A Novel Fault Diagnostic Approach for DC-DC Converters Based on CSA-DBN
Effective fault diagnosis for mission-critical and safety-critical systems has been an essential and mandatory technique to reduce failure rate and prevent unscheduled shutdown. In this paper, to realize fault diagnosis for a closed-loop single-ended primary inductance converter, a novel optimizatio...
Saved in:
| Published in | IEEE access Vol. 6; pp. 6273 - 6285 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2017.2786458 |
Cover
| Abstract | Effective fault diagnosis for mission-critical and safety-critical systems has been an essential and mandatory technique to reduce failure rate and prevent unscheduled shutdown. In this paper, to realize fault diagnosis for a closed-loop single-ended primary inductance converter, a novel optimization deep belief network (DBN) is presented. First, wavelet packet decomposition is adopted to extract the energy values from the voltage signals of four circuit nodes, as the fault feature vectors. Then, a four-layer DBN architecture including input and output layers is developed. Meanwhile, the number of neurons in the two hidden layers is selected by the crow search algorithm (CSA) with training samples. Not only the hard faults such as open-circuit faults and short-circuit faults but also the soft faults such as the component degradation of power MOSFET, inductor, diode, and capacitor are considered in this study. Finally, these fault modes are isolated by CSA-DBN. Compared with the back-propagation neural network and support vector machine fault diagnosis methods, both simulation and experimental results show that the proposed method has a higher classification accuracy that proves its effectiveness and superiority to the other methods. |
|---|---|
| AbstractList | Effective fault diagnosis for mission-critical and safety-critical systems has been an essential and mandatory technique to reduce failure rate and prevent unscheduled shutdown. In this paper, to realize fault diagnosis for a closed-loop single-ended primary inductance converter, a novel optimization deep belief network (DBN) is presented. First, wavelet packet decomposition is adopted to extract the energy values from the voltage signals of four circuit nodes, as the fault feature vectors. Then, a four-layer DBN architecture including input and output layers is developed. Meanwhile, the number of neurons in the two hidden layers is selected by the crow search algorithm (CSA) with training samples. Not only the hard faults such as open-circuit faults and short-circuit faults but also the soft faults such as the component degradation of power MOSFET, inductor, diode, and capacitor are considered in this study. Finally, these fault modes are isolated by CSA-DBN. Compared with the back-propagation neural network and support vector machine fault diagnosis methods, both simulation and experimental results show that the proposed method has a higher classification accuracy that proves its effectiveness and superiority to the other methods. |
| Author | Sun, Quan Wang, Youren Jiang, Yuanyuan |
| Author_xml | – sequence: 1 givenname: Quan orcidid: 0000-0001-8384-8047 surname: Sun fullname: Sun, Quan organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Youren surname: Wang fullname: Wang, Youren email: wangyrac@nuaa.edu.cn organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Yuanyuan surname: Jiang fullname: Jiang, Yuanyuan organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
| BookMark | eNptkU1v2zAMhoWhA9Z1_QW9CNjZmT4sWTq6TtsVKLpDtrNAy1TnwLMyyWnRfz9nLoIhmC4UCD4vyZcfydkYRyTkirMV58x-qZvmZrNZCcarlaiMLpV5R84F17aQSuqzf_4fyGXOWzY_M6dUdU7uavoYn3Ggt7AfJrru4WmMeeo9rXe7FMH_pCEmum6KdUObOD5jmjBleg0ZOxpH2mzqYn39-Im8DzBkvHyLF-TH7c335mvx8O3uvqkfCl8yMxVedkFUrUUMgkPnteVMh7JlrRKsrZSUQkIbrIFWGu4rITVTjHuOVdAzJS_I_aLbRdi6Xep_QXp1EXr3NxHTk4M0jz-gQ2uM1gE9D20JsgME5JVl3qpW8PagVS5a-3EHry8wDEdBztzBWwfeY87u4K1783bGPi_Y7M_vPebJbeM-jfPWTpRKGVOWRs5VdqnyKeacMDjfTzD1cZwS9MOxw3K90w7yhD2d6__U1UL1iHgkjCiZZUr-AfhLo_U |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s10462_020_09911_9 crossref_primary_10_1109_TIM_2024_3481562 crossref_primary_10_1016_j_ssci_2019_09_015 crossref_primary_10_1002_qre_3232 crossref_primary_10_1007_s40815_020_00908_8 crossref_primary_10_3390_signals3020020 crossref_primary_10_1049_pel2_12094 crossref_primary_10_1109_ACCESS_2020_2988323 crossref_primary_10_1049_iet_pel_2020_0857 crossref_primary_10_1007_s00521_018_3663_2 crossref_primary_10_1109_ACCESS_2023_3262986 crossref_primary_10_1109_TPEL_2021_3131293 crossref_primary_10_1109_TPEL_2024_3362365 crossref_primary_10_1109_ACCESS_2019_2901390 crossref_primary_10_1016_j_isatra_2020_06_009 crossref_primary_10_1109_ACCESS_2023_3284692 crossref_primary_10_1109_TIE_2018_2884195 crossref_primary_10_1109_JESTPE_2019_2930306 crossref_primary_10_1109_JSEN_2019_2927268 crossref_primary_10_1007_s11227_022_04623_z crossref_primary_10_1016_j_microrel_2023_114958 crossref_primary_10_1002_2050_7038_12323 crossref_primary_10_1016_j_measurement_2024_116213 crossref_primary_10_1109_TPEL_2024_3432163 crossref_primary_10_1109_TPEL_2024_3427134 crossref_primary_10_1109_ACCESS_2022_3193784 crossref_primary_10_1109_ACCESS_2019_2917311 crossref_primary_10_3390_sym14091886 crossref_primary_10_1109_TEC_2022_3152181 crossref_primary_10_1049_iet_pel_2018_6287 crossref_primary_10_1109_TIM_2021_3129198 crossref_primary_10_1002_ente_202201033 crossref_primary_10_1007_s43236_020_00057_z crossref_primary_10_1007_s13369_023_08557_3 crossref_primary_10_1109_JESTPE_2021_3131706 crossref_primary_10_1515_phys_2022_0254 crossref_primary_10_1080_00207217_2019_1625973 crossref_primary_10_3390_electronics9101570 crossref_primary_10_1049_pel2_12529 crossref_primary_10_1002_tee_23452 |
| Cites_doi | 10.1016/j.microrel.2013.07.126 10.1016/j.microrel.2010.08.006 10.1162/neco.2006.18.7.1527 10.1016/j.measurement.2016.04.051 10.1049/iet-pel.2011.0163 10.1109/TPEL.2014.2383436 10.1016/j.patcog.2010.12.012 10.1109/63.261004 10.1016/j.compstruc.2016.03.001 10.1109/TIE.2012.2224078 10.1109/TASL.2011.2109382 10.1109/TIA.2011.2124436 10.1016/j.ymssp.2015.11.014 10.1109/TPEL.2013.2273556 10.1016/j.rser.2010.12.005 10.1109/RAMS.2012.6175487 10.1109/TCSI.2012.2221222 10.1109/TASLP.2014.2303296 10.1109/IEMDC.2015.7409238 10.1109/PHM.2016.7819885 10.1016/j.measurement.2016.06.018 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2017.2786458 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 6285 |
| ExternalDocumentID | oai_doaj_org_article_e98866fec1fb4a3daeae1790c95b21be 10.1109/access.2017.2786458 10_1109_ACCESS_2017_2786458 8240905 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities and Funding of Jiangsu Innovation Program for Graduate Education grantid: KYLX_0250 – fundername: National Natural Science Foundation of China grantid: 61371041 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-c3df27b9eef21adc69106f4b0b520b753323abf98ab381c72360501c1e7f69ee3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:24:52 EDT 2025 Sun Sep 07 10:53:20 EDT 2025 Sun Jun 29 16:01:00 EDT 2025 Wed Oct 01 02:57:38 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 27 02:52:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c3df27b9eef21adc69106f4b0b520b753323abf98ab381c72360501c1e7f69ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8384-8047 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8240905 |
| PQID | 2455884483 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2017_2786458 unpaywall_primary_10_1109_access_2017_2786458 doaj_primary_oai_doaj_org_article_e98866fec1fb4a3daeae1790c95b21be proquest_journals_2455884483 crossref_citationtrail_10_1109_ACCESS_2017_2786458 ieee_primary_8240905 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref22 ref10 ref2 ref1 ref17 ref16 wang (ref11) 2013; 33 ref19 ref18 ref8 ref7 ref9 ref4 yang (ref5) 2011; 22 ref3 ref6 coates (ref21) 2011; 15 |
| References_xml | – ident: ref23 doi: 10.1016/j.microrel.2013.07.126 – volume: 33 start-page: 114 year: 2013 ident: ref11 article-title: A diagnosis method for inverter open-circuit faults of brushless DC motor driver systems publication-title: J Chinese Soc Elect Eng – ident: ref15 doi: 10.1016/j.microrel.2010.08.006 – ident: ref17 doi: 10.1162/neco.2006.18.7.1527 – ident: ref16 doi: 10.1016/j.measurement.2016.04.051 – ident: ref8 doi: 10.1049/iet-pel.2011.0163 – ident: ref9 doi: 10.1109/TPEL.2014.2383436 – ident: ref20 doi: 10.1016/j.patcog.2010.12.012 – ident: ref7 doi: 10.1109/63.261004 – ident: ref22 doi: 10.1016/j.compstruc.2016.03.001 – ident: ref14 doi: 10.1109/TIE.2012.2224078 – ident: ref18 doi: 10.1109/TASL.2011.2109382 – ident: ref6 doi: 10.1109/TIA.2011.2124436 – ident: ref24 doi: 10.1016/j.ymssp.2015.11.014 – ident: ref3 doi: 10.1109/TPEL.2013.2273556 – ident: ref2 doi: 10.1016/j.rser.2010.12.005 – ident: ref13 doi: 10.1109/RAMS.2012.6175487 – ident: ref1 doi: 10.1109/TCSI.2012.2221222 – ident: ref19 doi: 10.1109/TASLP.2014.2303296 – volume: 15 start-page: 215 year: 2011 ident: ref21 article-title: An analysis of single-layer networks in unsupervised feature learning publication-title: J Mach Learn Res – ident: ref12 doi: 10.1109/IEMDC.2015.7409238 – ident: ref10 doi: 10.1109/PHM.2016.7819885 – ident: ref4 doi: 10.1016/j.measurement.2016.06.018 – volume: 22 start-page: 2734 year: 2011 ident: ref5 article-title: Condition monitoring for device reliability in power electronic converters: A review publication-title: IEEE Trans Power Electron |
| SSID | ssj0000816957 |
| Score | 2.3962808 |
| Snippet | Effective fault diagnosis for mission-critical and safety-critical systems has been an essential and mandatory technique to reduce failure rate and prevent... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6273 |
| SubjectTerms | Back propagation networks Belief networks Capacitors Circuit faults Converters Crow search algorithm dc-dc power converter DC-DC power converters deep belief network Diagnostic systems Energy value Failure rates Fault diagnosis Faults feature extraction Inductance MOSFETs Neural networks Neurons Optimization Safety critical Search algorithms Short circuits Shutdowns Support vector machines System effectiveness Voltage converters (DC to DC) wavelet packets |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABAQURKMgHjpgm_op9zGZZKiT2ApV6s2zHOUXZiu4W8e-ZSdxVKiS4cI1sZ_Jm7JmxJm8IeS8SksiEjiVtFZOQYjBfw75SEDvrPshgIt53fN3qi0v55UpdLVp9YU3YTA88A3eerDFa9ylWMNOLziefkFUqWhV4FRKevqWxi2RqOoNNBe-uM81QVdrzpm3hi7CWq_7Ia6MlNnlfuKKJsT-3WLkXbT48jNf-108_DAvHs3lKnuSIkTazpM_IgzQ-J48XPIKn5HNDt7vbNNCNPwx7up7L52A8bTJlOIXYlK5btm5pi3XmWMh5Q1fgwjq6G2n7rWHr1fYFudx8-t5esNwhgUVZmj2Lout5HWxKPa98FzU4f93LUAbFywCZiODCh94aH8Azx5oLyF7KKlap7jXMEi_Jybgb0ytCQ5SVSRqA6QJylmETYqU6XKgTAGZB-B1YLmb6cOxiMbgpjSitmxF2iLDLCBfkw3HS9cye8ffhK9TCcShSX08PwCBcNgj3L4MoyCnq8LiIgZjFlqogZ3c6dXmb3jguFf6oK40oCDvq-Q9R_dS78p6or_-HqG_II1jTzDc6Z-Rk_-OQ3kKMsw_vJnP-DQme8tE priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOwAHBgxE2EA-cMQliX_EPqYpZUKiQoJK42TZjnMhSieagthfv-fEq9ohTXBMZFu233t637Ofv4fQW-oDiYytiReKEwYhBjEF2BUH7Cway6x04bzj81Kcr9inC34RebbDW5j9-_ssVe_NUDYwpGAV07yQgnF5Hx0JDsB7go5Wyy_l91A-LhOK0OEi8vSOnge-Z6DojzVVDuDlg213af78Nm2752kWx-MT7s1AUBgSTH5Mt72duqtb9I3_uIgn6HFEnLgcVeQpuue7Z-jRHg_hCfpY4uX6l2_xwmzbHs_H9Dtoj8tIOY4B2-J5ReYVrkKeekgE3eAZuMAarztcfS3JfLZ8jlaLD9-qcxIrLBDHUtkTR-smL6zyvskzUzsB4EE0zKaW56mFSIbm1NhGSWPBs7sipxD9pJnLfNEI6EVfoEm37vxLhK1jmfQCFlfbwHkWihhzXoeBagriSVB-s_faRfrxUAWj1UMYkipdVhXonA67pOMuJejdrtPlyL5xd_NZEOquaaDOHn6AMHS0RO2VlEI03mWgiobWxhsfaMqc4jbPrE_QSVCJ3SASMI9KeYLOblRERzPf6Jzx8NCXSZogslObv6Y6yv9gqq_-s_0pegifcjz8OUOT_ufWvwY41Ns30QyuAbHg_ak priority: 102 providerName: Unpaywall |
| Title | A Novel Fault Diagnostic Approach for DC-DC Converters Based on CSA-DBN |
| URI | https://ieeexplore.ieee.org/document/8240905 https://www.proquest.com/docview/2455884483 https://doi.org/10.1109/access.2017.2786458 https://doaj.org/article/e98866fec1fb4a3daeae1790c95b21be |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvAoiUFY-cGy2eTrOMZtlqZC6QoKVyimyncmFKFvRDQh-PTOJN9oCQtyiaOzY_saa8WT8DcCbGJlExtQ-yjz1Ezpi-DqjfZWS7ywbkxhlOd5xuZYXm-T9VXp1BGfTXRhEHJLPcM6Pw7_8emt7DpWdKzI_OROW3smUHO9qTfEULiCRp5kjFgqD_LwoS5oDZ29l84gaJFzW_cD4DBz9rqjKLf_yXt9d6x_fddsemJrVI7jcD3LMMPky73dmbn_-xt_4v7N4DA-dzymKUUmewBF2T-HBARPhCbwrxHr7DVux0n27E8sxAY_kReFIxwV5t2JZ-stSlJypzqmgN2JBRrAW206UHwt_uVg_g83q7afywnc1FnybBGrn27huoszkiE0U6tpKch9kk5jApFFg6CwTR7E2Ta60Idtusyim808Q2hCzRlKr-Dkcd9sOX4AwNgkVSlro2jDrGZcxTtOaO6pjAseDaL_4lXUE5FwHo62Gg0iQVyNiFSNWOcQ8OJsaXY_8G_8WXzCqkyiTZw8vCIHK7cUKc6WkbNCGpIw6rjVqZKIym6cmCg16cMKoTZ04wDw43etI5Tb6TRUlKV_1TVTsgT_pzR9D1UP1y1tDffn3r7yC-ySlxijPKRzvvvb4mvyenZkN8YLZoPYzuLtZfyg-_wLbF_0- |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoIAPHJttHrbjHLNZlgW6e6GVerNsx7k0ylY0AcGvZybxRltAiFsU2Y7tb6x5ZPwNIe9ShyQypgqdyHnIwMUIdQbnioPtLGrDjLQY71hvxOqSfbriVwfkdLoL45wbks_cDB-Hf_nV1vYYKjuToH5yJCy9xxljfLytNUVUsIREzjNPLRRH-VlRlrAKzN_KZkkmBcPC7nvqZ2Dp92VV7liYR317o398102zp2yWj8h6N80xx-R61ndmZn_-xuD4v-t4TB56q5MWo5g8IQeufUoe7HERHpMPBd1sv7mGLnXfdHQxpuBBe1p42nEK9i1dlOGipCXmqmMy6C2dgxqs6Lal5ZciXMw3z8jl8v1FuQp9lYXQskh2oU2rOslM7lydxLqyAgwIUTMTGZ5EBryZNEm1qXOpDWh3myUpeEBRbGOX1QJ6pc_JYbtt3QtCjWWxdAI2ujLIe4aFjDmvcKAqBXACkuw2X1lPQY6VMBo1uCJRrkbEFCKmPGIBOZ063YwMHP9uPkdUp6ZInz28AASUP43K5VIKUTsbgzjqtNJOO6Qqszk3SWxcQI4RtWkQD1hATnYyovxRv1UJ43jZl8k0IOEkN39MVQ_1L-9M9eXfv_KWHK0u1ufq_OPm8ytyH3rIMeZzQg67r717DVZQZ94Mwv8LWhD95g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOwAHBgxE2EA-cMQliX_EPqYpZUKiQoJK42TZjnMhSieagthfv-fEq9ohTXBMZFu233t637Ofv4fQW-oDiYytiReKEwYhBjEF2BUH7Cway6x04bzj81Kcr9inC34RebbDW5j9-_ssVe_NUDYwpGAV07yQgnF5Hx0JDsB7go5Wyy_l91A-LhOK0OEi8vSOnge-Z6DojzVVDuDlg213af78Nm2752kWx-MT7s1AUBgSTH5Mt72duqtb9I3_uIgn6HFEnLgcVeQpuue7Z-jRHg_hCfpY4uX6l2_xwmzbHs_H9Dtoj8tIOY4B2-J5ReYVrkKeekgE3eAZuMAarztcfS3JfLZ8jlaLD9-qcxIrLBDHUtkTR-smL6zyvskzUzsB4EE0zKaW56mFSIbm1NhGSWPBs7sipxD9pJnLfNEI6EVfoEm37vxLhK1jmfQCFlfbwHkWihhzXoeBagriSVB-s_faRfrxUAWj1UMYkipdVhXonA67pOMuJejdrtPlyL5xd_NZEOquaaDOHn6AMHS0RO2VlEI03mWgiobWxhsfaMqc4jbPrE_QSVCJ3SASMI9KeYLOblRERzPf6Jzx8NCXSZogslObv6Y6yv9gqq_-s_0pegifcjz8OUOT_ufWvwY41Ns30QyuAbHg_ak |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnostic+Approach+for+DC-DC+Converters+Based+on+CSA-DBN&rft.jtitle=IEEE+access&rft.au=Sun%2C+Quan&rft.au=Wang%2C+Youren&rft.au=Jiang%2C+Yuanyuan&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=6273&rft.epage=6285&rft_id=info:doi/10.1109%2FACCESS.2017.2786458&rft.externalDocID=8240905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |