif Intell – ident: ref30 doi: 10.1016/j.ins.2014.05.042 – ident: ref22 doi: 10.1109/ICCCT.2010.5640377 – volume: 8 start-page: 150 year: 2011 ident: ref5 article-title: Artificial neural networks in medical diagnosis publication-title: Int J Comput Sci Issues – ident: ref49 doi: 10.1109/ICCWAMTIP47768.2019.9067519 – ident: ref17 doi: 10.1109/AICCSA.2008.4493524 – ident: ref23 doi: 10.1016/j.eswa.2007.06.004 – ident: ref54 doi: 10.1155/2018/3860146 – ident: ref27 doi: 10.1109/ACCESS.2019.2923707 – ident: ref46 doi: 10.1016/j.neuroimage.2005.06.070 – start-page: 101 year: 2018 ident: ref52 article-title: Comparative analysis of the classification performance of machine learning classifiers and deep neural network classifier for prediction of parkinson disease publication-title: Proc 15th Int Comput Conf Wavelet Act Media Technol Inf Process (ICCWAMTIP) – ident: ref47 doi: 10.1023/A:1007465528199 – volume: 5 start-page: 1531 year: 2004 ident: ref37 article-title: Fast binary feature selection with conditional mutual information publication-title: J Mach Learn Res |
| SSID | ssj0000816957 |
| Score | 2.644936 |
| Snippet | Heart disease is one of the complex diseases and globally many people suffered from this disease. On time and efficient identification of heart disease plays a... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107562 |
| SubjectTerms | Algorithms Artificial neural networks Cardiology Cardiovascular disease Classification Classifiers Decision trees Diagnosis disease diagnosis Diseases Feature extraction Feature selection features selection Health care Heart Heart disease classification Heart diseases Identification methods intelligent system Machine learning Machine learning algorithms medical data analytics Prediction algorithms Redundancy Support vector machines |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXiiHUmgRgYJ84NhsE8fxxseytFohLScqtScrdsYIsUormlVVfj3jx4ZuQai3PMaJrZmxZ8bjbwA-OFNaWzQu7xSqXHQlqRTd5xzJdq6kcDE3Z_FFzs_F54v6YguOxrMwiBiSz3DiL8NefndlVz5UdkyKyblHjnwybWQ8qzXGU3wBCVVPE7BQWajjk9mMxkAuICfPNBwaVRuLT8DoT0VVNuzLp6v-ur27bZfLe0vN2XNYrDsZM0x-TFaDmdhfD_AbHzuKPdhNNic7iULyArawfwnP7iER7sPlnCR-YJ_idg2Lx3ddiuexRSgzzUJ6AVuE9EtkCZn1Gwt1Nf8Qf-_ZaT4f08oO4Pzs9OtsnqeqC7kVRTPkVpELYS1Hch1dYVChKUzjuCkVradt3bS283aakM6hsMpVTnoQmcqYou7I3HkF2_1Vj6-BKWc6rE0thbLCcY9FV1UlNSc7s7JYZsDX7NA2QZL7yhhLHVyTQunIQ-15qBMPMzgaG11HRI7_k3_0fB5JPZx2eEA80Uk7NU1aquFI1lBXkbySIKFxRkplabqbTmUG-56P40cSCzM4XEuNTqp_o7mohRD0tskgHyXpr662oR7mRlff_Psvb2HHU8W4zyFsDz9X-I4socG8DyrwG-eWAzk priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9oA48CqIlIJ84Eh2E8fxxsftttUKaSsOrNSerNgZo4pVuoKsePz6jh1v6IKEBLc8xpGjmbG_scffALx1Jrc2q1zaKFSpaHJyKbpPORJ2LqRwfW7O8kIuVuL9ZXkZF9zCWRhEDMlnOPaXYS__GtffpxPJPXmamlRK0IhKsTy5KafQfbxp3H04kCVh8REcrC4-zK58RblcqrQIe5OvIrHmpA41CCko5BSrhmOkam86Cqz9sczKHuJ8sG039Y9v9Xp9Z_I5fwx61-0-5-TzeNuZsf35G6Pj___XE3gUcSmb9Yb0FO5h-wwe3mErPISrBXlFx077LR3WH_F1cc2PLUMpahZSENgypGgii-ytn1iovflL-LplZ-liSD17Dqvzs4_zRRorM6RWZFWXWkVhhrUcKbx0mUGFJjOV4yZXNOfWZVXbxmM5IZ1DYZUrnPREM4UxWdkQJHoBo_amxZfAlDMNlqaUQlnhuOerK4qcmhMWLSzmCfCdgrSNtOW-esZah_AlU3o2n5Otaq9VHbWawLuh0aZn7fi7-InX_CDqKbfDA9KSjh6saWBTFUdCTE1BNi1VicYZKZWlIXE6lQkces0OH4lqTOB4Z0c6Dg9fNRelEILeVgmkg2390dXeXve6evSP8scw6r5s8TUhp868ie5xC__AEXU priority: 102 providerName: Unpaywall |
| Title | Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare |
| URI | https://ieeexplore.ieee.org/document/9112202 https://www.proquest.com/docview/2454442028 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09112202.pdf https://doaj.org/article/870982e820d34d1695ebfb669c225776 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYQHIAD4inKY8qBIxVtmnbNcQzQhLSJA5PgFDVpgpCmMsEQ4t_jPFY2IcGFY1sndW0nsVPnM8CZkalSSWnimmseszrFIYXXMdXoO2cFMz43ZzgqBmN2-5A_LJT6sjlhHh7YC-4C7YmXVONCVWfYVcFzLY0sCq7QErtdB7adlHwhmHJzcGkpuwFmKE34Ra_fxy_CgJBinOqOkPKlpcgh9ocSK0ve5vp7M60-P6rJZGHhudmGreAxkp7ndAdWdLMLmws4gnvwOEB7nZEr_7OF-MO3JuzGkaErEk1ccgAZuuRJTQKu6hNxVTG_iZ8bch0P2qSwfRjfXN_3B3GomRArlpSzWHEMAJSiGgM_k0jNtUxkaahMOa6GVV5WqrZeFiuM0Uxxk5nCQsBkUiZ5jc7KAaw2L40-BMKNrHUu84JxxQy1SHJZlmJz9BIzpdMI6Fx8QgVAcVvXYiJcYJFw4WUurMxFkHkE522jqcfT-J380uqlJbVg2O4GmogIJiL-MpEI9qxW205wfqf4kghO5loWYeC-Ccpyxhg-LSOIW83_YLVy1SyXWD36D1aPYcP26fd4TmB19vquT9HrmcmOM_COO6DYgbXx6K73-AXkO_tY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA48CqIQAEfODbbxHGy8bEsrQI0PbVSOVmxM0aIVVrRrCr49YwfG7qAELc87MTWzNgz45lvAN5YnRuT1TbtJcpU9DmJFN2nHEl3LiphQ2xOe1o15-LDRXmxBftTLgwi-uAznLlLf5bfX5qVc5UdkGBy7pAj75RCiDJka00eFVdCQpbzCC2UZ_LgcLGgWZARyMk29WmjcmP78Sj9sazKhoa5sxquuu833XJ5a7M5fgDtepghxuTrbDXqmfnxG4Lj_87jIdyPWic7DGzyCLZweAz3bmER7sKnhnh-ZO_CgQ0LCbw2evRY6wtNMx9gwFofgIksYrN-Zr6y5q_GXwZ2lDZTYNkTOD8-Ols0aay7kBqR1WNqJBkRxnAk49FmGiXqTNeW61zSjtqVdWd6p6mJyloURtrCVg5GptA6K3tSeJ7C9nA54DNg0uoeS11WQhphuUOjK4qcupOmWRjME-BrcigTQcldbYyl8sZJJlWgoXI0VJGGCexPna4CJse_m791dJ6aOkBt_4BooqJ8Klq2ZM2R9KG-II4lRkJtdVVJQwvefF4lsOvoOH0kkjCBvTXXqCj814oLx570tk4gnTjpj6F2viLmxlCf__0vr2GnOWtP1Mn7048v4K7rEbxAe7A9flvhS9KLRv3Ki8NPmpwGhg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9oA48CqIlIJ84Eh2E8fxxsftttUKaSsOrNSerNgZo4pVuoKsePz6jh1v6IKEBLc8xpGjmbG_scffALx1Jrc2q1zaKFSpaHJyKbpPORJ2LqRwfW7O8kIuVuL9ZXkZF9zCWRhEDMlnOPaXYS__GtffpxPJPXmamlRK0IhKsTy5KafQfbxp3H04kCVh8REcrC4-zK58RblcqrQIe5OvIrHmpA41CCko5BSrhmOkam86Cqz9sczKHuJ8sG039Y9v9Xp9Z_I5fwx61-0-5-TzeNuZsf35G6Pj___XE3gUcSmb9Yb0FO5h-wwe3mErPISrBXlFx077LR3WH_F1cc2PLUMpahZSENgypGgii-ytn1iovflL-LplZ-liSD17Dqvzs4_zRRorM6RWZFWXWkVhhrUcKbx0mUGFJjOV4yZXNOfWZVXbxmM5IZ1DYZUrnPREM4UxWdkQJHoBo_amxZfAlDMNlqaUQlnhuOerK4qcmhMWLSzmCfCdgrSNtOW-esZah_AlU3o2n5Otaq9VHbWawLuh0aZn7fi7-InX_CDqKbfDA9KSjh6saWBTFUdCTE1BNi1VicYZKZWlIXE6lQkces0OH4lqTOB4Z0c6Dg9fNRelEILeVgmkg2390dXeXve6evSP8scw6r5s8TUhp868ie5xC__AEXU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+Disease+Identification+Method+Using+Machine+Learning+Classification+in+E-Healthcare&rft.jtitle=IEEE+access&rft.au=Li%2C+Jian+Ping&rft.au=Haq%2C+Amin+Ul&rft.au=Din%2C+Salah+Ud&rft.au=Khan%2C+Jalaluddin&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=107562&rft.epage=107582&rft_id=info:doi/10.1109%2FACCESS.2020.3001149&rft.externalDocID=9112202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |