A New Incipient Fault Diagnosis Method Combining Improved RLS and LMD Algorithm for Rolling Bearings With Strong Background Noise
Aiming at the difficulty of extracting information for incipient fault symptoms from rolling bearings with strong background noise, an improved incipient fault detection method based on modified recursive least squares (RLS) adaptive equalization, and a local mean decomposition (LMD) algorithm is pr...
Saved in:
| Published in | IEEE access Vol. 6; pp. 26001 - 26010 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2018.2829803 |
Cover
| Abstract | Aiming at the difficulty of extracting information for incipient fault symptoms from rolling bearings with strong background noise, an improved incipient fault detection method based on modified recursive least squares (RLS) adaptive equalization, and a local mean decomposition (LMD) algorithm is proposed. First, an efficient RLS de-noising model is established by introducing a momentum factor together with a forgotten factor to de-noise the incipient fault signal of the bearings. Then, the LMD algorithm is used to decompose the pre-processed signal to obtain an effective PF component, and complete the envelope demodulation to extract information from the incipient fault. Based on the above algorithm, an improved RLS and LMD identifying algorithm for incipient faults can thus be achieved. Finally, some actual fault signals of a large unit rolling bearing are used to simulate and verify the accuracy and efficiency of the proposed algorithm. The experimental comparison indicated that our algorithm can not only improve the de-noising effect, but also correctly extract the features of the incipient fault and identify them with good engineering operability and expansibility. |
|---|---|
| AbstractList | Aiming at the difficulty of extracting information for incipient fault symptoms from rolling bearings with strong background noise, an improved incipient fault detection method based on modified recursive least squares (RLS) adaptive equalization, and a local mean decomposition (LMD) algorithm is proposed. First, an efficient RLS de-noising model is established by introducing a momentum factor together with a forgotten factor to de-noise the incipient fault signal of the bearings. Then, the LMD algorithm is used to decompose the pre-processed signal to obtain an effective PF component, and complete the envelope demodulation to extract information from the incipient fault. Based on the above algorithm, an improved RLS and LMD identifying algorithm for incipient faults can thus be achieved. Finally, some actual fault signals of a large unit rolling bearing are used to simulate and verify the accuracy and efficiency of the proposed algorithm. The experimental comparison indicated that our algorithm can not only improve the de-noising effect, but also correctly extract the features of the incipient fault and identify them with good engineering operability and expansibility. |
| Author | Huang Darong Mi Bo Zhao Ling Ke Lanyan Sun Guoxi |
| Author_xml | – sequence: 1 givenname: Huang orcidid: 0000-0002-5068-5162 surname: Darong fullname: Darong, Huang – sequence: 2 givenname: Ke surname: Lanyan fullname: Lanyan, Ke – sequence: 3 givenname: Mi surname: Bo fullname: Bo, Mi – sequence: 4 givenname: Zhao surname: Ling fullname: Ling, Zhao – sequence: 5 givenname: Sun surname: Guoxi fullname: Guoxi, Sun |
| BookMark | eNptkU1vEzEQhleoSJTSX9CLJc4J_ljvro9h20KktEgNiKM18dpbh40dbC9Vj_xzHLaKUIQvY83M844979vizHmni-KK4DkhWHxYtO3Nej2nmDRz2lDRYPaqOKekEjPGWXX2z_1NcRnjFufT5BSvz4vfC3Svn9DSKbu32iV0C-OQ0LWF3vloI7rT6dF3qPW7jXXW9Wi52wf_S3foYbVG4Dq0urtGi6H3wabHHTI-oAc_DIfWjxpCjhF9zyW0TsEfkqB-9MGPmbz3Nup3xWsDQ9SXL_Gi-HZ787X9PFt9-bRsF6uZKnGTZqpudAm6ZowbwykuaQWCbkxNCScEMDUNK5Wpuo2ihnGhBDG1gAp41-Gm7thFsZx0Ow9buQ92B-FZerDyb8KHXkJIVg1a8toYXW4UF0yVIAjUHaaaGqMEcNCQtcpJa3R7eH6CYTgKEiwPrkhQSscoD67IF1cy9n7C8gZ_jjomufVjcPnXkpY8T8MVqXKXmLpU8DEGbaSyCZL1LgWww3HC5PvpBHbCnr7r_9TVRFmt9ZHI--RVrv4BDge6Vg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3060863 crossref_primary_10_1109_JSEN_2023_3251654 crossref_primary_10_1088_1361_6501_ac73da crossref_primary_10_1109_ACCESS_2019_2893922 crossref_primary_10_1109_TIM_2019_2919375 crossref_primary_10_1080_21642583_2018_1543620 crossref_primary_10_1109_ACCESS_2019_2915366 crossref_primary_10_1007_s40430_020_02671_1 crossref_primary_10_1155_2018_1938490 crossref_primary_10_1016_j_ijepes_2021_107309 crossref_primary_10_1155_2021_9589412 crossref_primary_10_1109_ACCESS_2021_3058907 crossref_primary_10_3390_e21050476 crossref_primary_10_1002_cjce_24401 crossref_primary_10_1007_s00202_021_01232_6 crossref_primary_10_1109_ACCESS_2019_2903355 crossref_primary_10_1007_s11431_022_2109_4 crossref_primary_10_1016_j_measurement_2024_114191 crossref_primary_10_1109_ACCESS_2019_2903572 crossref_primary_10_3390_s22134705 crossref_primary_10_1016_j_est_2019_100946 crossref_primary_10_1109_ACCESS_2018_2890566 crossref_primary_10_1109_ACCESS_2019_2918343 crossref_primary_10_1109_TIM_2019_2903699 crossref_primary_10_1109_JSEN_2021_3050718 crossref_primary_10_3390_s19235064 crossref_primary_10_1016_j_measurement_2022_112016 crossref_primary_10_3390_s22155681 crossref_primary_10_3390_s24144638 crossref_primary_10_1016_j_compag_2021_106195 crossref_primary_10_1109_ACCESS_2021_3063322 crossref_primary_10_1016_j_renene_2022_07_152 crossref_primary_10_1109_ACCESS_2019_2939546 crossref_primary_10_1109_ACCESS_2019_2937225 crossref_primary_10_1109_TAI_2022_3177387 crossref_primary_10_3390_s24030940 crossref_primary_10_1007_s42417_024_01555_1 crossref_primary_10_1109_ACCESS_2024_3496921 crossref_primary_10_3390_s20071946 crossref_primary_10_1088_1361_6501_ac27ea crossref_primary_10_1016_j_asej_2022_101945 crossref_primary_10_1016_j_measurement_2020_108500 crossref_primary_10_1109_ACCESS_2018_2886343 crossref_primary_10_1109_ACCESS_2019_2943960 crossref_primary_10_1016_j_est_2022_104424 |
| Cites_doi | 10.1016/j.eswa.2009.11.006 10.1109/TIE.2014.2345331 10.1115/1.4005006 10.1007/s11668-016-0080-7 10.1016/j.mechmachtheory.2015.03.014 10.12928/telkomnika.v14i3A.4400 10.1016/j.engappai.2013.11.013 10.1016/j.measurement.2017.05.029 10.1016/j.isatra.2015.12.009 10.3390/e19040176 10.1109/TAC.2015.2437526 10.1007/978-3-319-20469-7_26 10.1109/TIE.2015.2399396 10.1016/j.measurement.2015.06.005 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2018.2829803 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 26010 |
| ExternalDocumentID | oai_doaj_org_article_57ffe4bc593c4a91a7d02e2ffc9a5aea 10.1109/access.2018.2829803 10_1109_ACCESS_2018_2829803 8345603 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chongqing Municipal Education Commission grantid: KJ1600518; KJ1705139 funderid: 10.13039/501100007957 – fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars grantid: 2015-49 – fundername: Program for Excellent Talents of the Chongqing Higher School of China grantid: 2014-18 – fundername: National Natural Science Foundation of China grantid: 61703063; 61663008; 61573076; 61473094; 61304104; 61004118 funderid: 10.13039/501100001809 – fundername: Petrochemical Equipment Fault Diagnosis Key Laboratory, Guangdong Province Foundation, China grantid: GDUPKLAB201501 – fundername: Natural Science Foundation of Chongqing grantid: CSTC2015jcyjA0540; CSTC2017jcyjA1665 funderid: 10.13039/501100005230 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-c78e4ae7335ff520426a92bf721511a02f834cf6dbc2f359c91f79a6a5dd087d3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:13 EDT 2025 Sun Sep 07 11:11:45 EDT 2025 Sun Jun 29 15:36:31 EDT 2025 Wed Oct 01 02:57:46 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Wed Aug 27 02:49:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c78e4ae7335ff520426a92bf721511a02f834cf6dbc2f359c91f79a6a5dd087d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5068-5162 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8345603 |
| PQID | 2455930616 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_57ffe4bc593c4a91a7d02e2ffc9a5aea ieee_primary_8345603 unpaywall_primary_10_1109_access_2018_2829803 crossref_citationtrail_10_1109_ACCESS_2018_2829803 crossref_primary_10_1109_ACCESS_2018_2829803 proquest_journals_2455930616 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 huang (ref19) 2012; 33 ref14 zhongqiu (ref22) 2015; 2 ref11 ref2 ref17 ref16 chen (ref18) 2005; 31 guo (ref20) 2009; 26 gänsler (ref23) 2004; 3 lin (ref13) 2016; 35 stanciu (ref24) 2017 dong (ref1) 2013 zhihui (ref25) 2016; 10 ref26 ye (ref10) 2013; 39 ref8 chen (ref21) 2017; 34 ref7 ref9 ref3 ref6 ref5 zhou (ref4) 2010; 38 |
| References_xml | – volume: 26 start-page: 345 year: 2009 ident: ref20 article-title: An improved RLS algorithm with fast tracking ability publication-title: Comput Simul – ident: ref6 doi: 10.1016/j.eswa.2009.11.006 – ident: ref2 doi: 10.1109/TIE.2014.2345331 – start-page: 1 year: 2017 ident: ref24 article-title: Improved regularization for a low-complexity RLS algorithm publication-title: Telecom Forum – volume: 2 start-page: 47 year: 2015 ident: ref22 article-title: RLS and LMS blind adaptive multi-user detection method and comparison in acoustic communication publication-title: Instrumentation – volume: 33 start-page: 7 year: 2012 ident: ref19 article-title: A combination algorithm based on RLS and LMS for predistortion system publication-title: Telemetry & Telecontrol – ident: ref5 doi: 10.1115/1.4005006 – ident: ref26 doi: 10.1007/s11668-016-0080-7 – volume: 35 start-page: 183 year: 2016 ident: ref13 article-title: The improved LMD method and its application in fault diagnosis of rolling bearing publication-title: Shock Vibration – volume: 39 start-page: 1703 year: 2013 ident: ref10 article-title: An improved SR-CDKF algorithm and its application in the early detection of incipient faults publication-title: J Autom – ident: ref15 doi: 10.1016/j.mechmachtheory.2015.03.014 – volume: 31 start-page: 42 year: 2005 ident: ref18 article-title: A performance research and application of the improved RLS algorithm publication-title: Radio Commun Technol – ident: ref17 doi: 10.12928/telkomnika.v14i3A.4400 – ident: ref7 doi: 10.1016/j.engappai.2013.11.013 – ident: ref16 doi: 10.1016/j.measurement.2017.05.029 – ident: ref9 doi: 10.1016/j.isatra.2015.12.009 – start-page: 1 year: 2013 ident: ref1 article-title: Finite-horizon estimation of randomly occurring faults for discrete time-varying systems publication-title: Proc IEEE Int Conf Autom Comput – volume: 3 start-page: 243857 year: 2004 ident: ref23 article-title: New insights into the RLS algorithm publication-title: EURASIP J Adv Signal Process – ident: ref12 doi: 10.3390/e19040176 – ident: ref3 doi: 10.1109/TAC.2015.2437526 – ident: ref8 doi: 10.1007/978-3-319-20469-7_26 – volume: 34 start-page: 42 year: 2017 ident: ref21 article-title: Boost converter on-line multi parameter identification based on variable forgetting factor RLS publication-title: Microelectron Comput – volume: 10 start-page: 3214 year: 2016 ident: ref25 article-title: Design of phase interruption control system for short circuit current based on improved RLS algorithm publication-title: High Voltage Eng – ident: ref14 doi: 10.1109/TIE.2015.2399396 – ident: ref11 doi: 10.1016/j.measurement.2015.06.005 – volume: 38 start-page: 1874 year: 2010 ident: ref4 article-title: DCA based multi-level small fault diagnosis method publication-title: ACTA Electron Sinica |
| SSID | ssj0000816957 |
| Score | 2.3732853 |
| Snippet | Aiming at the difficulty of extracting information for incipient fault symptoms from rolling bearings with strong background noise, an improved incipient fault... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26001 |
| SubjectTerms | Algorithms Background noise Bearing mechanical signal Bearing strength Bearings Convergence Decomposition Demodulation Equalization Fault detection Fault diagnosis Feature extraction Heuristic algorithms improved RLS incipient fault diagnosis local decomposition algorithm Noise noise elimination Noise measurement Noise reduction Roller bearings Signal processing Vibrations |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL4UDghbEQql84EggcezYPm63XRXU7YFS0Vs08QesGrJVN6uqR_45Y8e72goJLlwd23I8M_bM2H6PkHeGlb6QZZlpJvOMGwtZU8gq49yCU8qj1xweJ8_Oq9NL_vlKXG1RfYU7YQM88DBxGLB773hjhC4NB12AtDlzzHujQYCLrlGu9FYwFddgVVRayAQzVOT643gywT8Kd7nUh3B6qNY0WWkrioj9iWLlgbe5u-pu4P4O2nZr45k-I0-Tx0jHw0ifk0eu2yNPtnAE98mvMcXFin4KafPwvpFOYdX29Hi4Rjdf0lnkiaZo_E0khKBDLsFZ-uXsgkJn6dnsmI7b74vbef_jJ0VPlia4bnqEthDS6fQbfqIXIXWOhWCuw4MQbHm-mC_dC3I5Pfk6Oc0St0JmeK76zEjlODiUkvBesBBJgWaNl8EFKCBnXpXc-Mo2hvlSaKMLLzVUIKzNlbTlS7LTLTr3ilAjcgZY1wrc6krLUUKyhCaeOPrC2BFh62muTQIeD_wXbR0DkFzXg2zqIJs6yWZE3m8a3Qy4G3-vfhTkt6kaQLNjAapSnVSp_pcqjch-kP6mE5wB9Aex74O1NtTJwJc14xiKYbhVVCOSbTTkj6FCZL18MNTX_2Oob8jj0OeQCzogO_3tyr1F76hvDqMh_Abhvwrr priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdQdwAOfA1E2UA-cCQl8UccH7OOaqC1QoyKcYocf0C1kE5rKgQ3_nPeS7KqBWmCY5znyLGf7d979vs9Ql5axkOiOI80U3EkrDNRmag0EsIZn2UBUDMGJ09n6clcvDuX5z3PNsbCbJ_fJ7F-bdq0gXgFKxvhoV-GzJ57qQTgPSB789n7_DOmj0tSHfH2IPLghpo7e09L0d_nVNmBl7fX9aX58d1U1dZOM7nfhXCvWoJCvGByMVo35cj-_IO-8R9_4gG51yNOmncq8pDc8vUjcneLh3Cf_MopLHb0LbrdMT6STsy6auhxdw1vsaLTNs80hcWjbBNK0M4X4R39cHpGTe3o6fSY5tWX5dWi-fqNAhKmPd03PYK5hO54-gle0TN0vUOhsRcYUAI1Z8vFyj8m88mbj-OTqM_NEFkRZ01kVeaF8TDKMgTJ0BIzmpVBIYRITMxCxoUNqSstC1xqq5OgtEmNdC7OlONPyKBe1v4poVbGzICsk7BVcieMcoqbsj2xDIl1Q8KuR62wPXE55s-oitaAiXWRj8egrQX2b9H375C82lS67Hg7bhY_QnXYiCLpdlsAw1j0c7iQKgQvSis1t8LoBBoaM89CsNpI482Q7KMybT4CPQB4Er59eK1cRb9ArAomwJQDcy1JhyTaKNxfTe00Z6epz_5T_oDcwcfObXRIBs3V2j8HINWUL_oJ9BtjmxVW priority: 102 providerName: Unpaywall |
| Title | A New Incipient Fault Diagnosis Method Combining Improved RLS and LMD Algorithm for Rolling Bearings With Strong Background Noise |
| URI | https://ieeexplore.ieee.org/document/8345603 https://www.proquest.com/docview/2455930616 https://doi.org/10.1109/access.2018.2829803 https://doaj.org/article/57ffe4bc593c4a91a7d02e2ffc9a5aea |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgURKCsfODbbxLHj-JhuWRXUXSHKinKKJn7Aqku26iZCcOOfYzveqAWEuEWOnYw1Y894PPMNQq8kyUzKsywWhCcxlQriOuV5TKkCXRTGWs0uOXk2z08W9O05O99BB0MujNbaB5_psXv0d_lqLTvnKjssMqvuHbTnLV7kfa7W4E9xBSQE4wFYKE3EYTmZ2Dm46K1i7O4Li21hrKB8PEZ_KKpyw7680zWX8P0brFbXVM30AZptiewjTC7GXVuP5Y_f8Bv_dxYP0f1gc-KyF5JHaEc3j9G9a0iEe-hnie12h984x7vLkMRT6FYtPu4D8ZYbPPOVprHdPmpfUgL33git8PvTMwyNwqezY1yuPq-vlu2Xr9jawjgAfuMju5qcQx5_tK_wmXO-20aQFy6lxI6cr5cb_QQtpq8_TE7iUJ0hljQp2ljyQlPQls_MGEbcWQwEqQ13RkQKCTF2otLkqpbEZExIkRouIAemVFJwlT1Fu8260c8QliwhYPsqZpVlpihwxTOo_Z2lSaWKENmyrZIButxV0FhV_giTiKrndeV4XQVeR-hgGHTZI3f8u_uRk4ehq4Pd9g2Wd1VYxRXjxmhaSyYySUGkltCEaGKMFMBAQ4T2HL-HjwRWR2h_K11V2CI2FaH2MGcPbGkeoXiQuD9IBV838wapz__-lxforuvV-4f20W571emX1mJq65H3NIz8ghmh24v5u_LTL-FgFQM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoBQfODbbxLHj-LjdstrCZg-0Fb1Zjh9l1ZCtuokQ3Pjn2I43agtC3CLHTsaasT0znvkGgPcSZSalWRYzRJMYSyXiKqV5jLESuiiM1ZpdcnK5yGfn-OMFudgCB0MujNbaB5_pkXv0d_lqJTvnKjssMnvcO2jPBwRjTPpsrcGj4kpIMEIDtFCasMPxZGJn4eK3ipG7MSw2pbHC8eNR-kNZlTsa5k7XXIsf30Vd3zpspk9AuSGzjzG5GnVtNZI_7yE4_u88noLHQeuE415MnoEt3TwHj25hEe6CX2NoNzx44lzvLkcSTkVXt_C4D8VbrmHpa01Du4FUvqgE7P0RWsHP81MoGgXn5TEc15erm2X79Ru02jAMkN_wyK4n55KHX-wreOrc77ZRyCuXVGJHLlbLtX4BzqcfziazONRniCVOijaWtNBYaMtpYgxBzhoTDFWGOjUiFQkydqLS5KqSyGSESZYaykQuiFJJQVX2Emw3q0a_AlCSBAnbVxF7XGYKC6poJip_a2lSqSKANmzjMoCXuxoaNfdGTMJ4z2vueM0DryNwMAy67rE7_t39yMnD0NUBb_sGyzse1jEn1BiNK0lYJrFgqSU0QRoZI5kgQosI7Dp-Dx8JrI7A3ka6eNgk1hxha85Zky3NIxAPEvcHqcJXzrxD6uu__-Ud2JmdlXM-P1l8egMeuhG9t2gPbLc3nX5r9ae22vfL5jdILRWr |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdQdwAOfA1E2UA-cCQl8UccH7OOaqC1QoyKcYocf0C1kE5rKgQ3_nPeS7KqBWmCY5znyLGf7d979vs9Ql5axkOiOI80U3EkrDNRmag0EsIZn2UBUDMGJ09n6clcvDuX5z3PNsbCbJ_fJ7F-bdq0gXgFKxvhoV-GzJ57qQTgPSB789n7_DOmj0tSHfH2IPLghpo7e09L0d_nVNmBl7fX9aX58d1U1dZOM7nfhXCvWoJCvGByMVo35cj-_IO-8R9_4gG51yNOmncq8pDc8vUjcneLh3Cf_MopLHb0LbrdMT6STsy6auhxdw1vsaLTNs80hcWjbBNK0M4X4R39cHpGTe3o6fSY5tWX5dWi-fqNAhKmPd03PYK5hO54-gle0TN0vUOhsRcYUAI1Z8vFyj8m88mbj-OTqM_NEFkRZ01kVeaF8TDKMgTJ0BIzmpVBIYRITMxCxoUNqSstC1xqq5OgtEmNdC7OlONPyKBe1v4poVbGzICsk7BVcieMcoqbsj2xDIl1Q8KuR62wPXE55s-oitaAiXWRj8egrQX2b9H375C82lS67Hg7bhY_QnXYiCLpdlsAw1j0c7iQKgQvSis1t8LoBBoaM89CsNpI482Q7KMybT4CPQB4Er59eK1cRb9ArAomwJQDcy1JhyTaKNxfTe00Z6epz_5T_oDcwcfObXRIBs3V2j8HINWUL_oJ9BtjmxVW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Incipient+Fault+Diagnosis+Method+Combining+Improved+RLS+and+LMD+Algorithm+for+Rolling+Bearings+With+Strong+Background+Noise&rft.jtitle=IEEE+access&rft.au=Darong%2C+Huang&rft.au=Lanyan%2C+Ke&rft.au=Bo%2C+Mi&rft.au=Ling%2C+Zhao&rft.date=2018-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=26001&rft.epage=26010&rft_id=info:doi/10.1109%2FACCESS.2018.2829803&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2829803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |